INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM 695 547

B.Tech 4th Semester(Aerospace/Avionics/ESS)

Calculus of Variations - Assignment

Submit ALL starred problems by 25th March 2014.

1. Solve the Euler-Lagrange equation for the functional

$$\int_{1/10}^{1} y'(1+x^2y')dx$$

subject to the end conditions $y(\frac{1}{10}) = 19, y(1) = 1$.

2. Derive Euler-Lagrange equation for the variational problem

Extremize
$$I(y) = \int_{x_1}^{x_2} F(x, y, y') dx$$
, $y(x_1) = y_1$ and $y(x_2) = y_2$.

Deduce Beltrami identity from it.

*3. Find the curve on which the functional

$$\int_0^1 (y'^2 + 12xy) dx \text{ with } y(0) = 0, y(1) = 1$$

has extremum value.

- 4. Find an extremal for the functional $I(y) = \int_0^{\pi/2} [y'^2 y^2] dx$ which satisfies the boundary conditions y(0) = 0 and $y(\frac{\pi}{2}) = 1$.
- 5. Show that the Euler-Lagrange equation can also be written in the form

$$F_y - F_{y'x} - F_{y'y}y' - F_{y'y'}y'' = 0$$

- *6. It is required to determine the continuously differentiable function y(x) which minimizes the integral $I(y) = \int_0^1 (1 + y'^2) dx$, and satisfies the end conditions y(0) = 0, y(1) = 1.
 - (a) Obtain the relevant Euler equation, and show that the stationary function is y = x.
 - (b) With y(x) = x and the special choice $\eta(x) = x(1-x)$ and with the notation $I(\epsilon) = \int_0^1 F(x, y + \epsilon \eta(x), y' + \epsilon \eta'(x)) dx$, calculate $I(\epsilon)$ and verify directly that $\frac{dI(\epsilon)}{d\epsilon} = 0$ when $\epsilon = 0$.
- 7. Find the extremal of the following functionals

(a)
$$I(y) = \int_{x_1}^{x_2} \left[y^2 - (y')^2 - 2y \cos hx \right] dx, \quad y(x_1) = y_1 \& y(x_2) = y_2$$

(b)
$$I(y) = \int_{x_1}^{x_2} \frac{1+y^2}{y'^2} dx$$

*(c) $I(y) = \int_{x_1}^{x_2} \frac{\sqrt{1+y'^2}}{x} dx$
(d) $I(y) = \int_0^1 (xy+y^2-2y^2y') dx, \quad y(0) = 1, y(1) = 2$
(e) $I(y) = \int_{x_1}^{x_2} (y^2+y'^2-2y\sin x) dx$
(f) $\int_0^{\pi/2} (y'^2-y^2+2xy) dx, \quad y(0) = 0, y(\frac{\pi}{2}) = 0$
(g) $\int_{x_1}^{x_2} (y^2+2xyy') dx; \quad y(x_1) = y_1, y(x_2) = y_2$
*(h) $\int_0^{\pi} (4y\cos x - y^2 + y'^2) dx; \quad y(0) = 0, y(\pi) = 0$
(i) $I(y) = \int_{x_0}^{x_1} (y^2 + y'^2 + 2ye^x) dx$

8. Determine the shape of solid of revolution moving in a flow of gas with least resistance.

(Hint : The total resistance experienced by the body is $I(y) = 4\pi\rho v^2 \int_0^L y y'^3 dx$ where ρ is the density, v is the velocity of gas relative to the solid).

- 9. Prove the following facts by using COV:
 - (a) The shortest distance between two points in a plane is a straight line.
 - (b) The curve passing through two points on xy plane which when rotated about x axis giving a minimum surface area is a **Catenary**.
 - (c) The path on which a particle in absence of friction slides from one point to another in the shortest time under the action of gravity is a **Cycloid**(Brachistochrone Problem).

*10. Find the extremal of the functional

$$I(y) = \int_0^{\pi} (y'^2 - y^2) dx, \quad y(0) = 0, \ y(\pi) = 1$$

and subject to the constraint $\int_0^{\pi} y \, dx = 1$.

11. Find the extremal of the isoperimetric problem

Extremize
$$I(y) = \int_{1}^{4} y'^{2} dx, \quad y(1) = 3, y(4) = 24$$

subject to $\int_{1}^{4} y \, dx = 36.$

- *12. Determine y(x) for which $\int_0^1 x^2 + y'^2 dx$ is stationary subject to $\int_0^1 y^2 dx = 2$, y(0) = 0, y(1) = 0.
- 13. Find the extremal of $I = \int_0^{\pi} y'^2 dx$ subject to $\int_0^{\pi} y^2 dx = 1$ and satisfying $y(0) = y(\pi) = 0$.
- *14. Given $F(x, y, y') = (y')^2 + xy$. Compute ΔF and δF for $x = x_0, y = x^2$ and $\delta y = \epsilon x^n$.
- 15. Find the extremals of the isopermetric problem

$$I(y) = \int_{x_0}^{x_1} y'^2 dx$$

given that $\int_{x_0}^{x_1} y dx = \text{constant}.$

- 16. Prove the following facts by using COV:
 - (a) The geodesics on a sphere of radius a are its great circles.
 - (b) The sphere is the solid figure of revolution which, for a given surface area has maximum volume.
- 17. If y is an extremizing function for

$$I(y) = \int_{x_1}^{x_2} F(x, y, y'), y(x_1) = y_1, and \ y(x_2) = y_2$$

then show that of $\delta I = 0$ for the function y.

*18. Find y(x) for which

$$\delta\left\{\int_{x_0}^{x_1} \left(\frac{y'^2}{x^3}\right) dx\right\} = 0$$

and $y(x_1) = y_1$ and $y(x_2) = y_2$.

19. Write down the Euler-Lagrange equation for the following extremization problems

(i) Extremize $I(u, v) = \int_D \int F(x, y, u, v, u_x, u_y, v_x, v_y) dx dy$ where x, y are independent variables and u, v are dependent variables. D is a domain in xy plane and u and v are prescribed on the boundary of D.

(ii) Extremize $I(y) = \int_{x_0}^{x_1} F(x, y, y^{(1)}, y^{(2)}, \dots, y^{(m)} dx$ $y(x_0) = y_0, \ y(x_1) = y_1$ $y'(x_0) = y'_0, \ y'(x_1) = y'_1$ $y^{(m-1)}(x_0) = y_0^{(m-1)}, \ y^{(m-1)}(x_1) = y_1^{(m-1)}$

(iii) Max or Min $I(y) = \int_{x_1}^{x_2} F(x, y, y') dx$ where y is prescribed at the end points $y(x_1) = y_1, \ y(x_2) = y_2$, and y is also to satisfy the integral constraint condition $J(y) = \int_{x_1}^{x_2} G(x, y, y') dx = k$, where k is a prescribed constant.

- *20. Show that the extremals of the problem Extremize $I(y) = \int_{x_1}^{x_2} [p(x)y'^2 - q(x)y^2] dx$ where $y(x_1)$ and $y(x_2)$ are prescribed and y satisfies a constraint $\int_{x_1}^{x_2} r(x)y^2(x) dx = 1$, are solutions of the differential equation $\frac{d}{dx}(p\frac{dy}{dx}) + (q + \lambda r)y = 0$ where λ is a constant.
- *21. Reduce the BVP

$$\frac{d}{dx}(x\frac{dy}{dx}) + y = x, \ y(0) = 0, \ y(1) = 1$$

into a variational problem and use Rayleigh-Ritz method to obtain an approximate solution in the form

$$y(x) \approx x + x(1-x)(c_1 + c_2 x)$$

22. (Principle of least Action) A particle under the influence of a gravitational field moves on a path along which the kinetic energy is minimal. Using calculus of variation prove that the trajectory is parabolic.

(Hint: Minimize $I = \int \frac{1}{2}mv^2 dt = \int \frac{1}{2}mv ds = \int \sqrt{u^2 - 2gy}\sqrt{1 + y'^2} dx$) where u is the initial speed.

- 23. Show that the curve which extremizes the functional $I(y) = \int_0^{\pi/4} (y''^2 y^2 + x^2) dx$ under the conditions $y(0) = 0, y'(0) = 1, y(\pi/4) = y'(\pi/4) = \frac{1}{\sqrt{2}}$ is $y = \sin x$.
- 24. Find a function y(x) such that $\int_0^{\pi} y^2 dx = 1$ which makes $\int_0^{\pi} (y'')^2 dx$ a minimum if $y(0) = 0 = y(\pi), \quad y''(0) = 0 = y''(\pi).$

*25. Find the extremals of the following functional

$$I(y) = \int_{x_1}^{x_2} 2xy + (y''')^2 dx$$

26. Find the extremals of the functional

$$I(u,v) = \int_{x_0}^{x_1} 2uv - 2u^2 + u'^2 - v'^2 dx$$

where u and v are prescribed at the end points.

- 27. Find a function y(x) such that $\int_0^{\pi} y^2 dx = 1$ which makes $\int_0^{\pi} y''^2 dx$ a minimum if $y(0) = 0 = y(\pi), \quad y''(0) = 0 = y''(\pi)$
- *28. Show that the functional $\int_0^{\pi/2} 2xy \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 dt$ such that x(0) = 0, $x(\pi/2) = -1$, y(0) = 0, $y(\pi/2) = 1$ is stationary for $x = -\sin t$, $y = \sin t$.
- *29. Explain Rayleigh Ritz method to find an approximate solution of the variational problem

Extremize
$$I(y) = \int_{t_0}^{t_1} F(x, y, y') dx$$

with prescribed end conditions $y(x_1) = y_1$ & $y(x_2) = y_2$.

- 30. Solve the BVP y'' + y + x = 0, y(0) = y(1) = 0 by Rayleigh Ritz method.
- 31. Use Rayleigh Ritz method to find an approximate solution of the problem $y'' y + 4xe^x = 0$, y'(0) y(0) = 1, y'(1) + y(1) = -e.

END