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1 Introduction

In this chapter, we are considering AdaBoost algorithm for the two class classification
problem.

AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines
them with weights. That is

H(x) = sgn

(
T∑
t=1

αtht(x)

)

where ht : X→ {1,−1}, t = 1, 2, . . . T are called base learners or weak learners and
αt is the weight asociated with ht. Hence two questions are there: how to generate
the hypothesis h′ts? and how to determine the proper weights α′ts?

Let D = {(x1, y1), ..., (xN , yN)}, xi ∈ X⊆ Rn, yi ∈ {−1, 1} be the given data. For
generating T classifiers, there would be T iterations and in each iteration training
data is chosen from N points with replacement. Each data point is associated with a
weight and it decides the probabity of each point getting selected as a training point.

Initially all the data points have equal probability of getting selected, that is each
data point has a weight equal to 1/N . In each iteration the weight of a data point
gets changed in such a way, that it gets decreased, if it is correctly classified by the
model generated in that iteration and increased otherwise.

Given the training data, choose an appropriate classification algorithm to find ht.
To find the weight corresponding to each classifier we need to formulate an objective
function and find α to minimize it. The objective function used is: to minimize

N∑
i=1

1yi 6=sgn(
∑t

k=1 αkhk(xi)) (1)
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That is at each step the weight of base classifier is chosen in such a way that the
error of H(x) is minimized.

(1) is difficult to minimize and therefore for finding the optimal weight of each
classifier the following function which is an upper bound of (1) is used:

N∑
i=1

e−yi(
∑t

k=1 αkhk(xi)) (2)

This is because if yi 6= sgn
(∑t

k=1 αkhk(xi)
)
, then e−yi(

∑t
k=1 αkhk(xi)) ≥ 1 and if

yi = sgn
(∑t

k=1 αkhk(xi)
)
, then 0 ≤ e−yi(

∑t
k=1 αkhk(xi)) ≤ 1. Therefore

N∑
i=1

1yi 6=sgn(
∑t

k=1 αkhk(xi)) ≤
N∑
i=1

e−yi(
∑t

k=1 αkhk(xi)) (3)

Also, e−yi(
∑t

k=1 αkhk(xi)) is smooth and differentiable in all places.

2 Updating the weight of the classifier

Consider the tth iteration. To find αt, the objective is to minimize

N∑
i=1

e−yi
∑t

k=1 αkhk(xi)

For the next iteration, that is t = (t+ 1) the objective is to minimize,

N∑
i=1

e−yi(
∑t

k=1 αkhk(xi)+αt+1h(t+1)(xi))

Let objt =
∑N

i=1 e
−yi

∑t
k=1 αkhk(xi) and objt+1 = e−yi(

∑t
k=1 αkhk(xi)+αt+1h(t+1)(xi))

obj(t+1)

objt
=

∑N
i=1 e

−yi(
∑t

k=1 αkhk(xi)+αt+1ht+1(xi))∑N
i=1 e

−yi
∑t

k=1 αkhk(xi)

=
N∑
i=1

e−yi
∑t

k=1 αkhk(xi)∑N
i=1 e

−yi
∑t

k=1 αkhk(xi)
e−yiαt+1ht+1(xi)

=
N∑
i=1

Dt+1(i)e
−yiα(t+1)ht+1(xi) (4)
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where

Dt+1(i) =
e−yi

∑t
k=1 αkhk(xi)∑N

i=1 e
−yi

∑t
k=1 αkhk(xi)

(5)

Dt+1(i) is the weight that is assigned to ithsample during the (t + 1)th iteration.
Hence in (t + 1)th iteration, the weight of all the data points which is classified
correctly by the tth ensemble model is less than those which it misclassified. That is, if
for (xl, yl) and (xm, ym), yl = sgn

(∑t
k=1 αkhk(xl)

)
and ym 6= sgn

(∑t
k=1 αkhk(xm)

)
,

then Dt+1(l) < Dt+1(m).
Let objt is fixed. We want to find αt+1 such that with a fixed ht+1, the objective

function is minimized.
Now,

objt+1

objt
=

∑
i:yi=ht+1(xi)

Dt+1(i)e
−αt+1 +

∑
i:yi 6=ht+1(xi)

Dt+1(i)e
αt+1

objt+1

objt
= (1− εt+1)e

−αt+1 + εt+1e
αt+1 (6)

where εt+1 =
∑

yi 6=ht+1(xi)
D(t+1)(i) is the error rate of ht+1 on the weighted samples.

Taking the derivative of (6) and equating to zero (for finding the optimal αt+1),

(1− εt+1)e
−αt+1 = εt+1e

αt+1

Therefore,

αt+1 =
1

2
log

(
1− εt+1

εt+1

)
(7)

Sub: (7) into (6) ,

objt+1

objt
= 2

√
(1− εt+1)εt+1 ≤ 1

[The maximum value of
√

(1− εt+1)εt+1 =
√
.25]

Therefore objt+1 ≤ objt. Thus at each step αt is chosen in such a way that the
error rate of H(x) is minimized.
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3 Updating the weight of data points

Using (5),

Dt+1(i)

Dt(i)
=

e−yi
∑t

i=1 αtht(xi)
(∑N

i=1 e
−yi

∑t−1
k=1 αkhk(xi)

)
(∑N

i=1 e
−yi

∑t
k=1 αkhk(xi)

)
e−yi

∑t−1
i=1 αtht(xi)

(8)

Hence,

Dt+1(i) =
Dt(i)e

−yiαtht(xi)∑N
i=1Dt(i)e−yiαtht(xi)

Thus,

Dt+1(i) =
Dt(i)e

−yiαtht(xi)

Zt
(9)

where Zt =
∑N

i=1Dt(i)e
−yiαtht(xi), is a normalization factor such that Dt+1 will be a

distribution.

From (4) it is clear that Zt =
objt
objt−1

and thus error is minimized by minimizing

Zt.

3.1 AdaBoost Algorithm

The weak learner ht is modeled using a sample Dt, which is created in the following
way:

• Repeat the following steps N times:

– Choose a number p from (0,1). Select all the data points from D whose
weight is greater than p and randomly choose a data point from that
subset. The chosen point becomes a member of Dt.

The AdaBoost algorithm’s pseudocode is given below:
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Algorithm 1 AdaBoost algorithm

Input N examples D = {(x1, y1), ..., (xN , yN)}, xi ∈ X⊆ Rn, yi ∈ {−1, 1}
T: number of hypotheses in the ensemble
Initialize D1(i) = 1/N, i = 1, 2, . . . N

1: for t = 1 to T do
2: Create a sample Dt by sampling D with replacement by taking into consider-

ation the data points weights (as given in subsection 3.1)
3: Train a Weak Learner using Dt and obtain the hypothesis ht : X→ {1,−1}
4: Computed weighted error εt =

∑N
i=1Dt(i){ht(xi)6=yi}

5: If εt ≤ 0.5 continue else go to step (2)

6: Compute hypothesis weight αt =
1

2
log

(
1− εt
εt

)
7: If t < T , update the data points weights:

Dt+1(i) =
Dt(i)e

−yiαtht(xi)∑N
i=1Dt(i)e−yiαtht(xi)

8: end for
9: Final vote H(x) = sign(

∑T
t=1 αtht(x)) is the weighted sum.
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