
MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

MA122 - Computer Programming and
Apllications

Indian Institute of Space Science and Technology

February 22, 2017

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Lecture 15

1 Address

2 pointer

3 Pointer Arithmetic

4 Functions and Arrays

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

How to find the address of a variable

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6

7 int donuts = 6;

8 double cups = 4.5;

9

10 cout << "donuts value = " << donuts;

11 cout << " and donuts address = " << &donuts << endl;

12

13

14 cout << "cups value = " << cups;

15 cout << " and cups address = " << &cups << endl;

16

17 return 0;

18 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Lecture 15

1 Address

2 pointer

3 Pointer Arithmetic

4 Functions and Arrays

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

dereferencing

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6 int updates = 6; // declare a variable

7

8 int * p_updates; // declare pointer to an int

9

10 p_updates = &updates; // assign address of int to

pointer

11 // express values two ways

12

13 cout << "Values: updates = " << updates;

14

15 cout << ", *p_updates = " << *p_updates << endl;

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

program

1 // express address two ways

2

3 cout << "Addresses: &updates = " << &updates;

4

5 cout << ", p_updates = " << p_updates << endl;

6

7 // use pointer to change value

8

9 *p_updates = *p_updates + 1;

10

11 cout << "Now updates = " <<updates << endl;

12

13 return 0;

14 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

ptg7068951

156 Chapter 4 Compound Types

jumbo
*pe

These are
the same.

These are
the same.

value
23

int jumbo = 23;
int * pe = &jumbo;

&jumbo
pe

address
0x2ac8

Figure 4.8 Two sides of a coin.

p_updates = &updates; // assign address of int to pointer

// express values two ways
cout << "Values: updates = " << updates;
cout << ", *p_updates = " << *p_updates << endl;

// express address two ways
cout << "Addresses: &updates = " << &updates;
cout << ", p_updates = " << p_updates << endl;

// use pointer to change value
*p_updates = *p_updates + 1;
cout << "Now updates = " << updates << endl;
return 0;

}

Here is the output from the program in Listing 4.15:

Values: updates = 6, *p_updates = 6
Addresses: &updates = 0x0065fd48, p_updates = 0x0065fd48
Now updates = 7

As you can see, the int variable updates and the pointer variable p_updates are just
two sides of the same coin.The updates variable represents the value as primary and uses
the & operator to get the address, whereas the p_updates variable represents the address as
primary and uses the * operator to get the value (see Figure 4.8). Because p_updates
points to updates, *p_updates and updates are completely equivalent.You can use
*p_updates exactly as you would use a type int variable.As the program in Listing 4.15
shows, you can even assign values to *p_updates. Doing so changes the value of the
pointed-to value, updates.

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

ptg7068951

157Pointers and the Free Store

creates ducks variable, stores
the value 12 in the variable

creates birddog variable, stores
the address of ducks in the variable

birddog
points to
ducks

Memory address Variable name
1000

1002

1004

1006

1008

1010

1012

1014

1016

ducks

birddog

int ducks = 12; int *birddog = &ducks;

12

1000

Figure 4.9 Pointers store addresses.

Declaring and Initializing Pointers
Let’s examine the process of declaring pointers.A computer needs to keep track of the
type of value to which a pointer refers. For example, the address of a char typically looks
the same as the address of a double, but char and double use different numbers of bytes
and different internal formats for storing values.Therefore, a pointer declaration must
specify what type of data to which the pointer points.

For example, the preceding example has this declaration:

int * p_updates;

This states that the combination * p_updates is type int. Because you use the * oper-
ator by applying it to a pointer, the p_updates variable itself must be a pointer.We say that
p_updates points to type int.We also say that the type for p_updates is pointer-to-int
or, more concisely, int *.To repeat: p_updates is a pointer (an address), and *p_updates
is an int and not a pointer (see Figure 4.9).

Incidentally, the use of spaces around the * operator are optional.Traditionally, C pro-
grammers have used this form:

int *ptr;

This accentuates the idea that the combination *ptr is a type int value. Many C++
programmers, on the other hand, use this form:

int* ptr;

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Initialize

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6 int higgens = 5;

7 int * pt = &higgens;

8

9 cout << "Value of higgens = " << higgens

10 << "; Address of higgens = " << &higgens << endl;

11

12 cout << "Value of *pt = " << *pt

13 << "; Value of pt = " << pt << endl;

14

15 return 0;

16 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Lecture 15

1 Address

2 pointer

3 Pointer Arithmetic

4 Functions and Arrays

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

example

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5 double wages[3] = {10000.0, 20000.0, 30000.0};

6 short stacks[3] = {3, 2, 1};

7

8 // Here are two ways to get the address of an array

9

10 double * pw = wages; // name of an array = address

11 short * ps = &stacks[0]; // or use address operator

12 // with array element

13

14 cout << "pw = " << pw << ", *pw = " << *pw << endl;

15

16 pw = pw + 1;

17 cout << "add 1 to the pw pointer:\n";

18 cout << "pw = " << pw << ", *pw = " <<*pw << "\n\n

";

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

example

1 cout << "ps = " << ps << ", *ps = " << *ps << endl;

2 ps = ps + 1;

3 cout << "add 1 to the ps pointer:\n";

4

5 cout << "ps = " << ps << ",*ps = " << *ps << "\n\n";

6

7 cout << "access two elements with array notation\n";

8 cout << "stacks[0] = " << stacks[0]

9 << ", stacks[1] = " << stacks[1] << endl;

10

11 cout << "access two elements with pointer notation\n

";

12

13 cout << "*stacks = " << *stacks

14 << ", *(stacks + 1) = " << *(stacks + 1) << endl;

15

16 cout << sizeof(wages) << " = size of wages array\n";

17 cout << sizeof(pw) << " = size of pw pointer\n";

18 return 0;

19 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Pointer Addition

ptg7068951

169Pointers, Arrays, and Pointer Arithmetic

pw points to type double, so
adding 1 to pw changes its

value by 8 bytes.

ps points to type short, so
adding 1 to ps changes its

value by 2 bytes.

double wages[3] = {10000.0, 20000.0, 30000.0};
short stacks[3] = {3, 2, 1};
double * pw = wages;
short * ps = &stacks[0];

1 0 0 0 0 . 0 2 0 0 0 0 . 0 3 0 0 0 0 . 0 3 2 1

Address: 100 108 124 126 128116

pw (pw + 1) ps (ps + 1)

Figure 4.10 Pointer addition.

Next, the program inspects the values of pw and *pw.The first is an address, and the
second is the value at that address. Because pw points to the first element, the value dis-
played for *pw is that of the first element, 10000.Then the program adds one to pw.As
promised, this adds eight to the numeric address value because double on this system is 8
bytes.This makes pw equal to the address of the second element.Thus, *pw is now 20000,
the value of the second element (see Figure 4.10). (The address values in the figure are
adjusted to make the figure clearer.)

After this, the program goes through similar steps for ps.This time, because ps points
to type short and because short is 2 bytes, adding 1 to the pointer increases its value by
2 (0x28ccea + 2 = 0x28ccec in hexadecimal).Again, the result is to make the pointer
point to the next element of the array.

Note
Adding one to a pointer variable increases its value by the number of bytes of the type to
which it points.

Now consider the array expression stacks[1].The C++ compiler treats this expres-
sion exactly as if you wrote it as *(stacks + 1).The second expression means calculate
the address of the second element of the array and then find the value stored there.The
end result is precisely what stacks[1] means. (Operator precedence requires that you use
the parentheses.Without them, 1 would be added to *stacks instead of to stacks.)

The program output demonstrates that *(stacks + 1) and stacks[1] are the same.
Similarly, *(stacks + 2) is the same as stacks[2]. In general, wherever you use array
notation, C++ makes the following conversion:

arrayname[i] becomes *(arrayname + i)

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Lecture 15

1 Address

2 pointer

3 Pointer Arithmetic

4 Functions and Arrays

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Local Variables

ptg7068951

315Function Arguments and Passing by Value

 ...
void cheers(int n);
int main()
{

 int n = 20;
 int i = 1000;
 int y = 10;
 ...
 cheers(y);
 ...
}

void cheers(int n)
{
 for (int i = 0; i <n; i++)
 cout << "Cheers!";
 cout << "\n";
}

0101000 1020
n i n iy

variables in main() variables in cheers()

Each function has its
own variables with
their own values.

Figure 7.3 Local variables.

Similarly, when you define the function, you use a comma-separated list of parameter
declarations in the function header:

void n_chars(char c, int n) // two arguments

This function header states that the function n_chars() takes one type char argument
and one type int argument.The parameters c and n are initialized with the values passed
to the function. If a function has two parameters of the same type, you have to give the
type of each parameter separately.You can’t combine declarations the way you can when
you declare regular variables:

void fifi(float a, float b) // declare each variable separately
void fufu(float a, b) // NOT acceptable

As with other functions, you just add a semicolon to get a prototype:

void n_chars(char c, int n); // prototype, style 1

As with single arguments, you don’t have to use the same variable names in the proto-
type as in the definition, and you can omit the variable names in the prototype:

void n_chars(char, int); // prototype, style 2

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

local variable

1 #include <iostream>

2 using namespace std;

3 void n_chars(char, int);

4 int main()

5 {

6 int times;

7 char ch;

8

9 cout << "Enter a character: ";

10 cin >> ch;

11

12 while (ch != ’q’) // q to quit

13 {

14 cout << "Enter an integer: ";

15

16 cin >> times;

17

18 n_chars(ch, times); // function with two arguments

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

local variable

1 cout << "\nEnter another character or press the"

2 " q-key to quit: ";

3 cin >> ch;

4 }

5

6

7 cout << "The value of times is " << times << ".\n";

8 cout << "Bye\n";

9 return 0;

10 }

11

12 void n_chars(char c, int n) // displays c n times

13 {

14 while (n-- > 0) //continue until n reaches 0

15 cout << c;

16 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Array in Function

1 #include <iostream>

2 const int ArSize = 8;

3

4 int sum_arr(int arr[], int n); // prototype

5 int main()

6 {

7 using namespace std;

8

9 int cookies[ArSize] = {1,2,4,8,16,32,64,128};

10

11

12 int sum = sum_arr(cookies, ArSize);

13

14 cout << "Total cookies eaten: " << sum << "\n";

15

16 return 0;

17 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Array in Function

1

2 // return the sum of an integer array

3

4 int sum_arr(int arr[], int n)

5 {

6 int total = 0;

7

8 for (int i = 0; i < n; i++)

9 total = total + arr[i];

10

11 return total;

12 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Array range in Function

1 #include <iostream>

2 const int ArSize = 8;

3 int sum_arr(int arr[], int n);

4 // use std:: instead of using directive

5 int main()

6 {

7 int cookies[ArSize] = {1,2,4,8,16,32,64,128};

8

9 std::cout << cookies << " = array address, ";

10

11 std::cout << sizeof cookies << " = sizeof cookies\n"

;

12 int sum = sum_arr(cookies, ArSize);

13 std::cout << "Total cookies eaten: " << sum << std::

endl;

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Array range in Function

1 sum = sum_arr(cookies, 3);

2

3 std::cout << "First three eaters ate " << sum << "

cookies.\n";

4

5 sum= sum_arr(cookies + 4, 4);

6

7 std::cout << "Last four eaters ate " << sum << "

cookies.\n";

8

9 return 0;

10 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Array range in Function

1

2 int sum_arr(int arr[], int n)

3 {

4 int total = 0;

5

6 std::cout << arr << " = arr, ";

7

8 std::cout << sizeof arr << " = sizeof arr\n";

9

10 for (int i = 0; i < n; i++)

11 total = total + arr[i];

12

13 return total;

14 }

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Array in Function Using Pointer

1 #include <iostream>

2 const int ArSize = 8;

3

4 int sum_arr(const int * begin, const int * end);

5 int main()

6 {

7 using namespace std;

8

9 int cookies[ArSize] = {1,2,4,8,16,32,64,128};

10

11 int sum = sum_arr(cookies, cookies + ArSize);

12 cout << "Total cookies eaten: " << sum << endl;

13

14 sum = sum_arr(cookies, cookies + 3); // first 3

elements

15 cout << "First three eaters ate " << sum << "

cookies.\n";

MA122 -
Computer

Programming
and

Apllications

Address

pointer

Pointer
Arithmetic

Functions and
Arrays

Array in Function Using Pointer

1 sum = sum_arr(cookies + 4, cookies + 8); // last 4

elements

2 cout << "Last four eaters ate " << sum<< " cookies.\

n";

3 return 0;

4 }

5

6

7 int sum_arr(const int * begin, const int * end)

8 {

9 const int * pt;

10 int total = 0;

11

12 for (pt = begin; pt != end; pt++)

13 total = total + *pt;

14 return total;

15 }

	Address
	pointer
	Pointer Arithmetic
	Functions and Arrays

