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1 Introduction
In any numerical computation it is important to demonstrate the grid convergence of the numerical

solution. A common way to demonstrate the grid convergence is to repeat a computation on grid with

half of the original grid spacing, and compare the two solutions.

If numerical solution is available on two different set of grids, a technique called Richardson extrap-

olation can be used to generate more accurate numerical solutions. It is built on the concept that by

combining two separate discrete solutions, on two different grids, the leading order error term in the

assumed error expansion can be eliminated.

The basic technique can be illustrated with the following example. The central difference formula

for the first-order derivative is given by

f ′(xi) =
f (xi +h)− f (xi−h)

2h
− h2

6
f ′′′(xi) −

h4

120
f (5)(xi) + · · ·︸ ︷︷ ︸

Truncation error

(1)

This formula describes precisely how the truncation error behaves. Richardson extrapolation can be used

whenever the truncation error has a predictable form and depends on a parameter such as grid-point

spacing h without ever knowing f ′′′, f (5), · · · .

2 Extrapolation formula for first-order accurate approxima-

tion
Suppose that M(x) is the exact solution and N1(x;h) is a numerical solution (approximate), we may

write

N1(h) ≈ M

and the truncation error, E1(h) = M−N1(h). The truncation error may be expanded as a power series

in h. That is,

E1 = M−N1(h) = k1h + k2h2 + k3h3 + · · · (2)

for some unknown constants k1,k2,k3, · · · . Let us rewrite equation (2) in the following form:

M = N1(h) + k1h + k2h2 + k3h3 + · · · (3)
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We can construct a second such equation just by using a different step size, say h/2. That is,

M = N1

(
h
2

)
+ k1

h
2
+ k2

h2

4
+ k3

h3

8
+ · · · (4)

We now eliminate the term involving h from the above two equations. This is achieved by multiply the

4th equation by 2 and subtract the 3rd equation

M = 2N1

(
h
2

)
− N1(h) + k2

[
h2

2
−h2

]
+ k3

[
h3

4
−h3

]
+ · · ·

= N1

(
h
2

)
+

[
N1

(
h
2

)
−N1(h)

]
− k2

2
h2 − 3k3

4
h3 − ·· · (5)

Defining

N2(h) = N1

(
h
2

)
+

[
N1

(
h
2

)
−N1(h)

]
(6)

we can write equation (5) as

M = N2(h) −
k2

2
h2 − 3k3

4
h3 − ·· · (7)

which has O(h2) truncation error. Thus we have combined the multiple numerical solutions of O(h) to

generate solution of O(h2).

Example 1

The first-order forward difference formula for first-order derivative is given by

f ′(xi) =
f (xi +h)− f (xi)

h
− h

2
f ′′(xi) −

h2

6
f ′′′(xi) + · · ·︸ ︷︷ ︸

Truncation error

Consider the function

f (x) = xex

with xi = 2. The first derivative of f (x) is:

f ′(x) = (x+1)ex

therefore the exact value of f ′(2) = 22.16717. Now the forward difference formula can be used to

determine approximate values of f ′(2) with step size 0.1 and 0.05. So we have

h N1(h) % error

0.1 23.70845 6.95298

0.05 22.92170 3.40382

As expected, the error decreases by a factor of approximately 2 when we halve the step size h,

because the error in the forward difference formula is of O(h).
Applying then Richardson extrapolation to obtain a more accurate result:

N2(0.1) = N1(0.05) + [N1(0.05)−N1(0.1)] = 22.13495

The absolute % error when Richardson extrapolation used is: 100×| f ′(2)−N2(0.1)|/ f ′(2) = 0.14535%.

As expected, the error in the extrapolated value N2(0.1) is considerably small when compared to the

errors in the original computed values N1(0.1) and N1(0.05).
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Example 2

The second-order central difference formula for first-order derivative is given by

f ′(xi) =
f (xi +h)− f (xi−h)

2h
− h2

6
f ′′′(xi) −

h4

120
f (5)(xi) + · · ·︸ ︷︷ ︸

Truncation error

Consider the function

f (x) = xex

As we have seen in the last example, the exact value of f ′(2) = 22.16717. The central difference

formula can be used to determine approximate values of f ′(2) with step size 0.1 and 0.05. So we have

h N1(h) % error

0.1 22.22879 0.27798

0.05 22.18256 0.06943

As expected, the error decreases by a factor of approximately 4 when we halve the step size h,

because the error in the central difference formula is of O(h2).

Applying the Richardson extrapolation to obtain a more accurate approximation:

N2(0.1) = N1(0.05) + [N1(0.05)−N1(0.1)] = 22.13633

The absolute % error when Richardson extrapolation used is: 100×| f ′(2)−N2(0.1)|/ f ′(2) = 0.13912%.

Surprisingly, the extrapolated value N2(0.1) in this case is found to be less accurate than the non-

extrapolated value N1(0.05). This has happened because truncation error in the central difference

formula is second order. However, the formula for N2(h) has been obtained by eliminating the first

order truncation error which is nonexistent in the central difference formula.

3 Extrapolation formula for second-order accurate approxi-

mation
The procedure to derive Richardson extrapolation formula for second-order accurate approximation can

be used to obtain Richardson extrapolation formula for higher-order approximations. Suppose that

M(x) is the exact solution and a second-order approximate solution, N2(x;h); then we can write

M = N2(h) + k2h2 + k3h3 + k4h4 + · · · (8)

For a step size h/2, we have

M = N2

(
h
2

)
+ k2

h2

4
+ k3

h3

8
+ k4

h4

16
+ · · · (9)
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We now eliminate the term involving h2 from the above two equations by multiplying the 8th equation

by 4 and subtract the 7th equation to yield

3M =

[
4N2

(
h
2

)
− N2(h)

]
+ k3

[
h3

2
−h3

]
+ k4

[
h4

4
−h4

]
+ · · ·

If we divide this equation by 3 we obtain

M =
1
3

[
4N2

(
h
2

)
− N2(h)

]
− k3

6
h3 − k4

4
h4 + · · · (10)

Defining

N3(h) =
1
3

[
4N2

(
h
2

)
− N2(h)

]
= N2

(
h
2

)
+

1
3

[
N2

(
h
2

)
−N2(h)

]
(11)

we can write equation (10) as

M = N3(h) −
k3

6
h3 − k4

4
h4 + · · · (12)

which has O(h3) truncation error. Thus we have combined the multiple numerical solutions of O(h2)

to generate solution of O(h3).

Example 3

We again consider the function

f (x) = xex

and its second-order central difference approximation. We have already computed the approximate

solution of f ′(2) using central difference formula with step size 0.1 and 0.05 as given in the table

below.

h N1(h) % error

0.1 22.22879 0.27798

0.05 22.18256 0.06943

Applying the Richardson extrapolation using the formula (11) to obtain a more accurate approxi-

mation:

N3(0.1) = N2(0.05) +
1
3
[N2(0.05)−N2(0.1)] = 22.16715

The absolute % error when Richardson extrapolation used is: 100×| f ′(2)−N3(0.1)|/ f ′(2) = 9.022×
10−5%. As expected, the error in the extrapolated value N3(0.1) is considerably small when compared

to the errors in the original computed values N2(0.1) and N2(0.05).

4 Extrapolation formula for third-order accurate approxima-

tion
Let us obtain the Richardson extrapolation formula for third-order accurate approximations. Suppose

that M(x) is the exact solution and a third-order approximate solution, N3(x;h); then we can write

M = N3(h) + k3h3 + k4h4 + k5h5 + · · · (13)
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For a step size h/2, we have

M = N3

(
h
2

)
+ k3

h3

8
+ k4

h4

16
+ k5

h5

32
+ · · · (14)

We now eliminate the term involving h3 from the above two equations by multiplying the 14th equation

by 8 and subtract the 13th equation to yield

7M =

[
8N3

(
h
2

)
− N3(h)

]
+ k4

[
h4

2
−h4

]
+ k5

[
h5

4
−h5

]
+ · · ·

If we divide this equation by 7 we obtain

M =
1
7

[
8N3

(
h
2

)
− N3(h)

]
− k4

14
h4 − 3k5

28
h5 + · · · (15)

Defining

N4(h) =
1
7

[
8N3

(
h
2

)
− N3(h)

]
= N3

(
h
2

)
+

1
7

[
N3

(
h
2

)
−N3(h)

]
(16)

we can write equation (15) as

M = N4(h) −
k4

14
h4 − 3k5

28
h5 + · · · (17)

which has O(h4) truncation error. Thus we have combined the multiple numerical solutions of O(h3)

to generate solution of O(h4).

Example 4

The third-order backward biased difference formula for first-order derivative is given by

f ′(xi) =
2 f (xi +h)+3 f (xi)−6 f (xi−h)+ f (xi−2h)

6h
+ O(h3)

Consider the now familiar function

f (x) = xex

with xi = 2. The exact value of f ′(2) = 22.16717. Now the forward difference formula can be used to

determine approximate values of f ′(2) with step size 0.1 and 0.05. So we have

h N1(h) % error

0.1 22.17070 0.015924

0.05 22.16762 0.002030

Applying the Richardson extrapolation using the formula (16) to obtain a more accurate approxi-

mation:

N4(0.1) = N3(0.05) +
1
7
[N3(0.05)−N3(0.1)] = 22.16718

The absolute % error when Richardson extrapolation used is: 100×| f ′(2)−N4(0.1)|/ f ′(2) = 4.511×
10−5%. As expected, the error in the extrapolated value N4(0.1) is considerably small when compared

to the errors in the original computed values N3(0.1) and N3(0.05).
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5 Extrapolation formula for jth-order accurate approxima-

tion
If the error representation is of the form

E = k1h + k2h2 + k3h3 + k4h4 + · · ·

the following general formula for Richardson extrapolation with truncation error O(h j) can be obtained

for j = 2,3,4, . . .

N j(h) = N j−1

(
h
2

)
+

1
2 j−1−1

[
N j−1

(
h
2

)
−N j−1(h)

]
(18)

Thus, for j = 2,3,4, and 5, we have the following formula:

N2 = N1

(
h
2

)
+

[
N1

(
h
2

)
−N1(h)

]
N3 = N2

(
h
2

)
+

1
3

[
N2

(
h
2

)
−N2(h)

]
N4 = N3

(
h
2

)
+

1
7

[
N3

(
h
2

)
−N3(h)

]
N5 = N4

(
h
2

)
+

1
15

[
N4

(
h
2

)
−N4(h)

]
If the error representation contains only even power terms, i.e.,

E = k2h2 + k4h4 + k6h6 + k8h8 + · · ·

we could obtain a general formula for Richardson extrapolation with truncation error O(h j) for j =
4,6,8, . . .

N j(h) = N j−1

(
h
2

)
+

1
2 j−2−1

[
N j−1

(
h
2

)
−N j−1(h)

]
(19)

Thus, for j = 4,6,8, and 10, we have the following formula:

N4 = N2

(
h
2

)
+

1
3

[
N2

(
h
2

)
−N2(h)

]
N6 = N4

(
h
2

)
+

1
15

[
N4

(
h
2

)
−N4(h)

]
N8 = N6

(
h
2

)
+

1
63

[
N6

(
h
2

)
−N6(h)

]
N10 = N8

(
h
2

)
+

1
255

[
N8

(
h
2

)
−N8(h)

]
It must be noted that, Richardson extrapolation has limitations. First, if it is applied to primitive

variables of fluid dynamics such as velocity, its implication regarding momentum conservation may be

inaccurate. Second, the method implicitly assumes that the solution is a smooth function and has

derivatives to all orders. Hence, its results are not valid in the vicinity of discontinuities in the solution.
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