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Work-Energy Theorem

The kinetic energy of a particle of mass m, moving with a speed v, is defined as

T =
1
2

mv2
. (1)

Let us consider a particle that moves from point 1 to point 2 under the action of a force F . The

total work done on the particle by the force as the particle moves from 1 to 2 is, by definition,

the line integral

W12 =
∫ 2

1
F ·ds (2)

where ds = vdt is the displacement vector along the particle’s trajectory. If the particle under-

goes an infinitesimal displacement ds under the action of force F , the scalar product

dW = F ·ds (3)

is the infinitesimal work done by the force F as the particle undergoes the displacement ds

along the particle’s trajectory. We use the Newton’s second law of motion

F =
d(mv)

dt

in the equation (3) to obtain an expression for the infinitesimal work

dW =
d(mv)

dt
· vdt =

d
dt

(

1
2

mv · v

)

dt = d

(

1
2

mv2
)

.

Since the scalar quantity 1
2mv2 is the kinetic energy of the particle, it follows that

dW = dT. (4)

Equation (4) is the differential form of the work-energy theorem: It states that the differential

work of the resultant of forces acting on a particle is equal, at any time, to the differential

change in the kinetic energy of the particle. Integrating equation (4) between point 1 and point

2, corresponding to the velocities v1 and v2 of the particle, we get

W12 =

∫ 2

1
dW =

∫ 2

1
dT = T2 − T1 =

1
2

mv2
2 −

1
2

mv2
1. (5)
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This is the work-energy theorem, which states that the work done by the resultant force F

acting on a particle as it move from point 1 to point 2 along its trajectory is equal to the

change in the kinetic energy (T2−T1) of the particle during the given displacement. When

the body is accelerated by the resultant force, the work done on the body can be considered a

transfer of energy to the body, where it is stored as kinetic energy.

Energy Conservation Theorem

If there exists a scalar function φ(x,y,z, t), so that we could write

F = ∇φ (6)

we shall say that the vector field F is a potential field. The scalar function φ(x,y,z, t) is then
called the potential function of the field. The vector field F is called conservative if φ does

not explicitly depend on time. The potential function φ(x,y,z), in this case, is called the force

potential.

It is easy to show that if the force field is conservative the work done in moving the particle

from 1 to 2 is independent of the path connecting 1 and 2. From equation (2), the total work

done on the particle by the force F as it moves from 1 to 2 is given by

W12 =
∫ 2

1
F ·ds.

Then, for a conservative force field we have

W12 =
∫ 2

1
F ·ds =

∫ 2

1
∇φ ·ds =

∫ 2

1

dφ
ds

ds =
∫ 2

1
dφ = φ2 − φ1. (7)

Thus, the total work done is equal to the difference in force potential no matter how the particle

moves from 1 to 2. We also have the following differential relation

dW = F ·ds = dφ . (8)

If we now write φ(x,y,z) = −U(x,y,z) (inserting a minus sign for reasons of convention)

and express the force as

F = −∇U (9)

then the scalar function U is called the potential energy of the particle. When F is expressed

as in the above equation, the work done becomes

W12 = U1 − U2. (10)

That is, the total work done is equal to the difference in potential energy (U1−U2) no matter

how the particle moves from 1 to 2.
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It may be noted that the line integral of the field F = −∇U along a closed curve (called

circulation) is zero as shown below:

∮

C
F ·ds = −

∮

C
dU = 0.

Comparing equations (5) and (10), it can be concluded that T1+U1 = T2+U2. It says that

the quantity T +U remains a constant as the particle moves from point 1 to point 2. Since 1

and 2 are arbitrary points, we have obtained the statement of conservation of total mechanical

energy

E = T + U = constant. (11)

Thus, the energy conservation theorem states that the total energy of a particle in a conservative

force field is constant.

It is instructive to note that equation (6) does not uniquely determine the function φ . We

could as well define F = ∇φ +c, where c is any constant. Hence, the choice for the zero level

of φ , and consequently U , is arbitrary.

We can verify directly from equation (11) that the total energy in a conservative field is a

constant of the motion. We have

dE
dt

=
dT
dt

+
dU
dt

.

The kinetic energy term can be written as

dT
dt

=
1
2

m
dv2

dt
= m

dv
dt

· v = F · v.

The potential energy U depends on time only through the changing position of the particle:

U =U(s(t)) =U(x(t), y(t), z(t)). Thus, we have

dU
dt

=
∂U
∂x

dx
dt

+
∂U
∂y

dy
dt

+
∂U
∂ z

dz
dt

= ∇U · v = −F · v.

It follows that
dE
dt

= F · v − F · v = 0.

Thus, the total energy of the particle moving in a conservative force field is a constant during

the motion.

Force-potential energy relation

Let us consider a conservative force

F = Fxî + Fy ĵ + Fzk̂.
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We then have

F = ∇φ = −∇U.

Therefore, we have the following relations:

Fx =
∂φ
∂x

= −

∂U
∂x

, Fy =
∂φ
∂y

= −

∂U
∂y

, Fz =
∂φ
∂ z

= −

∂U
∂ z

. (12)

This shows that the partial derivative of force potential in a given direction gives the force in

that direction. An example of a force that derives from a potential is gravitational force

Fg = −∇U

which leads to the following equations

mgx = −

∂U
∂x

, mgy = −

∂U
∂y

, mgz = −

∂U
∂ z

, (13)

where the gravitational acceleration vector g = (gx, gy, gz). It follows that the negative of

partial derivative of potential energy in a given direction gives the gravitational force in that

direction.

If gravitational acceleration vector is given by

g = g(0, 0,−1)

then we have

0 = −

∂U
∂x

0 = −

∂U
∂y

−mg = −

∂U
∂ z

(14)

Integrating the last of the above equation to obtain

U = mgz + f (x,y).

Setting f (x,y) = 0, the potential energy of the particle in a gravitational field is given by

U = mgz

where g acts in the negative z direction. The total mechanical energy E is conserved when a

particle moves under the action of the gravitational field.

Non-conservative force

An example of a force that does not derive from a potential is the frictional force F fr = −kv,

where k is the coefficient of friction. This force acts in the direction opposite to the particle’s

motion and is responsible for the drag force. The frictional force cannot be expressed as the

gradient of a scalar function. This implies that in the presence of a frictional force, the total
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mechanical energy of a particle E is not conserved. The reason is that the friction causes

the mechanical energy E to transform into heat. Energy conservation as a whole, of course,

applies, i.e., the amount by which E decreases matches the amount of heat dissipated into the

environment.

It is instructive to note that the work-energy theorem given by equation (5) is always true,

whether or not the force F derives from a potential.
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