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Chapter 1

The Issue

In this chapter we review the relevant aspects of classical mechanics, and the issues that led to the
Special Theory of Relativity.

1.1 Galelian transformations and the Galeian group

Consider two observers in two reference frames, S and S ′, designated by coordinates (x, y, z) and
time t, and (x′, y′, z′) and time t′, respectively. Let the two reference frames be in uniform relative
motion with respect to each other with constant velocity V = {vx, vy, vz}. Also, let the two reference
frames differ in their orientation (which remains a constant), and differ in their origin in space and
time. Then the two space and time coordinates are in general related by
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Here, R3×3 is a constant 3-parameter rotation (orthogonal 3×3) matrix representing the orientation
of the S ′ frame with respect to S frame, and (x0, y0, z0) and t0 are the difference in their spacial and
temporal origins. In all, there are 10 parameters that relate the two space and time coordinates
(3 for constant spacial rotations in R3×3, 3 boost parameters -(vx, vy, vz), 3 spacial displacements
-(x0, y0, z0), and one temporal displacement-t0).

Eq. (1.1) constitutes the most general Galelian transformation connecting two coordinate sys-
tems. Any non-accelerating reference frame is defined as an inertial reference frame. Any reference
frame related to any other inertial reference frame by a Galelian transformation will also be inertial.
Indeed, the significance of such transformations arises from the fact - Forces (or accelerations) seen
in one inertial reference frame is the same in all inertial reference frames. More strictly, the form
of the equations of mechanics are invariant with respect to such transformations. I.e.,

mir̈i = mir̈
′

i. (1.2)

Further,
mir̈i = Fi([r], t) (1.3)

will go over to
mir̈

′

i = Fi([r(r
′)], t(t′)) = F′

i([r
′], t′). (1.4)



Some facts about the transformation in Eq. (1.1) can be immediately seen: i) Identity transfor-
mation is just a particular case of Eq. (1.1). ii) Inverse of Eq. (1.1) relating S ′ to S is also of the
same form. iii) If we consider two such relations relating S to S ′ and S ′ to S ′′, respectively, say
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It can be worked out that the relation between S and S ′′ is again of the same form. I.e.,
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for suitable constant R′′

3×3
, (v′′

x, v
′′

y , v
′′

z ), (x′′

0
, y′′

0
, z′′

0
) and t′′

0
. Thus, if one considers the set of all

possible transformations of the type Eq. (1.1), it forms a group under composition - the 10-
parameter Galelian group.
Moral: Equations of mechanics preserve their form under Galelian transformations. Or simply,
mechanics pocesses Galelian group symmetry, or is Galelian invariant.

Practically this means that we can write and follow the same equations, using one’s own lab
coordinates, irrespective of our reference frame.

1.2 Maxwell’s equations do not agree

The results of the previous section constitute what is referred to as Galelian/Newtonian/Classical
relativity, and consequently a relativity principle - a belief that laws of physics must be same in all
inertial reference frames, wherein the reference frames are related by transformations of the type
Eq. (1.1).

However, Maxwell’s equations of electrodynamics do not show this invariance. Under the trans-
formation x′ = x − v0t, y′ = y, z′ = z andes t′ = t, we have
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Consider the wave equations in vacuum for the electric and magnetic fields, propagating in the
x̂ direction
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The solution is a Electro-Magnetic wave with velocity of propagation c = 1/
√

(µ0ǫ0). However,
under a transformation x′ = x − v0t, t

′ = t, the equation
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I.e., a E-M wave of velocity c − v0, as one would expect from classical relativity. However, several
experiments have shown that the speed of light in vacuum is the same, c, irrespective of the velocity
of the source or velocity of the reference frame.

Practically this implies that if Maxwell’s equations are valid in on inertial reference frame,
then it should not be valid for an observer in any other non-trivial inertial reference frame. I.e.,
electrodynamics, as expressed in the form of Maxwell’s equations, must by valid only in some specific
special reference frame. However, any attempt to locate this special frame was a failure1

1.3 Possible resolutions

There are three possible resolutions to the issue:

1. Mechanics is fine and Galelian relativity is valid. But Maxwell’s equations are wrong. If this
is so then first of all we must be able to show this experimentally, and hopefully correct the
equations to the ones that show the symmetry.

2. Mechanics is fine and Maxwell’s equations are fine. But the relativity principle does not exist
for electrodynamics. If this is true then doing physics will be tough. For, we may have to
write up different equations for each geographical location or even each day. However, if this
is indeed true we must be able to confirm this experimentally.

Every effort, running over several decades, along these two lines showed a negative result.
Maxwell’s equations were valid to the best of accuracy. The special reference frame could not
be found. Curiously enough, as was mentioned earlier, the speed of light was found to be the
same irrespective of the velocity of the source, or the observer2

3. Maxwell’s equations are fine and a relativity principle exists. But, the expressions as in Eq.
(1.1) are wrong.

The third possibility was the one investigated by Einstein, and the one that resolved all issues.

1Look up any standard text in relativity for a discussion on this period in history (do this atleast once), and some
experiments, particularly the ones by Michelson-Morley, Kennedy-Thorndike. Relativity by R. Resnick and Feynman

Lectures, Vol. 1 are good enough.
2One historically important remedy suggested was by Lorentz-Fitzgerald, that objects in motion shrink by a

certain factor along the direction of motion depending on their relative velocity. Though this theory could not
completely resolve all issues, it is well acknowledged as the prime motivator for Einstein’s theory. Again, see
Feynman or Resnick for a discussion.



Chapter 2

The Special Theory

We shall deliberately ignore the chronological development of the theory 1, and start directly from
the answer.

2.1 The Postulates

The resolution came in the form of two (just two!!) postulates.

PI. The principle of relativity: Laws of physics must be the same in all inertial reference
frames.

Though this assertion may sound nothing new, it has to be appreciated that, first of all, this is a
postulate. Besides, the change is in its privilege, now as an apriori assertion.

The second postulate brings in some fundamental changes in our notion of space and time.
While the following sections in this chapter are devoted to a more detailed discussion on these
aspects, we shall briefly define the bare minimum first, just enough material to state the postulate.

The special theory forces us to look upon space and time not independently, but as a space-time
continuum. Just as we speak of a point in 3-space given by 3-coordinates, we have Events(noun)
designated by 4 coordinates - 3 spacial and 1 temporal. Thus we have a 4-dimensional space-time,
and every space-time point is defined as an ’Event’. For a start it may be convenent to think of
these Events as usual events(verb).

Consider two Events in space-time, say (ti; xi, yi, zi), i = 1, 2 (say two firecrackers bursting in
the sky at two different points at different times). Contrary to our usual notion that time intervals
∆t = (t2 − t1), and lengths ∆l2 = (x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2, are independently invariant
in any reference frame, we have

PII. The space time interval between two Events, defined as

∆s2 = c2∆t2 − ∆l2, (2.1)

is an invariant in any inertial reference frame, where ′c′ is a universal constant whose value is
roughly 3 × 108m/s.

1Just as we do not care anymore about the chronological development of Newton’s laws, which after all were not
written overnight.



I.e., if the same two events are in another inertial reference frame designated by the space-time
coordinates (t′i; x

′

i, y
′

i, z
′

i), i = 1, 2, then
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The speed of light happens to be ′c′.
The remaining part of the course will be confined to convincing ourselves that the special theory

does indeed resolve the issues discussed in the previous chapter, and make the relevant changes in
Newtonian mechanics. However, as mentioned earlier, PII changes our notion of space and time
fundamentally. This chapter will detail these changes.

2.2 Space-time, Events and World Lines

In classical relativity, the instantaneous position of a particle, or an object, is specified by its space
coordinates, and its time evolution is illustrated by a trajectory it traces out in space. But, PII puts
space and time in equal footing, thus prohibiting looking upon the two independently. Consequently,
The trajectory of, say, a particle in space becomes a trajectory connecting space-time ’Events’. Such
a trajectory shall be called a ’World Line’. The four coordinates do not have the same dimension,
however. This is taken care of by scaling the time axis with the universal constant ′c′.

A few examples are shown in Figures 2.1 and 2.2.
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Figure 2.1: Two simple situations and their world line view: a) an object at rest, and c) a object in
uniform motion along x direction in space, and their respective world lines c) and d). World lines
of objects in uniform motion are straight lines. y and z directions are not shown in b) and d).



ct

x

ct

x

a

b

Figure 2.2: a) The world line of a accelerating object, moving in the x direction. The curvature of
the world line is a measure of its acceleration. The other two spacial directions are suppressed for
simplicity. b) The world line of a planet orbiting in the x − y plane. The world line for the planet
is a helix (i.e, if the orbit is circular).

Thus even an object at rest is represented by a line. In some sense, even an object at rest is
moving in space time. Two observations are immediate: a) Objects in uniform motion in a inertial
(henceforth a default unless specified explicitly) reference frame are represented by straight world
lines in the space-time diagram drawn in any reference frame. b) Objects that are accelerating will
have curved world lines. More specifically, the acceleration at a point (ct, x, y, z) will be given by
the curvature of the world line at that point.

2.3 Two Events in two different inertial frames

In comparing two points in space, Galelian relativity was wound around the postulate that the
spacial separation between the two points will be the same for any two observers. And so was the
case for temporal separation between two events.

2.3.1 Correspondence

Consider two events A and B, with coordinates (ct1; x1) and (ct2; x2) (y and z coordinates being
same for simplicity) in a reference frame S. Say an object starts at A and reaches B with uniform
velocity v in the x̂ direction as in Figure 2. Then

∆s2 = c2(t2 − t1)
2 − (x2 − x1)

2 = (c2 − v2)(t2 − t1)
2. (2.3)

Let S ′ be another reference frame moving with respect to S with some velocity such that the same
two events in S ′ are (ct′

1
; x′

1
) and (ct′

2
; x′

2
), and the velocity of the object v′. From PII we have

∆s2 = (c2 − v2)(t2 − t1)
2 = (c2 − v′2)(t′

2
− t′

1
)2 = ∆s′

2
. (2.4)

When velocities v1 and v2 are small compared to c, Eq. (2.4) reduces to

(t2 − t1)
2 = (t′

2
− t′

1
)2, (2.5)



or simply, one gets back Galelian relativity. Indeed, practically relativistic effects are significant
only at velocities of the order 0.5c and more.

2.3.2 Objects with velocity c are special

Suppose the object in the previous section is moving at speed v = c in S. Then evidently,

∆s2 = 0. (2.6)

Consequently ∆s′2 = 0 and v′ = c. I.e., if an object is moving at speed c in some reference then it
moves with the same speed c in all reference frames. Objects traveling with speed c are treated by
space-time with a little added privilege. Hence, the velocity of light in vacuum being c, will be the
same as seen from any reference frame, just as several experiments had suggested.2 Indeed, from
Eq. (2.4) it follows that an object moving with a speed less than (greater than) c in one reference
will be seen to be moving with a speed less than (greater than) c in any reference frame. In fact,
the invariance of the space-time intervals allows us to classify them into three types based on their
sign:

2.3.3 Time like, space like and light like intervals: Causality

Two events are said to be time like, space like or light like separated if their space-time intervals
are such that ∆s2 > 0, ∆s2 < 0 or ∆s2 = 0 respectively. The primary significance being that they
maintain this classification in any reference frame.

We wish to see how the spacetime separation between events look like in different reference
frames. Of two events A and B, let A coincide with the origin in two reference frames S and S ′

(i.e, the two reference frames coincide at their origin). Given B = (ct; x, y, z) in frame S, we wish
to see where B = (ct′, x′, y′, z′) can possibly be in S ′. Since the space time coordinates of A being
the origin, we have,

∆s2 = c2t2 − x2 − y2 − z2. (2.7)

If the two events are time like,space like and light like separated, then we have ∆s2 = a2, ∆s2 = −a2

and ∆s2 = 0, respectively, leading to

c2t′2 − x′2 − y′2 − z′2 = a2 ; time like

c2t′2 − x′2 − y′2 − z′2 = −a2 ; space like

c2t′2 − x′2 − y′2 − z′2 = 0 ; light like. (2.8)

The equations may be recognized as paraboloid, hyperboloid and a hyper cone separating the two.
This is illustrated in the {ct, x, y} space in the Figure 2.3. If an event B lies in the paraboloid in
one reference frame S, then it lies in the same paraboloid in any other reference frame S ′ (if S and
S ′ have the same origin). The same holds true for the light cone and the hyperboloid (See Figure
2.4)

2’The speed of light in vacuum is same in all reference frame’ is in fact the version of PII originally given by
Einstein, and is equivalent to the version we have used. Einstein’s version is deliberately avoided for the following
reasons: a) the postulate PII as we have stated is functionally more useful, b) it shows the precise difference between
Galelian and Special relativity and c) on a naive reading Einstein’s version is likely to give an impression that we
are talking about some special property of light. Whereas, it should be realized that what we have encountered is a
property of space-time. After all, it is not just light, but any object moving with speed c that has the same speed in
all reference frames.
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Figure 2.3: The light cone attached to an event in space time (origin). The events in the future fall
inside the cone in the +ve t direction. The events outside the cone are space like seperated from
the origin and are not accessible. If a future event falls on the paraboloid inside the cone, then in
any other reference frame (with the same origin) the event will be some other point in the same
paraboloid. The actual structure is 4 dimensional. z direction is suppressed for simplicity.

An important observation with respect to time like and space like separated events concerns
their time ordering. Suppose B and A are time like separated, and say t > 0, i.e, A precedes B in
frame S. Then in any frame the time ordering is preserved. Causality is preserved if the events are
time like separated. However, if A and B are space like separated, then it is possible that A precedes
B in frame S, while B precedes A in S ′ or some other reference frame. Event B could be at B1(see
figure) in one reference frame and B2 in another. Notice the difference between Newtonian causality
and Einstein’s causality. In Newtonian causality, A and B1 are causally connected. However, in
Special relativity they are not, as in some other reference frame B1 could be B2.

2.4 Time dilation: Proper time

The most important facet of special relativity is that it identifies space and time not as separate
entities but part of a single space-time continuum. It forces us a rethink on our basic notion of time
and space measurements in the elementary of situations.

Consider a clock at rest in a reference frame S. The world line of the clock is shown in Figure .



x

y

ct

A

B
B’

C

C’

x

x

x

x

Figure 2.4: Event B might transform to B′ in some other reference frame S ′. However, the time
ordering between events A and B is preserved (A′ = A). This is true for any two events that are
time like separated. But the same is not true for events C and A, which are space like separated.
C transforms to C ′ in S ′. Since the time ordering is reversed, A precedes C in S, but is reversed in
S ′.

The ticking of the clock at intervals t1, t2, .. are the events denoted by the dots along the time axis.
The space time interval between the first two ’ticks’ is given by

∆s2 = c2(t2 − t1)
2. (2.9)

Let S ′ be a reference frame moving with speed v in the x direction with respect to S. The two ticks
of the clock in this reference frame do not happen at the same point in space. Let the two events
in this frame be (ct′

1
, x′

1
) and (ct′

2
, x′

2
) (we do not bother about the y′, z′ coordinates since they are

same as the unprimed ones, the motion being in the x direction). The space time interval in this
frame is given by

∆s′2 = c2(t′
2
− t′

1
)2 − (x′

2
− x′

1
)2 (2.10)

= c2(t′
2
− t′

1
)2 − v2(t′

2
− t′

1
)2. (2.11)

Since the two intervals are same by PII, it follows that

(t2 − t1) =

√

(1 −
v2

c2
) · (t′

2
− t′

1
) (2.12)



or
(t′

2
− t′

1
). = γ(t2 − t1), (2.13)

where γ = 1/
√

(1 − v2/c2). So, the times shown by a moving clock will be different from the one it
shows when it is at rest. It can be seen that 1 ≤ γ ≤ ∞. (t′

2
− t′

1
) is the time interval between two

’ticks’ in a frame in which the clock is moving. From Eq. (2.13) it follows that (t′
2
− t′

1
) ≥ (t2 − t1).

Moving clocks run slower by a factor γ.
Definition: The Proper time between two events is defined as the time interval between the

events in a frame in which the two events happen at the same place. The time shown by a clock in a
reference frame in which the clock is at rest is the Proper time shown by the clock. Evidently,
proper time is not defined between two events that are space like separated.

2.5 Length contraction: Proper length

Having seen that time interval measurements in two reference frames are different, it is natural to
expect the same about length measurements too. The definition of proper length goes along the
same line as that of proper time.

Definition: The Proper length of an object is its length measured in a frame in which the
object is at rest.

Let us compare the length of an object as measured in two reference frames. Frame S in which
the object is at rest with length L, say along the x direction, and another frame S ′ in motion with
respect to S along the x direction with speed v. The world lines of the object in the two frames are
shown below.

Let A and B be the two events at which the two ends of the object cross the observer. In S

A = (ctA; xA) ; B = (ctB; xB), (2.14)

and in S ′

A = (ct′A; 0) ; B = (ct′B; 0). (2.15)

Then the length of the object in S ′ is given by

L′ = v(t′B − t′A). (2.16)

The space time interval between A and B is the same in the two reference frames. This gives

c2(t′B − t′A)2 = c2(tB − tA)2 − (xB − xA)2

⇒ c2
L′2

v2
=

c2

v2
L2 − L2. (2.17)

Or,

L′ = L
√

(1 −
v2

c2
) =

L

γ
. (2.18)

Since γ ≥ 1, L′ ≤ L, i.e objects in motion appear smaller along the direction of motion.
PS: We have considered only the contraction along the direction of motion. However, it is

straight forward to show (using detailed space time diagrams) that in the other two directions, i.e.,
the direction perpendicular to motion, there is no contraction.



Chapter 3

Four Vectors and the ∗ product

As we saw in the last chapter, special relativity identifies space and time not as independent entities
but as two facets of a space-time continuum. Consequently, a point in space time is identified 4
coordinates, one time and three space. Thus the position vector of an object in space time is given
by1

r = (ct; x, y, z) = (ct, r). (3.1)

3.1 The four-velocity vector

Every observer makes measurements in her own lab frame in her own clock - her own proper time.
Evidently, thats one time on which everybody will agree. It seems natural therefore to define the
four velocity of an object as the proper time derivative of its position 4-vector. However, between
two observers in relative motion we know they do not measure the same time interval between two
given events. Indeed, the proper time interval ∆τ is related to the time interval observed in any
other frame ∆t by

∆τ =
∆t

γ
. (3.2)

The time derivatives in the two reference frames are related by

d

dτ
= γ

d

dt
. (3.3)

The four velocity of a moving object is defined thus:

v =
dr

dτ
= γ

dr

dt
= γ(c;v). (3.4)

Let’s look at each of the quantities in Eq. (3.4) carefully. The situation is the following: In a given
frame (say, the rest frame) an object, whose position vector is r, is observed to be moving with
velocity v. τ is the time as measured in the object’s own reference frame - its proper time. The four
velocity of the object in the object’s own reference frame will be (and so will be the four velocity
of anyone or anything in its own reference frame)

v = (c; 0). (3.5)

Notice that the four velocities in Eq. (3.4) and Eq. (3.5) are one and the same, but just observed
from two different reference frames.

1The semicolon separating time and space coordinates need not be taken seriously. Henceforth 3-vectors will be
denoted by bold faces, and 4-vectors by underlined bold faces.



3.2 The ∗ product

Analogous to the · product of three-vectors, we define the ∗ product of two four-vectors A =
(at; ax, ay, az) and B = (bt; bx, by, bz) as

A ∗ B = atbt − axbx − ayby − azbz. (3.6)

With this definition, we notice
v ∗ v = c2. (3.7)

A four vector connects two space time points. Consequently, PII can be rewritten as

• PII:The ∗ product of any two four-vectors defined in space time is an invariant in any reference
frame.

3.3 The four-accelaration

The four-accelaration is defined as

a =
dv

dt
= γ

d

dτ
(γc; γ~v). (3.8)

Differentiating Eq. (3.7), we get
v ∗ a = 0. (3.9)

Thus, a and v are always orthogonal (Note that the notion of orthogonality here is purely abstract,
and should not be confused with vectors being perpendicular, as in 3-D).

3.3.1 The case of uniform accelaration

We shall look in detail an object that is uniformly accelarated, i.e., an object that feels uniformly
accelarated, with accelaration say ’a’ in the x direction. From the object’s own frame it is possible
to measure its accelaration (but not speed), without any reference to an external reference point.
The question we adress here is, if a ground observer S were to measure the acceleration of the
object, will it be the same as ’a’.

It is necessary to understand here quantitatively what we mean by a. Let the velocity of the
object at some instant be v in the x direction. This speed is changing as the object accelerates.
The acceleration a is the change in velocity as seen by the object itself. Thus if we consider a
reference frame S ′ at a speed close to v (in the x direction), with respect to the ground observer
at the same instant, then the acceleration of the object seen by S ′ at that instant is roughly a. If
v′ is the velocity of the object as seen by S ′, then the four-velocity of the object at that instant is
(c; v′, 0, 0) (taking γ ∼ 1). The velocity being small with respect to S ′, the four-accelaration is

a ∼
d

dt
(c; v′, 0, 0) = (0; a, 0, 0). (3.10)

Eq. (3.10) gives the four-acceleration as seen by S ′ around the time when the object is at speed v,
and it is assumed that γ = 1. From Eq. (3.10)

a ∗ a = −a2. (3.11)



But, the star product being an invariant, it must be same in the ground reference frame S also.
Given the special relation satisfied by v, Eq. (3.7), we choose the following parameterization:

v = (vt; vx) = c(cosh(κτ); sinh(κτ)), (3.12)

a choice that is valid always (y and z components are zero, and hence not shown in the above).
Upon integration with respect to τ we get

r =
c

κ
(sinh(κτ); cosh(κτ) − 1). (3.13)

The constant of integration −1 in the space part in Eq. (3.13) has been introduced so that x = 0
at τ = 0. Differentiating v with respect to τ we get a as

a = cκ(sinh(κτ); cosh(κτ)). (3.14)

Evidently v ∗ a = 0. The condition
a ∗ a = −a2 (3.15)

gives
c2κ2 = a2. (3.16)

Thus we have the final solution,

r =
c2

a
(sinh(aτ/c); cosh(aτ/c)−1) ; v = c(cosh(aτ/c); sinh(aτ/c)) ; a = a(sinh(aτ/c); cosh(aτ/c)).

(3.17)
The velocity as seen from the ground frame is given by

dx

dt
=

dx/dτ

dt/dτ
=

1

γ

dx

dτ
(3.18)

From the expression for v we find γ = cosh(aτ/c) and dx/dτ = c sinh(aτ/c). Thus the velocity
as seen by the ground observer is c tanh(aτ/c). So, inspite of continued uniform acceleration, the
object never reaches c in finite time.

It is important to realize here that when we say uniform acceleration, we are referring to the
acceleration as seen by the accelerating object itself, in its own reference frame.



Chapter 4

Velocity addition and Lorentz
transformations

We have noted already that in going from one reference frame to another the simple velocity
addition rule does not hold. In this chapter we shall find the correct relativistic expression for
adding velocities, the relations connecting space-time coordinates in two reference frames in relative
motion - the Lorentz transformation relations.

4.1 Velocity addition

Let two observers 1 and 2 in relative motion observe an object 3 in motion. Say 1 is the ground
reference frame, 2 moving with respect to 1 along their common x direction with velocity v21, and
let 3 also move in the x direction with speed v32 with respect to 2. Evidently the velocity of 1 with
respect to 2 is v12 = −v21. The task is to find v31, the velocity of 3 with respect to 1.

Let us write the corresponding four velocities:

v
21

= γ21(c; v21, 0, 0), (4.1)

v
32

= γ32(c; v32, 0, 0), (4.2)

v
12

= γ12(c; v12, 0, 0) = γ21(c;−v21, 0, 0) (4.3)

v
31

= γ31(c; v31, 0, 0) =? (4.4)

where, as usual, γij = 1/
√

1 − v2

ij/c
2.

To determine v31 we shall use the fact that the ∗ product of two four-vectors is invariant in any
reference frame, and that the four-velocity of any object in its own reference frame is (c; 0), since
in its own reference frame it is at rest. Thus, the speed of 1 in its own reference frame is zero, and
consequently the four-vector

v
11

= (c; 0). (4.5)

From the invariance of the ∗ product it follows that

v
32
∗ v

12
= v

31
∗ v

11
. (4.6)

Substituting for these four vectors from Eqs. (4.1)-(4.5), we have,

γ32γ12(c
2 − v32v12) = γ31(c

2), (4.7)



or,
γ31 = γ32γ12(1 − β32β12) = γ32γ21(1 + β32β21). (4.8)

After some simple algebra we find

β31 =

√

1 −
1

γ2

31

=
β32 + β21

1 + β32β21

(4.9)

v31 =
v32 + v21

1 + v32v21/c2
. (4.10)

Notice that the expression for v31 reduces to the usual Galelian expression v31 = v32 + v21 when the
velocities are small compared to c.

Summary: If an object is moving with velocity v32 with respect to frame 2, and the frame 2
itself is moving with respect another frame 1 with velocity v21, then the velocity of the object with
respect to 1, v31, is not the simple Galelian velocity addition law, but the expression given by Eq.
(4.10), which reduces to the Galelian form for small velocities.

Not that in the above demo it is assumed that all velocivites is are in the same common x
direction. If the velocities are different the expressions are a little more complicated.

4.2 Lorentz transformations

Two observers in two different reference frames look at the the same events differently. Their
coordinates may be different, and so could be their directions in space-time. Thus the same four
vector A in space-time may be designated differently by the two observers in frames S and S ′ as

v = att + axx + ayy + azz = at′t
′ + ax′x′ + ay′y′ + az′z

′ (4.11)

We intend to find the relations between the two sets of unit four-vectors, and the relations between
the two sets of coordinates.

To do this we start with a known four vector. Recall that the four-veolcity of any object in its
own reference frame is given by (c; 0, 0, 0). Thus, let us look at the four velocity of the frame S ′ in
the two frames S and S ′. Let v be the velocity (say, along the x direction for simplicity) of S ′ with
respect to S.

v = γct + γvx = ct′. (4.12)

The two vectors are the same, as they refer to the same four-vector in space time. Eq. (4.12) gives
a relation between the time unit vector t′ in frame S ′ and that of the x and t in S. Now we have
to determine x′. Let

x′ = at + bx. (4.13)

To determine a and b we make use of the ortho normality conditions.

x′ ∗ x′ = −1 ; t′ ∗ x′ = 0 (4.14)

yeild
a2 − b2 = −1 ; ac − bv = 0. (4.15)

Substituting a = bβ in the first expression in Eq. (4.15), we have

b = γ ; a = γβ. (4.16)



Thus for the simple choice that the velocity is along the common x direction of the two frames, we
find the relations between the unit vectors as

t′ = γt + γβx, (4.17)

x′ = γβt + γx, (4.18)

y′ = y, (4.19)

z′ = z. (4.20)

(4.21)

The last two vectors are the same since the relative motion is along the x direction. It is now
straight forward to relate the coordinates in the two frames. In Eq. (4.11) we take ∗ product with
t′ on both sides. This gives,

γat − γβax = at′ . (4.22)

Repeating the procedure for x′, y′ and z′ (and adjusting the signs), we get

−γβat + γax = ax′ , (4.23)

ay = ay′ (4.24)

az = az′ (4.25)

(4.26)

In particular, the relation between the coordinates are

t′ = γt − γβx (4.27)

x′ = γβt − γx (4.28)

y′ = y (4.29)

z′ = z. (4.30)

As earlier, the coordinates y and z are unchanged in the two frames as the motion is only along the
x direction. In general the expression connecting the two sets are

They constitute the Lorentz transformation relations connecting two frames, whose axes are
aligned, and their origins coincide. Such a transformation is called a pure Lorentz transformation.
The transformation matrix L in such a case is symmetric.

In general frame S ′ can be rotated through some constant angle with respect to S, and their
origins need not coincide.



Chapter 5

Relativistic Mechanics

The purposefulness of energy and momentum come from their conservation criterions. For an
isolated system the total momentum is conserved, and so is the energy. But, will the momentum
conservation hold if we were to look at the same system from any reference frames. Given that
velocity addition is not the simple Galelian relation, but the expression in Eq. (4.10) (in fact more
complicated for a general case), momentum conservation is tricky business as viewed from different
reference frames. In this chapter we analyze this question, and that of energy, and look at the
modifications Special relativity makes to mechanics.

5.1 Momentum, as we know it, of an isolated system of

particles is not conserved if we look at it from different

reference frames

Consider an isolated system of 2 particles that collide head on and perfectly elastically. The motion
is essentially one dimensional. Let v1 and v2 be their velocities before collision and v′

1
and v′

2
after

the collision. If m1 and m2 are their respective velocities, then the momentum conservation demands

m1v1 + m2v2 = m1v
′

1
+ m2v

′

2
. (5.1)

Or, dividing through out by c,

m1β1 + m2β2 = m1β
′

1
+ m2β

′

2
. (5.2)

Let us consider another reference frame S ′ moving at velocity v0, with respect to the lab frame
in the same direction of motion of the two particles. Let the velocities in S ′ frame be ṽi and ṽ′

i,
i = 1, 2, or again dividing by c, β̃i and β̃′

i. If momentum conservation holds then it must hold in all
reference frames, and hence in S ′ we demand

m1β̃1 + m2β̃2 = m1β̃
′

1
+ m2β̃

′

2
. (5.3)

But from the velocity addition rule in Eq. (4.9), we should have

β̃i =
β0 + βi

1 + β0βi

, (5.4)



and similarly for β̃′

i. Substituting in Eq. (5.3), we have

m1

β0 + β1

1 + β0β1

+ m2

β0 + β2

1 + β0β2

= m1

β0 + β′

1

1 + β0β′

1

+ m2

β0 + β′

2

1 + β0β′

2

. (5.5)

Given Eq. (5.1), and that β0 is arbitrary in the range [0, 1], there is no way Eq. (5.5) will be
satisfied for all β0. The momentum, as we know it, of an isolated system is not a constant!! It is
easily to check along similar lines that the kinetic energy of the two particle system is not conserved
either!

5.2 The four-momentum

Momentum and energy of an isolated system not being a constant as seen from different reference
frames poses a serious problem for mechanics. It means that what is an isolated system for one
observer might appear to be acted upon by forces from some other inertial reference frame -
questioning Newton’s laws. The resolution is that the expression for momentum and kinetic energy
that we have been using is only an approximate one. We have to find a correct expression for
momentum and energy, that are conserved in different reference frames, and reduce to the Newtonian
expressions for low velocities. The answer comes in the form of the four-momentum.

Having already familiarized with four-velocity (see Eq. (3.4)), we define the four-momentum of
an object as

p = mγ(c; ~v), (5.6)

where m is the mass of the object measured when it is at rest, or its rest mass. It is straight forward
to check that the four-momentum for the system of two colliding particles is conserved in S and S ′.
If four-momentum is conserved in S, then

m1γ1(c; β1) + m2γ2(c; β2) = m1γ
′

1
(c; β′

1
) + m2γ

′

2
(c; β′

2
), (5.7)

where we have not bothered to write the y and z components, as all motion is along the spacial x
direction. Being a vectorial relation, Eq. (5.7) breaks into two equations

m1γ1 + m2γ2 = m1γ
′

1
+ m2γ

′

2
(5.8)

m1γ1β1 + m2γ2β2 = m1γ
′

1
β′

1
+ m2γ

′

2
β′

2
. (5.9)

We demand, in reference frame S ′

m1γ̃1(c; β̃1) + m2γ̃2(c; β̃2) = m1γ̃
′

1
(c; β̃′

1
) + m2γ̃

′

2
(c; β̃′

2
). (5.10)

Given Eq. (5.4), the relation between β̃i and βi, it is easily seen that (Eq. (4.8) for instance)

γ̃i = γ0γi(1 + β0βi). (5.11)

Substituting from Eqs. (5.4) and (5.11) in Eq. (5.10), we have the temporal and spacial components
as

m1γ0γ1(1 + β0β1) + m2γ0γ2(1 + β0β2) = m1γ0γ
′

1
(1 + β0β

′

1
) + m2γ0γ

′

2
(1 + β0β

′

2
) (5.12)

m1γ0γ1(1 + β0β1)
β0 + β1

(1 + β0β1)
+ m2γ0γ2(1 + β0β2)

β0 + β2

(1 + β0β2)
= m1γ0γ

′

1
(1 + β0β

′

1
)

β0 + β′

1

(1 + β0β′

1
)

+m2γ0γ
′

2
(1 + β0β

′

2
)

β0 + β′

2

(1 + β0β′

2
)

(5.13)



Evidently, Eqs. (5.12) and (5.13) follow from Eqs. (5.8) and (5.9). Hence, we have shown that if
the four-momentum is conserved in S, so will it be in S ′. And we do know that the four momentum
is conserved in a reference frame where the velocities are small: in which case Eq. (5.8) is the sum
of masses after and before collision, and Eq. (5.9) is the sum of Newtonian momentum.

Summary: It is not the Newtonian momentum and kinetic energy that is conserved in collision of
an isolated system of two particles, but the four-momentum.

5.3 Four-momentum: Interpretation

5.3.1 Momentum, mass and force

The spacial part of the four-momentum, γm~v reduces to the usual Newtonian momentum for small
velocities. We identify this as the relativistic momentum of an object, or the correct expression for
momentum. Thus the momentum of a object of rest mass m and moving with velocity ~v is

~p = γm~v. (5.14)

Mass is defined as momentum upon velocity, and hence we identify that the mass of an object is
γm, where m is its rest mass. With this correction, the statement of Newton’s law remains the
same, except that the momentum is as defined in Eq. (5.14)

Force : ~F =
dp̃

dτ
= γ

d(γmṽ)

dt
. (5.15)

With this definition for momentum, Eq. (5.14), it is clear that an object can never reach the
velocity c. Upon acceleration its momentum will change, consistent with Newton’s law, but it
starts reflecting in the mass than the velocity.

5.3.2 Energy

The most important feature of the time part of four-momentum pt = γmc in Eq. (5.6) is that it
is conserved for an isolated system as seen from any reference frame. To get more clarity on this
quantity, let us look at the same in familiar territory, i.e., at low velocities.

At v = 0, pt = mc, which doesn’t tell us much. For small velocities, γ can be expanded as

γ ∼ 1 +
1

2
β2. (5.16)

Thus we find

pt ∼
1

c
(mc2 +

1

2
mv2). (5.17)

Also,
dpt

dτ
= γ

dγ

dt
mc = γ4mcβ

dβ

dt
. (5.18)

But from Eq. (5.15), for the simple case of v along x say, we have

F = γ
dγ

dt
mv + γ2mc

dβ

dt

⇒ γ4β
dβ

dt
mcβ + γ2mc

dβ

dt
. (5.19)



This gives

Fβ = (γ2β2 + 1)γ2mc
dβ

dt
β = γ4mc

dβ

dt
β. (5.20)

Comparing Eq. (5.20) and Eq. (5.18), we have

γ
d(cpt)

dt
= Fv. (5.21)

But Eq. (5.21) is the work energy theorem in the differential form. Consequently we define the
Relativistic energy as

E = cpt = γmc2, (5.22)

following the three facts we have collected: a) It is conserved for an isolated system, in any reference
frame, b) It goes like the kinetic energy plus a rest energy mc2 for small velocities, and c) it obeys
the work energy theorem.

Thus the four momentum

P = (
E

c
; ~p) (5.23)

incorporates in it both the conservation of momentum and energy. Note that the conservation of
either of Eq. (5.12) and Eq. (5.13) require both Eq. (5.8) and Eq. (5.9). Thus the four dimensional
nature is indispensable. Form Eq. (5.6) it follows that

P ∗ P = m2c2. (5.24)

Thus
E2c2 − p2 = m2c2. (5.25)

The quantity E − mc2 will be defined as kinetic energy K. Thus

K = E − mc2 = (γ − 1)mc2. (5.26)

5.4 Decay process

We shall analyze a simple case of a particle of rest mass M decaying, or splitting spontaneously
into two particles of rest mass m1 and m2. We shall look at the problem from the reference frame
in which the particle was initially at rest. Given the rest masses, the kinetic energy of each particle
after the decay can be found using the conservation of four-momentum. The four momentum of
the particle before decay is (since it is at rest)

p = (Mc; 0). (5.27)

The momentum of the two particles are

p
1

= (γ1m1c; γ1m1v1, 0, 0) ; p
2

= (γ2m2c; γ2m2v2, 0, 0). (5.28)

In the above, the direction of motion of the particles after splitting is taken as x direction, hence the
momentum components along the y and z directions are zero. From four momentum conservation
we have

p = p
1
+ p

2
. (5.29)
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t=0 ∆t=   t

Figure 5.1: A decay process, showing a mass M initially at rest decaying into two particles of rest
masses m1 and m2. Since the two particles have kinetic energy, M > m1 + m2.

Breaking into time and space part, we have

M = γ1m1 + γ2m2

γ1m1v1 = γ2m2v2. (5.30)

From Eq. (5.30) we notice that M ≥ m1 + m2, with the ’=’ holding only when γ1 = γ2 = 0, i.e.,
both particles are at rest after decay. The difference in mass reflects in the form of kinetic energy
of the particles. After some jugglery it can be shown that the kinetic energies of the particles are
given by

K1 =
(Mc2 − m1c

2)2 − (m2c
2)2

2Mc2

K2 =
(Mc2 − m2c

2)2 − (m1c
2)2

2Mc2

(5.31)

5.5 Compton scattering

The momentum four-vector of light can be written in consonance with the interpretation of the time
part as energy, and the space part as the linear momentum. Thus invoking quantum mechanics, we
have the momentum four-vector for light

kLight = (
hν

c
; ~k). (5.32)

Scattering of a massive particle by light is referred to as Compton scattering. A simple scenario
is shown in Figure 5.2, in which a photon of energy E = hν collides with a electron of mass me.
After collision the rest mass of the electron stays the same, although it has acquired some kinetic
energy. The wavelength of the scattered photon is related to the angle of scattering. It is this
relation that we try to find here. For convenience we have chosen a reference frame in which the
particle is initially at rest. Besides, the scattering the assumed to happen in the x − y plane. The
momentum four vectors for light and the particle, before and after the collision are, respectively,

Before:

(
hν

c
;
hν

c
, 0) ; (mec; 0, 0), (5.33)
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Figure 5.2: Scattering of a electron, initially at rest, by a photon of energy E = hν. The change in
frequency (or wavelength) of the photon depends on the angle of scattering θ.

After:

(
hν ′

c
;
hν ′

c
cos θ,

hν ′

c
sin θ) ; (

Ee

c
; Pex, Pey), (5.34)

where
E2

e − (P 2

ex + P 2

ey)c
2 = m2

ec
4, (5.35)

and ν ′ is the frequency of the scattered photon. Conservation of four-momentum gives

hν + mec
2 = hν ′ + Ee, (5.36)

hν = hν ′ cos θ + Pexc, (5.37)

hν ′ sin θ = Peyc. (5.38)

Substituting Eqs. (5.36)-(5.38) in Eq. (5.35), we have

m2

ec
4 = (hν + mec

2 − hν ′)2 − (hν − hν ′ cos θ)2 − hν ′2 sin2 θ. (5.39)

Ultimately, this reduces to

0 = −(ν − ν ′)mec
2 + hνν ′ − hνν ′ cos θ. (5.40)

Substituting ν = c/λ and ν ′ = c/λ′ in Eq. (5.40), we get

∆λ = λ′ − λ =
h

mec
(1 − cos θ). (5.41)

Eq. (5.41) gives the desired relation between change in wavelength and the angle of scattering. The
quantity h/(mec) is the Compton wavelength of electron and is roughly equal to 2.43 × 10−12m.
The angle of scattering θ may vary from zero (no scattering, or forward scattering), to 180o (back
scattering).



Chapter 6

Waves

A wave is a propagating disturbance of some field. A sound wave is a fluctuation of the density field
of the medium in which it is propagating. Light is a periodic propagating electromagnetic field. A
wave is characterized by its wave vector k, giving the direction of propagation and related to the
wavelength as |k| = 2π/λ, the angular frequency ωk, and amplitude. A simple plane wave is given
by

Φ = Φ0 sin(k · r − ωkt) (6.1)

The phase velocity of the wave is vk = ωk/|k|. The subscript k has been used to indicate that waves
of different frequencies have different velocities in a medium. In this chapter we shall relate the
observation of these quantities as seen by two observers in relative motion.

If the wave is observed with wave vector k and angular frequency ωk in frame S, we intend to
find the corresponding quantities k′ and ω′

k′ as seen from the reference frame S ′ in relative motion
with respect to S.

A simple plane wave is shown in Figure 6.1. A wave can be seen as a sequence of events, say
the crests of the field, that happen at regular intervals. Two observers looking at the same wave
will, though they may not agree on the frequency and wavelength, have no ambiguity in which are
the crests. The same goes for the troughs, and consequently for any phase of the wave. That is to
say, their observations will be such that

k · r − ωkt = k′ · r′ − ω′

k′t′. (6.2)

Recalling that (ct; r) and (ct′; r′) are the four vectors in the two frames, Eq. (6.2) is merely the
statement that

k ∗ r = k′ ∗ r′, (6.3)

if we define

k = (
ωk

c
;k) ; k = (

ω′

k′

c
;k′). (6.4)

It may be noted that this definition of k is consistent with the definition of the momentum four
vector for light in Eq. (5.32).

It must be noted that a four vector cannot be constructed arbitrarily. For instance, multiplying
a four-vector by γ will change its character. Owing to PII in the form Eq. (2.1), the four-position
as defined in Eq. (3.1) immediately qualified as a four-vector, such that the ∗ product is invariant.
Later on, all other four-vectors were carefully defined, using the derivative with respect to the
invariant τ . In Eq. (6.4), using the phase matching argument, we have identified the wave four-
vector relevant for special relativity. With this identification what is left is to study the consequence
of PII, that ∗ product of two four-vectors is invariant.



Figure 6.1: A wave as seen in two different reference frames in relative motion. The two observers
may not agree on the wave length and frequency, but if the wave is seen as a sequence of events,
say the maxima of the field, they agree on the events, that are the peaks. I.e., the phases as seen
in the two frames are the same.

Also Eq. (6.4) defines the wave four-vector associated with any field, sound, light, or what ever.
Specifically, in the case of light in vacuum, ωk = c|k|, hence for light

k = (|k|;k), (6.5)

and is evidently a null vector.

6.1 Doppler effect

The shift in frequency of a wave due to relative motion between the source and observer is called
the Doppler effect.

6.1.1 Longitudinal Doppler effect

Let v0 be the relative velocity between the observer and source as shown in the figure (Figure 6.2).
If t,x,y, z and t′,x′,y′, z′ are the unit four-vectors in the source and observer frames, respectively,
then the four-vector of the wave in the two frames are given by

k =
ωk

c
t + kxx + kyy + kzz =

ω′

k′

c
t′ + k′x′ + k′

yy
′ + k′

zz
′. (6.6)

The four-velocity of the observer in the two frames are

v = cγ0t + γ0v0xx + γ0v0yy + γ0v0zx = ct′, (6.7)

where γ0 = (1 − v2

0
/c2)−1/2 = (1 − β2

0
)−1/2, as usual. Invoking PII, we have k ∗ v is a invariant.

Thus,
γ0(ωk − k · v0) = ω′

k′ . (6.8)

It must be remembered that the expression for ω′

k′ in Eq. (6.8) is true for any wave. Particularly
for light in vacuum, we have,

ωk = c|k|. (6.9)



Writing k = kk̂, we have
ω′

k′ = γ0ωk(1 − k̂ · ~β0), (6.10)

where ~β0 = v0/c. If both the wave vector and the observer are moving same direction, i.e., if the
observer is moving away from the source, we have

ω′

k′ = ωk
(1 − β0)
√

1 − β2

0

= ωk

√

1 − β0

1 + β0

. (6.11)

Hence ω′

k′ < ωk, or the frequency is red shifted. Similarly, when the observer moves towards the
source, we have

ω′

k′ = ωk

√

1 + β0

1 − β0

. (6.12)

I.E., the frequency is blue shifted.

Observer

Source

v0

Figure 6.2: Longitudinal Doppler effect: A source and observer in relative motion see different
frequencies for the wave. Here the source is moving towards the observer. The frequency as seen by
the observer will be higher, or blue shifted, than the frequency seen in the reference frame in which
the source is at rest.

6.1.2 Transverse Doppler effect

A situation of transverse doppler effect is shown in Figure 6.3. Here again we have the observer and
source in relative motion, but the wave vector is transverse to the direction of motion of the source,
as seen by the observer. We shall again employ the same trick, after writing the four-vectors in the
two reference frames. Taking the direction of motion of the source to be the x direction, and the
direction of the wave vector to be the y direction, we have the wave vector in the source frame and
observer frame as

k ∗ v = (
ωk

c
;k) ∗ (c; 0) = (

ω′

k′

c
;k′) ∗ (γ0c; γ0v0). (6.13)

Hence
ωk = γ0(ω

′

k′ − k′ · v0) = γ0ω
′

k′ , (6.14)

since k′ · v0 = 0. Thus ω′

k′ = ωk/γ0 is always less than ωk.



Observer

Source

v0

Figure 6.3: Transverse Doppler effect: A source in relative motion with respect to the observer.
But the wave vector is now transverse to the motion of the source.

6.2 Aberration

When an observer is in relative motion with respect to the source of a wave, in some arbitrary
direction, the angle of incidence of the wave is different as seen by two observers in relative motion.
Aberration refers to this difference in the angle between angle of incidence of the wave (say the
angle between line of motion of the observer and wave vector in the source reference frame), as seen
in the two reference frames.

v θ
θ’

Figure 6.4: A spacecraft in motion along the x direction with speed v as seen from earth. The angle
at which the observer in the spacecraft sees a distant star is different from the angle between the
star and the spacecraft as seen from earth.

The case of stellar aberration is shown in the figure, from the two reference frames. A spacecraft
moves along the common x direction with velocity v as seen in the earth reference frame. A star
(assumed stationary) is at an angle θ as seen from this reference frame. In the spacecraft reference
frame this angle is θ′. If the wave four-vector as seen the earth reference frame is (for the geometry
in Figure 6.4)

(k) = kt − k cos θx − k sin θy, (6.15)

then the components in the spacecraft reference frame are, by Lorentz transformation

k′ = γk + γβk cos θ

−k′ cos θ′ = −γβk − γk cos θ

−k′ sin θ′ = −k sin θ. (6.16)

Therefore,

sin θ′ =
k

k′
sin θ =

sin θ

γ(1 + β cos θ)
. (6.17)



As seen from Eq. (6.17), the angle as seen by the spacecraft is smaller than the angle noticed from
earth - θ′ ≤ θ if the observer is moving towards the source. Similarly θ′ ≥ θ if the observer is moving
away from the source.



Update summary

2 Nov’ 08

1. Some corrections made in definition of Force in Sec. 5.3.

2. Sections 5.4 on Decay process and 5.5 on Compton scattering added.

3. Chapter 6 on waves added.


