
MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

MA122 - Computer Programming and
Apllications

Indian Institute of Space Science and Technology

January 25, 2017

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Lecture 6

1 Arithmetic operators

2 Type Conversions

3 type casts

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

A glimpse of Operator Overloading

ptg7068951

101C++ Arithmetic Operators

type int /type int

operator performs
int division

type double /type double

type long /type long

operator performs
long division

type float /type float

operator performs
float division

9 / 5 9L / 5L

9.0 / 5.0 9.0f / 5.0f

operator performs
double division

Figure 3.4 Different divisions.

double constants: 1e7/9.0 = 1111111.111111
float constants: 1e7f/9.0f = 1111111.125000

The first output line shows that dividing the integer 9 by the integer 5 yields the inte-
ger 1.The fractional part of 4 / 5 (or 0.8) is discarded. (You’ll see a practical use for this
kind of division when you learn about the modulus operator, later in this chapter.) The
next two lines show that when at least one of the operands is floating-point, you get a
floating-point answer of 1.8.Actually, when you try to combine mixed types, C++ con-
verts all the concerned types to the same type.You’ll learn about these automatic conver-
sions later in this chapter.The relative precisions of the last two lines show that the result is
type double if both operands are double and that it is float if both operands are float.
Remember, floating-point constants are type double by default.

A Glimpse at Operator Overloading
In Listing 3.11, the division operator represents three distinct operations: int division,
float division, and double division. C++ uses the context—in this case the type of
operands—to determine which operator is meant. The process of using the same symbol for
more than one operation is called operator overloading. C++ has a few examples of over-
loading built in to the language. C++ also lets you extend operator overloading to user-
defined classes, so what you see here is a precursor of an important OOP property (see
Figure 3.4).

The Modulus Operator
Most people are more familiar with addition, subtraction, multiplication, and division
than with the modulus operation, so let’s take a moment to look at the modulus operator
in action.The modulus operator returns the remainder of an integer division. In combi-
nation with integer division, the modulus operation is particularly useful in problems that
require dividing a quantity into different integral units, such as converting inches to feet
and inches or converting dollars to quarters, dimes, nickels, and pennies. In Chapter 2,

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

The Modulus Operator

1 //uses % operator to convert lbs to stone

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 const int Lbs_per_stn = 14;

7 int lbs;

8 cout << "Enter your weight in pounds: ";

9 cin >> lbs;

10

11 int stone = lbs / Lbs_per_stn; // whole stone

12 int pounds = lbs % Lbs_per_stn; // remainder in

pounds

13

14 cout << lbs << " pounds are " << stone

15 << " stone, " << pounds << " pound(s).\n";

16

17 return 0; }

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Lecture 6

1 Arithmetic operators

2 Type Conversions

3 type casts

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Potential problems

ptg7068951

103C++ Arithmetic Operators

Table 3.3 Potential Numeric Conversion Problems

Conversion Type Potential Problems

Bigger floating-point type to smaller float-
ing-point type, such as double to float

Loss of precision (significant figures); value
might be out of range for target type, in which
case result is undefined.

Floating-point type to integer type Loss of fractional part; original value might be
out of range for target type, in which case result
is undefined.

Bigger integer type to smaller integer type,
such as long to short

Original value might be out of range for target
type; typically just the low-order bytes are copied.

n C++ converts values when you combine mixed types in expressions.
n C++ converts values when you pass arguments to functions.

If you don’t understand what happens in these automatic conversions, you might find
some program results baffling, so let’s take a more detailed look at the rules.

Conversion on Initialization and Assignment
C++ is fairly liberal in allowing you to assign a numeric value of one type to a variable of
another type.Whenever you do so, the value is converted to the type of the receiving
variable. For example, suppose so_long is type long, thirty is type short, and you have
the following statement in a program:

so_long = thirty; // assigning a short to a long

The program takes the value of thirty (typically a 16-bit value) and expands it to a
long value (typically a 32-bit value) upon making the assignment. Note that the expan-
sion creates a new value to place into so_long; the contents of thirty are unaltered.

Assigning a value to a type with a greater range usually poses no problem. For exam-
ple, assigning a short value to a long variable doesn’t change the value; it just gives the
value a few more bytes in which to laze about. However, assigning a large long value
such as 2111222333 to a float variable results in the loss of some precision. Because
float can have just six significant figures, the value can be rounded to 2.11122E9. So
while some conversions are safe, some may pose difficulties.Table 3.3 points out some
possible conversion problems.

A zero value assigned to a bool variable is converted to false, and a nonzero value is
converted to true.

Assigning floating-point values to integer types poses a couple problems. First, convert-
ing floating-point to integer results in truncating the number (discarding the fractional
part). Second, a float value might be too big to fit in a cramped int variable. In that

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Type changes on Initialization

1 // init.cpp -- type changes on initialization

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 // cout.setf(ios_base::fixed, ios_base::floatfield);

7

8 float tree = 3; // int converted to float

9 int guess(3.9832); // double converted to int

10 int debt = 7.2E12; // result not defined in C++

11

12 cout << "tree = " << tree << endl;

13 cout << "guess = " << guess << endl;

14 cout << "debt = " << debt << endl;

15

16 return 0;

17 }

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Initialization Conversions when {} are used
(C++11)

list-initialization: doesn’t permit narrowing, which is when
the type of the variable may not be able to represent the
assigned value.

1 #include <iostream>

2 int main()

3 {

4 const int code = 66;

5 int x = 66;

6 char c1 {31325}; // narrowing, not allowed

7 char c2 = {66}; // allowed because char can hold 66

8 char c3 {code}; // ditto

9

10 char c4 = {x}; // not allowed, x is not constant

11 x = 31325;

12 char c5 = x; // allowed (not a list-initialization)

13

14 return 0; }

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Lecture 6

1 Arithmetic operators

2 Type Conversions

3 type casts

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Forcing type changes

1 // typecast.cpp -- forcing type changes

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 int auks, bats, coots;

7 // the following statement adds the values as double,

8 // then converts the result to int

9

10 auks = 19.99 + 11.99;

11 // these statements add values as int

12

13 bats = (int) 19.99 + (int) 11.99; // old C syntax

14

15 coots = int (19.99) + int (11.99); // new C++ syntax

MA122 -
Computer

Programming
and

Apllications

Arithmetic
operators

Type
Conversions

type casts

Forcing type changes

1

2

3 cout << "auks = " << auks << ", bats = " << bats;

4 cout << ", coots = " << coots << endl;

5

6 char ch = ‘Z’;

7 cout << "The code for " <<ch << " is "; // print as

char

8

9 cout << int(ch) << endl; // print as

int

10 cout << "Yes, the code is ";

11

12

13

14 return 0;

15 }

	Arithmetic operators
	Type Conversions
	type casts

