
MA122 -
Computer

Programming
and

Apllications

strings

for loop

MA122 - Computer Programming and
Apllications

Indian Institute of Space Science and Technology

February 02, 2017

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Lecture 8

1 strings

2 for loop

MA122 -
Computer

Programming
and

Apllications

strings

for loop

string initialization

1 char dog[8] = { ’b’, ’e’, ’a’, ’u’, ’x’, ’ ’, ’I’,

’I’}; // not a string!

2

3 char cat[8] = {’f’, ’a’, ’t’, ’e’, ’s’, ’s’, ’a’,

’\0’}; // a string!

4

5 char bird[11] = "Mr. Cheeps"; // the \0 is

understood

6

7 char fish[] = "Bubbles"; // let the compiler count

When determining the minimum array size necessary to
hold a string, remember to include the terminating null
character in your count.

MA122 -
Computer

Programming
and

Apllications

strings

for loop

null character

ptg7068951

122 Chapter 4 Compound Types

null character
automatically
added at end

B o z o \0

char boss[8] = "Bozo";

\0\0\0

remaining
elements
set to \0

Figure 4.2 Initializing an array to a string.

Note that a string constant (with double quotes) is not interchangeable with a charac-
ter constant (with single quotes).A character constant, such as 'S', is a shorthand notation
for the code for a character. On an ASCII system, 'S' is just another way of writing 83.
Thus, the following statement assigns the value 83 to shirt_size:

char shirt_size = 'S'; // this is fine

But "S" is not a character constant; it represents the string consisting of two characters,
the S and the \0 characters. Even worse, "S" actually represents the memory address at
which the string is stored. So a statement like the following attempts to assign a memory
address to shirt_size:

char shirt_size = "S"; // illegal type mismatch

Because an address is a separate type in C++, a C++ compiler won’t allow this sort of
nonsense. (We’ll return to this point later in this chapter after we’ve discussed pointers.)

Concatenating String Literals
Sometimes a string may be too long to conveniently fit on one line of code. C++ enables
you to concatenate string literals—that is, to combine two quoted strings into one.
Indeed, any two string constants separated only by whitespace (spaces, tabs, and newlines)
are automatically joined into one.Thus, all the following output statements are equivalent
to each other:

cout << "I'd give my right arm to be" " a great violinist.\n";
cout << "I'd give my right arm to be a great violinist.\n";
cout << "I'd give my right ar"
"m to be a great violinist.\n";

Note that the join doesn’t add any spaces to the joined strings.The first character of
the second string immediately follows the last character, not counting \0, of the first
string.The \0 character from the first string is replaced by the first character of the
second string.

MA122 -
Computer

Programming
and

Apllications

strings

for loop

string initialization

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6 char shirt_length = ’A’;

7

8 //this is fine, A is a character constant

9

10 char shirt_size = "S"; // illegal type mismatch,

11

12 // "S" is not a character constant; It represents

13 //the string consisting of two characters, the S

14

15 //and the \0 characters.

16

17 return 0;

18 }

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Using strings in a array

1 #include <iostream>

2 #include <cstring> // for the strlen() function

3 int main()

4 {

5 using namespace std;

6 const int Size = 15;

7

8 char name1[Size]; // empty array

9

10 char name2[Size] = "C++"; // initialized array

11

12 cout << "Hello! I’m " << name2;

13

14 cout << "! What’s your name?\n";

15

16 cin >> name1;

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Using strings in a array

1 cout << "Well, " << name1 << ", your name has ";

2

3 cout << strlen(name1) << " letters and is stored\n";

4

5 cout << "in an array of " << sizeof(name1) << " bytes

.\n";

6

7 cout << "Your initial is " << name1[0] << ".\n";

8

9 name2[3] = ’\0’; // set to null character

10

11 cout << "Here are the first 3 characters of my name: "

;

12

13 cout << name2 << endl;

14 return 0; }

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Using strings in a array

ptg7068951

124 Chapter 4 Compound Types

ignored

string

C + + o w b o y \0

const int ArSize = 15;
char name2[ArSize] = "C++owboy";

string

C + + w b o y \0\0

name2[3] = '\0';

Figure 4.3 Shortening a string with \0.

Program Notes
What can you learn from Listing 4.2? First, note that the sizeof operator gives the size
of the entire array, 15 bytes, but the strlen() function returns the size of the string
stored in the array and not the size of the array itself.Also strlen() counts just the visi-
ble characters and not the null character.Thus, it returns a value of 8, not 9, for the length
of Basicman. If cosmic is a string, the minimum array size for holding that string is
strlen(cosmic) + 1.

Because name1 and name2 are arrays, you can use an index to access individual charac-
ters in the array. For example, the program uses name1[0] to find the first character in
that array.Also the program sets name2[3] to the null character.That makes the string end
after three characters, even though more characters remain in the array (see Figure 4.3).

Note that the program in Listing 4.2 uses a symbolic constant for the array size. Often
the size of an array appears in several statements in a program. Using a symbolic constant
to represent the size of an array simplifies revising the program to use a different array
size; you just have to change the value once, where the symbolic constant is defined.

Adventures in String Input
The strings.cpp program has a blemish that is concealed through the often useful tech-
nique of carefully selected sample input. Listing 4.3 removes the veils and shows that
string input can be tricky.

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Adventures in string input

1 // -- reading more than one string

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 const int ArSize = 20;

7 char name[ArSize];

8 char dessert[ArSize];

9

10 cout << "Enter your name:\n";

11 cin >> name;

12 cout << "Enter your favorite dessert:\n";

13 cin >> dessert;

14

15 cout << "I have some delicious " << dessert;

16 cout << " for you, " << name << ".\n";

17 return 0; }

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Adventures in string input

ptg7068951

126 Chapter 4 Compound Types

ENTER

second stringfirst string

Read first string,
add a null character,

place in the name array.

Read second string,
add a null character,
place in the dessert array.

Alistair Dreeb

Alistair\0 Dreeb\0

Figure 4.4 The cin view of string input.

Many programs depend on string input, so it’s worthwhile to explore this topic fur-
ther.We’ll have to draw on some of the more advanced features of cin, which are
described in Chapter 17,“Input, Output, and Files.”

Reading String Input a Line at a Time
Reading string input a word at a time is often not the most desirable choice. For instance,
suppose a program asks the user to enter a city, and the user responds with New York or
Sao Paulo.You would want the program to read and store the full names, not just New
and Sao.To be able to enter whole phrases instead of single words as a string, you need a
different approach to string input. Specifically, you need a line-oriented method instead of
a word-oriented method.You are in luck, for the istream class, of which cin is an exam-
ple, has some line-oriented class member functions: getline() and get(). Both read an
entire input line—that is, up until a newline character. However, getline() then discards
the newline character, whereas get() leaves it in the input queue. Let’s look at the details,
beginning with getline().

Line-Oriented Input with getline()
The getline() function reads a whole line, using the newline character transmitted by
the Enter key to mark the end of input.You invoke this method by using cin.getline()
as a function call.The function takes two arguments.The first argument is the name of
the target (that is, the array destined to hold the line of input), and the second argument
is a limit on the number of characters to be read. If this limit is, say, 20, the function reads
no more than 19 characters, leaving room to automatically add the null character at the
end.The getline() member function stops reading input when it reaches this numeric
limit or when it reads a newline character, whichever comes first.

For example, suppose you want to use getline() to read a name into the 20-element
name array.You would use this call:

cin.getline(name,20);

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Reading string input a line at a time

1 //-- reading more than one word with getline

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 const int ArSize = 20;

7 char name[ArSize];

8 char dessert[ArSize];

9

10 cout << "Enter your name:\n";

11 cin.getline(name, ArSize); // reads through newline

12

13 cout << "Enter your favorite dessert:\n";

14 cin.getline(dessert, ArSize);

15

16 cout << "I have some delicious " << dessert;

17 cout << " for you, " << name << ".\n";

18 return 0; }

MA122 -
Computer

Programming
and

Apllications

strings

for loop

Lecture 8

1 strings

2 for loop

MA122 -
Computer

Programming
and

Apllications

strings

for loop

ptg7068951

199Introducing for Loops

statement1

statement1
for (int_expr; test_expr; update_expr)
 statement2
statement3

init_expr

statement3

statement2

update_expr

test_expr

for loop

true

false

Figure 5.1 The design of for loops.

the number of loop cycles. However, it can be any valid C++ expression, as can the other
control expressions.This makes the for loop capable of much more than simply counting
from 0 to 5, the way the first loop example does.You’ll see some examples of this later.

The for loop body consists of a single statement, but you’ll soon learn how to stretch
that rule. Figure 5.1 summarizes the for loop design.

A for statement looks something like a function call because it uses a name followed
by paired parentheses. However, for’s status as a C++ keyword prevents the compiler
from thinking for is a function. It also prevents you from naming a function for.

Tip
Common C++ style is to place a space between for and the following parenthesis and to
omit space between a function name and the following parenthesis:

for (i = 6; i < 10; i++)
smart_function(i);

MA122 -
Computer

Programming
and

Apllications

strings

for loop

for loop

1 // forloop.cpp -- introducing the for loop

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6

7 int i; // create a counter

8 // initialize; test ; update

9

10 for (i = 0; i < 5; i++)

11 cout << "C++ knows loops.\n";

12

13 cout << "C++ knows when to stop.\n";

14 return 0;

15 }

MA122 -
Computer

Programming
and

Apllications

strings

for loop

for loop

1 // num_test.cpp -- use numeric test in for loop

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6

7 cout << "Enter the starting countdown value: ";

8 int limit;

9 cin >> limit;

10

11 short i;

12 for (i = limit; i; i--) // quits when i is 0

13 cout << "i = " << i << "\n";

14

15 cout << "Done now that i = " << i << "\n";

16 return 0;

17 }

MA122 -
Computer

Programming
and

Apllications

strings

for loop

factorial program

1 // -- more looping with for

2 #include <iostream>

3 const int ArSize = 16; // example of external

declaration

4

5 int main()

6 {

7 short factorials[ArSize];

8 factorials[1] = factorials[0] = 1LL;

9

10 for (int i = 2; i < ArSize; i++)

11 factorials[i] = i * factorials[i-1];

12 for (int i = 0; i < ArSize; i++)

13 std::cout << i << "! = " << factorials[i] << std::

endl;

14 return 0;

15 }

	strings
	for loop

