
MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

MA122 - Computer Programming and
Apllications

Indian Institute of Space Science and Technology

February 17, 2017

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Lecture 14

1 Structures

2 Address

3 pointer

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Declaration

1 struct inflatable // structure declaration

2 {

3 char name[20];

4 float volume;

5 double price;

6 };

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Declaration

ptg7068951

141Introducing Structures

terminates the structure declaration

the struct
keyword

the tag becomes the name
for the new type

struct inflatable
{
 char name[20];
 float volume;
 double price;
};

opening and
closing braces

structure
members

Figure 4.6 Parts of a structure description.

for the new type.Thus, you can now create variables of type inflatable just as you cre-
ate variables of type char or int. Next, between braces are the list of data types to be
held in the structure. Each list item is a declaration statement.You can use any of the
C++ types here, including arrays and other structures.This example uses an array of
char, which is suitable for storing a string, a float, and a double. Each individual item in
the list is called a structure member, so the inflatable structure has three members (see
Figure 4.6). In short, the structure definition defines the characteristics of a type—in this
case, the inflatable type.

After you have defined the structure, you can create variables of that type:

inflatable hat; // hat is a structure variable of type inflatable
inflatable woopie_cushion; // type inflatable variable
inflatable mainframe; // type inflatable variable

If you’re familiar with C structures, you’ll notice (probably with pleasure) that C++
allows you to drop the keyword struct when you declare structure variables:

struct inflatable goose; // keyword struct required in C
inflatable vincent; // keyword struct not required in C++

In C++, the structure tag is used just like a fundamental type name.This change
emphasizes that a structure declaration defines a new type. It also removes omitting
struct from the list of curse-inducing errors.

Given that hat is type inflatable, you use the membership operator (.) to access
individual members. For example, hat.volume refers to the volume member of the struc-
ture, and hat.price refers to the price member. Similarly, vincent.price is the price
member of the vincent variable. In short, the member names enable you to access mem-
bers of a structure much as indices enable you to access elements of an array. Because the
price member is declared as type double, hat.price and vincent.price are both
equivalent to type double variables and can be used in any manner an ordinary type
double variable can be used. In short, hat is a structure, but hat.price is a double. By

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Program

1 #include <iostream>

2 struct inflatable // structure declaration

3 {

4 char name[20];

5 float volume;

6 double price;

7 };

8 int main()

9 {

10 using namespace std;

11 inflatable guest =

12 {

13 "Glorious Gloria", // name value

14 1.88, // volume value

15 29.99 // price value

16 }; // guest is a structure variable of type

inflatable

17 // It’s initialized to the indicated values

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Program

1 inflatable pal =

2 {

3 "Audacious Arthur",

4 3.12,

5 32.99

6 }; // pal is a second variable of type inflatable

7

8 cout << "Expand your guest list with " << guest.name

;

9 cout << " and " << pal.name << "!\n";

10 //pal.name is the name member of the pal variable

11 cout << "You can have both for $";

12 cout << guest.price + pal.price << "!\n";

13 return 0;

14 }

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Declaration

ptg7068951

143Introducing Structures

#include <iostream>
using namespace std;
struct parts
{
 unsigned long part_number;
 float part_cost;
};
void mail();
int main()
{
 struct perks
 {
 int key_number;
 char car[12];
 };
 parts chicken;
 perks mr_blug;
 ...
 ...
}
void mail()
{
 parts studebaker;
 ...
 ...
}

external declaration—can be
used in all functions in file

local declaration—can be
used only in this function

type parts variable
type perks variable

type parts variable
can’t declare a type
perks variable here

Figure 4.7 Local and external structure declarations.

Here is the output from the program in Listing 4.11:

Expand your guest list with Glorious Gloria and Audacious Arthur!
You can have both for $62.98!

Program Notes
One important matter related to the program in Listing 4.11 is where to place the struc-
ture declaration.There are two choices for structur.cpp.You could place the declaration
inside the main() function, just after the opening brace.The second choice, and the one
made here, is to place it outside and preceding main().When a declaration occurs outside
any function, it’s called an external declaration. For this program, there is no practical differ-
ence between the two choices. But for programs consisting of two or more functions, the
difference can be crucial.The external declaration can be used by all the functions follow-
ing it, whereas the internal declaration can be used only by the function in which the
declaration is found. Most often, you want an external structure declaration so that all the
functions can use structures of that type (see Figure 4.7).

Variables, too, can be defined internally or externally, with external variables shared
among functions. (Chapter 9,“Memory Models and Namespaces,” looks further into that
topic.) C++ practices discourage the use of external variables but encourage the use of

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Program

1 #include <iostream>

2 struct inflatable

3 {

4 char name[20];

5 float volume;

6 double price;

7 };

8 int main()

9 {

10 using namespace std;

11 inflatable bouquet =

12 {

13 "sunflowers",

14 0.20,

15 12.49

16 };

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Program

1 inflatable choice;

2

3

4 cout << "bouquet: " << bouquet.name << " for $";

5 cout << bouquet.price << endl;

6

7 choice = bouquet; // assign one structure to another

8

9 cout << "choice: " << choice.name << " for $";

10 cout << choice.price << endl;

11

12 return 0;

13 }

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

book 1

1 #include <iostream>

2 #include <cstring>

3

4 using namespace std;

5

6 struct Books {

7 char title[50];

8 char author[50];

9 char subject[100];

10 int book_id;

11 };

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

book 1

1 int main() {

2 struct Books Book1; // Declare Book1 of type

Book

3 struct Books Book2; // Declare Book2 of type

Book

4

5 // book 1 specification

6 strcpy(Book1.title, "Learn C++ Programming");

7 strcpy(Book1.author, "Chand Miyan");

8 strcpy(Book1.subject, "C++ Programming");

9 Book1.book_id = 6495407;

10

11 // book 2 specification

12 strcpy(Book2.title, "Telecom Billing");

13 strcpy(Book2.author, "Yakit Singha");

14 strcpy(Book2.subject, "Telecom");

15 Book2.book_id = 6495700;

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

book 2

1

2 // Print Book1 info

3 cout << "Book 1 title : " << Book1.title <<endl;

4 cout << "Book 1 author : " << Book1.author <<endl;

5 cout << "Book 1 subject : " << Book1.subject <<

endl;

6 cout << "Book 1 id : " << Book1.book_id <<endl;

7

8

9 // Print Book2 info

10 cout << "Book 2 title : " << Book2.title <<endl;

11 cout << "Book 2 author : " << Book2.author <<endl;

12 cout << "Book 2 subject : " << Book2.subject <<

endl;

13 cout << "Book 2 id : " << Book2.book_id <<endl;

14

15 return 0;

16 }

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Structures as Function Arguments

1 #include <iostream>

2 #include <cstring>

3

4 using namespace std;

5 void printBook(struct Books book);

6

7 struct Books {

8 char title[50];

9 char author[50];

10 char subject[100];

11 int book_id;

12 };

13

14 int main() {

15 struct Books Book1; // Declare Book1 of type

Book

16 struct Books Book2; // Declare Book2 of type

Book

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Structures as Function Arguments

1

2 // book 1 specification

3 strcpy(Book1.title, "Learn C++ Programming");

4 strcpy(Book1.author, "Chand Miyan");

5 strcpy(Book1.subject, "C++ Programming");

6 Book1.book_id = 6495407;

7

8 // book 2 specification

9 strcpy(Book2.title, "Telecom Billing");

10 strcpy(Book2.author, "Yakit Singha");

11 strcpy(Book2.subject, "Telecom");

12 Book2.book_id = 6495700;

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Structures as Function Arguments

1

2 // Print Book1 info

3 printBook(Book1);

4

5 // Print Book2 info

6 printBook(Book2);

7

8 return 0;

9 }

10

11 void printBook(struct Books book) {

12 cout << "Book title : " << book.title <<endl;

13 cout << "Book author : " << book.author <<endl;

14 cout << "Book subject : " << book.subject <<endl;

15 cout << "Book id : " << book.book_id <<endl;

16 }

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Lecture 14

1 Structures

2 Address

3 pointer

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

How to find the address of a variable

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6

7 int donuts = 6;

8 double cups = 4.5;

9

10 cout << "donuts value = " << donuts;

11 cout << " and donuts address = " << &donuts << endl;

12

13

14 cout << "cups value = " << cups;

15 cout << " and cups address = " << &cups << endl;

16

17 return 0;

18 }

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Lecture 14

1 Structures

2 Address

3 pointer

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

dereferencing

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6 int updates = 6; // declare a variable

7

8 int * p_updates; // declare pointer to an int

9

10 p_updates = &updates; // assign address of int to

pointer

11 // express values two ways

12

13 cout << "Values: updates = " << updates;

14

15 cout << ", *p_updates = " << *p_updates << endl;

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

program

1 // express address two ways

2

3 cout << "Addresses: &updates = " << &updates;

4

5 cout << ", p_updates = " << p_updates << endl;

6

7 // use pointer to change value

8

9 *p_updates = *p_updates + 1;

10

11 cout << "Now updates = " <<updates << endl;

12

13 return 0;

14 }

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

ptg7068951

156 Chapter 4 Compound Types

jumbo
*pe

These are
the same.

These are
the same.

value
23

int jumbo = 23;
int * pe = &jumbo;

&jumbo
pe

address
0x2ac8

Figure 4.8 Two sides of a coin.

p_updates = &updates; // assign address of int to pointer

// express values two ways
cout << "Values: updates = " << updates;
cout << ", *p_updates = " << *p_updates << endl;

// express address two ways
cout << "Addresses: &updates = " << &updates;
cout << ", p_updates = " << p_updates << endl;

// use pointer to change value
*p_updates = *p_updates + 1;
cout << "Now updates = " << updates << endl;
return 0;

}

Here is the output from the program in Listing 4.15:

Values: updates = 6, *p_updates = 6
Addresses: &updates = 0x0065fd48, p_updates = 0x0065fd48
Now updates = 7

As you can see, the int variable updates and the pointer variable p_updates are just
two sides of the same coin.The updates variable represents the value as primary and uses
the & operator to get the address, whereas the p_updates variable represents the address as
primary and uses the * operator to get the value (see Figure 4.8). Because p_updates
points to updates, *p_updates and updates are completely equivalent.You can use
*p_updates exactly as you would use a type int variable.As the program in Listing 4.15
shows, you can even assign values to *p_updates. Doing so changes the value of the
pointed-to value, updates.

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

ptg7068951

157Pointers and the Free Store

creates ducks variable, stores
the value 12 in the variable

creates birddog variable, stores
the address of ducks in the variable

birddog
points to
ducks

Memory address Variable name
1000

1002

1004

1006

1008

1010

1012

1014

1016

ducks

birddog

int ducks = 12; int *birddog = &ducks;

12

1000

Figure 4.9 Pointers store addresses.

Declaring and Initializing Pointers
Let’s examine the process of declaring pointers.A computer needs to keep track of the
type of value to which a pointer refers. For example, the address of a char typically looks
the same as the address of a double, but char and double use different numbers of bytes
and different internal formats for storing values.Therefore, a pointer declaration must
specify what type of data to which the pointer points.

For example, the preceding example has this declaration:

int * p_updates;

This states that the combination * p_updates is type int. Because you use the * oper-
ator by applying it to a pointer, the p_updates variable itself must be a pointer.We say that
p_updates points to type int.We also say that the type for p_updates is pointer-to-int
or, more concisely, int *.To repeat: p_updates is a pointer (an address), and *p_updates
is an int and not a pointer (see Figure 4.9).

Incidentally, the use of spaces around the * operator are optional.Traditionally, C pro-
grammers have used this form:

int *ptr;

This accentuates the idea that the combination *ptr is a type int value. Many C++
programmers, on the other hand, use this form:

int* ptr;

MA122 -
Computer

Programming
and

Apllications

Structures

Address

pointer

Initialize

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6 int higgens = 5;

7 int * pt = &higgens;

8

9 cout << "Value of higgens = " << higgens

10 << "; Address of higgens = " << &higgens << endl;

11

12 cout << "Value of *pt = " << *pt

13 << "; Value of pt = " << pt << endl;

14

15 return 0;

16 }

	Structures
	Address
	pointer

