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First we discuss the background material required for the formal development of
the RKHS formulation. The concepts of metric spaces, vector spaces, normed spaces
and inner product spaces are essential for understanding the concepts of RKHS.

1 Metric space

We all aware of determining the distance between two real numbers using Euclidean
distance formula. In the same way, is that possible to find the distance between two
real valued functions defined on [a, b]? The answer is yes, if they are members of a
metric space. Given below is the definition of a metric space:

Definition A space X is called a metric space if a metric(distance function) d is
defined on X × X such that for all x, y, z ∈ X we have:

• d is real-valued, finite and non-negative

• d(x, y) = 0 iff x = y

• d(x, y) = d(y, x) (Symmetry)

• d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality)

1.1 Examples of metric spaces

1. Rn with the metric d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . (xn − yn)2

2. Cn with the metric d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2 + . . . |xn − yn|2

3. C[a, b] with the metric d(x, y) = maxt∈[a,b] |x(t)− y(t)|
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4. l∞ with the metric d(x, y) = supj∈N |ηj − ψj|, where l∞ is a bounded sequence
of complex numbers.

Next we will look into how the concept of continuous functions can be introduced
in metric spaces.

Definition 1.1 A mapping T : (X , d) → (Y , d̃) is said to be continuous at x0 if for
every ε > 0,∃ δ > 0 such that d(x, y) < δ → d(Tx, Ty) < ε

2 Limit Point

Let x0 ∈ X , where X a metric space. Then x0 is said to be a limit point of a subset
M of X , if ∀ε > 0, ∃xn 6= x0 ∈M such that d(xn, x0) < ε

Definition 2.1 The closure of a subset M of a metric space X is the set consisting
of M and all the limit points of M and it is represented as M.

Definition 2.2 A subset M of a metric space X is dense in X if M = X.

2.1 Convergence of a Sequence

The concept of convergence of sequence can be introduced only in metric spaces.

Definition 2.3 A sequence (xn) in (X.d) is said to be a convergent sequence if there
exists a x0 ∈ X , such that ∀ε > 0, ∃N such that d(xn, x0) < ε ∀n > N.

The sequence (
1

n
, n ∈ N) converges to 0. This is a convergent sequence in [0, 1] ⊂

R, but a divergent sequence in (0, 1) ⊂ R, as the limit 0 ∈ [0, 1] and 0/∈ (0, 1].
A sequence (xn) in a metric space is said to be Caushy sequence if for every ε > 0

there is a N such that d(xm, xn) < ε ∀m,n > N .

Theorem 2.4 Every convergent sequence is Caushy.

Proof Let (xn) is a convergent sequence in X . Therefore ∃ x0 ∈ X such that

d(xn, x0) <
ε

2
,∀n > N. Now d(xm, xn) < d(xm, x0) + d(x0, xn) =

ε

2
+
ε

2
= ε ∀m,n >

N . Therefore (xn) is a Caushy sequence.
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The converse of theorem 2.4 is not true for all metric spaces. There are some
spaces where every Caushy sequence converges. The space X is said to be a complete
metric space if every Caushy sequence converges.

Rn, Cn are complete metric spaces with usual metric. The set of rational numbers
Q with Euclidean metric is not a complete metric space, as every irrational number
can be represented as the limit of rational numbers.

Theorem 2.5 x ∈ M , if and only if there exists a sequence (xn) ∈ M , such that
xn → x.

Proof Let x ∈ M . If x ∈ M , then (x, x, . . . x) → x. If x /∈ M , then also we can
find a sequence (xn) ∈M that converges to x, by taking xn ∈ B(x, 1/n) , as x is the
limit point of M . To prove the converse, assume there exists a sequence (xn) ∈ M
that converges to x. Then every neighbor hood of x contains atleast a xn, that is
atleast one element of M . Therefore x is a limit point of M .

If M is closed, then M = M and therefore for every x ∈ M , there exists a
sequence (xn) ∈M , such that xn → x.

3 Vector Spaces

A vector space over a field K is a non empty set V on which are defined two oper-
ations, vector addition and scalar multiplication such that the following conditions
are satisfied ∀u, v, w ∈ V :

• Closed under vector addition: u+ v ∈ V

• Associative under vector addition: (u+ v) + w = u+ (v + w)

• Commutative under vector addition: u+ v = v + u

• Existence of additive identity: ∃ 0 ∈ V , such that 0 + u = u

• Existence of additive inverse: ∃s ∈ V such that u+ s = 0

• Closed under scalar multiplication: ∀α ∈ K,αv ∈ V

• Associative under scalar multiplication: α(βv) = (αβ)v, α, β ∈ K

• Distributive: α(u+ v) = αu+ αv, (α + β)u = αu+ βu, α, β ∈ K

• Unitarity: 1u = u, 1 ∈ K
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3.1 Normed Space

A normed space is a vector space with a norm defined on it. A Banach space is a
complete normed space (complete in the metric defined by the norm). Here a norm
on a vector space X is a real-valued function X whose values at an x ∈ X is denoted
by ||x|| which has properties

• ||x|| ≥ 0

• ||x|| = 0 ⇐⇒ x = 0

• ||αx|| = |α|||x||

• ||x+ y|| ≤ ||x||+ ||y||

where x, y ∈ X and α is any scalar.
A norm on X defines a metric d on X which is given by

d(x, y) = ||x− y||

is called the metric induced by the norm.
A complete normed space is called a Banach space.

3.2 Linear Operator

Definition A linear operator T is an operator such that

• the domain D(T ) and the range R(T ) of T are vector spaces over the same
field

• T (x+ y) = T (x) + T (y); T (α(x)) = αT (x) where, x, y ∈ D(T ) and α ∈ K.

3.3 Bounded Linear Operator

Definition Let X and Y be normed spaces and T : D(T ) → Y a linear operator,
where D(T ) ⊂ X. The operator T is said to be bounded if there is a real number c
such that for all x ∈ D(T ), ||Tx|| ≤ c||x||.

||T || = supx∈D(T ),x 6=0
||Tx||
||x||

or||T || = supx∈D(T ),||x||=1||Tx||.
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3.4 Bounded Linear Functional

A bounded linear functional f is a bounded linear operator with the range lies on
the scalar field of its domain.

f : D(f)→ K

||f || = supx∈D(T ),x 6=0
||f(x)||
||x||

or else
||f || = supx∈D(T ),||x||=1||f(x)||

.

Theorem 3.1 A linear operator T is continous iff it is bounded.

3.5 Inner Product Space, Hilbert Space

Definition An inner product space is a vector spaceX with an inner product defined
on X. An inner product on X is a mapping of X ×X into the scalar field K of X;
that is every pair of vectors x and y there is associated a scalar, which is written
〈x, y〉 and is called the inner product of x and y, such that for all vectors x,y and
scalars α we have

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• 〈αx, y〉 = α〈x, y〉

• 〈x, y〉 = 〈y, x〉 (if K = R, 〈y, x〉 = 〈y, x〉)

• 〈x, x〉 ≥ 0, 〈x, x〉 = 0, ⇐⇒ x = 0

||x|| =
√
〈x, x〉, d(x, y) = ||x− y|| =

√
〈x− y, x− y〉

Definition A Hilbert space is a complete inner product space.

Theorem 3.2 (Projection Theorem) Let Y be a closed subspace of a Hilbert space
H. Then H = Y ⊕ Y ⊥.

Lemma 3.3 For any subset M 6= φ of a Hilbert space H, the span of M is dense in
H iff M⊥ = {0}.

[Refer Kreyszig book for examples for the above given spaces and for
more information]. (Iin the rest of this article, the scalar field K of any vector
space is taken to be R.)
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4 Reisz Representation Theorem

Definition Reisz representation theorem: Every bounded linear functional f on a
Hilbert space H can be represented in terms of the inner product

f(x) = 〈x, z〉

where z depends on f , is uniquely determined by f and has norm ||f || = ||z||.

Definition An evaluation functional over the Hilbert space of functions F is a linear
functional Lx : F→ R such that Lx(f) = f(x),∀f ∈ F .

5 Hyperplanes in Hilbert Sapce

Let H be a Hilbert space. Let f be a bounded linear functional defined on F .
Therefore by Reisz representation theorem, ∃w ∈ H, such that f(x) = 〈w, x〉,∀x ∈
H. Then Πw = {x ∈ F : f(x) − b = 0, b ∈ R} is called the hyperplane associated
with f , having the parameter w and b. The hyperplane divides H in two half spaces:
Π1 = {x ∈ F : f(x)− b ≥ 0, b ∈ R} and Π2 = {x ∈ F : f(x)− b < 0, b ∈ R}. In this
case the equation to the hyperplane is 〈w, x〉 − b = 0.

6 Reproducing Kernel Hilbert spaces

Definition A RKHS, F , is a Hilbert space of functions on some set X in which all
the point evaluations are bounded linear functionals.

Let X ⊆Rn. For each xi ∈ X , if we define Lxi : F → R such that,

Lxi(f) = f(xi), (1)

where f ∈ F , then by the definition of RKHS, {Lxi}xi∈X are bounded [since L′xis
are point evaluation functionals]. Hence by the Reisz representation theorem there
exists a set of functions {kxi : xi ∈ X} ⊆ F such that

Lxif = 〈f, kxi〉,∀f ∈ F (2)

where kxi depends only on Lxi . Therefore, corresponding to every x ∈ X , ∃kx ∈ F .
Hence the following are well defined functions: φ : X → F such that φ(x) = kx and
k : X × X → R
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k(x, y) = 〈kx, ky〉 = 〈φ(x), φ(y)〉 (3)

The function k is called the reproducing kernel (r.k.) and φ is called its feature
map. kx is called the representer of evaluation at x.

Substituting k(x, y) in place of 〈φ(x), φ(y)〉 is known as kernel trick, in the field
of machine learning community.

Theorem 6.1 If M = {kxi, i = 1, 2, . . . }, then span(M) = F .

Proof Let f ∈ M⊥. Therefore 〈f, kx〉 = 0,∀x ∈ X . Therefore, f(x) = 0 ∀x ∈ X .
Hence f ≡ 0. Hence M⊥ = {0}. Hense by lemma (3.3), span(M) = F .

By virtue of the above theorem and theorem 2.5, every f ∈ F can be expressed as

f =
∑

αikxi , αi ∈ R. (4)

Hence,

f(x) =
∑
i

αikxi(x) =
∑
i

αik(xi, x) (5)

[〈f, kxi〉 = f(xi).Hence〈kxi , kx〉 = kxi(x) = k(xi, x)] .

Definition (Semi Positive definite function) A function k : X × X → R is semi
positive-definite if ∑

i,j

cicjk(xi, xj) ≥ 0 (6)

for all ci, cj ∈ R.

The reproducing kernel k is semi positive definite on X × X , since, for any
x1, x2, · · · ∈ X and a1, a2, · · · ∈ R∑

i,j

aiajk(xi, xj) =
∑
i,j

aiaj〈kxi , kxj〉 = ||
∑

aikxi ||2 ≥ 0 (7)

The Moore-Aronszajn-Theorem states that for every semi positive definite kernel
on X × X , there exists a unique RKHS and vice versa.

6.1 Kernel Matrix

Definition (Kernel matrix) Given a kernel k and points x1, . . . , xN ∈ X , the N ×N
matrix

K = [k(xi, xj)]ij (8)

is called the kernel matrix (Gram matrix) of k with respect to x1, . . . , xN .
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6.2 Semi Positive Definite Kernels

Definition (Semi Positive definite matrix) A real N ×N symmetric matrix K sat-
isfying

cTKc =
∑
i

∑
j

cicjKij ≥ 0 (9)

for all c ∈ RN is called semi positive definite.[Kij is the ijth element of K]. If
equality in (9) only occurs when c is a zero vector, then the matrix is called as
positive definite.

A function k : X × X is a reproducing kernel if and only for all N ∈ N, xi ∈ X ,
the corresponding kernel matrix K is semi positive definite. A function k : X ×X is
a kernel iff semi positive definite function.

7 Reproducing Kernel

In this section we’ll look into some common kernels.

7.1 Linear Kernel

Let F be the set of all bounded linear functionals defined on Rn with kernel k. What
is the form of k?

Let f ∈ F . Therefore
f(x) = 〈wf , x〉

where wf is the parameter associated with f . Corresponding to f , there exists a
hyperplane Πwf

= {x ∈ Rn : f(x) − 〈wf , x〉 = 0}. By defining 〈f, g〉 = 〈wf , wg〉,
where wg is the parameter associated with g, F is a RKHS.

Consider kxj ∈ F , j = 1, 2, .... Now

kxj(xi) = 〈wkxj , xi〉 = kxi(xj)

where wkxj is the parameter associated with kxj . This implies for finding the image of
a point using kxi one of the arguments in the inner product should be xi, i = 1, 2, . . .
Hence kxi(xj) = 〈xi, xj〉 = k(xi, xj) which is the linear kernel.
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7.2 Polynomial Kernel

k(x, y) = (〈x, y〉+ c)d, c ≥ 0, d ∈ N
We will look into the RKHS corresponding with k(x, y) = (〈x, y〉)2, x, y ∈ R2.

k(x, y) = (〈x, y〉)2

= (x1y1 + x2y2)
2

= x1
2y1

2 + x2
2y2

2 + 2x1y1x2y2 = 〈(x21, x22,
√

2x1x2), (y
2
1, y

2
2,
√

2y1y2)〉

If we define φ : R2 → R3 by φ(x) = (x21, x
2
2,
√

2x1x2), then kx(y) = 〈φ(x), φ(y)〉 =
Hφ(x)(φ(y)) where Hφ(x) is a hyperplane in R3 with parameter φ(x).

Let F is the RKHS corresponding to k. Let f ∈ F . f(x) =
∑
αik(xi, x) =∑

i〈φ(xi), φ(x)〉 = H∑
i φ(xi)

(φ(x)). Therefore corresponding to f there exists a hy-

perplane in R3. Hence f̃(x) = f(x) + b = H∑
i φ(xi)

(φ(x)) + b. Hence the points that
is mapped using φ can be seperated by a hyperplane in R3.

Other examples of kernel functions are

Linear k(x, y) = 〈x, y〉
Gaussian RBF(β ∈ R+) k(x, y) = exp

(
−β||x− y||2

)
Polynomial (d ∈ N, θ ∈ R+) k(x, y) = [(x.y) + θ]d

Inverse Multiquadratic (c > 0) k(x, y) =
1√

||x− y||2 + c

With K a Gaussian, the dimensionality of the RKHS is infinite, while when K
is a polynomial of degree k (eg K(x, y) = (1 + 〈x, y〉)k), the dimensionality of the
RKHS is finite.

8 Theory of Kernel Methods

As discussed earlier, associated with every RKHS there exists a symmetric semi
positive definite function called the kernel function, k. Algorithms that use the
concept of the kernel are called kernel methods.

The cost function used in kernel methods is the regularized cost function:

J(f) =
1

N

N∑
i=1

V (yi, f(xi)) + λ||f ||2k (10)
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where V is the loss function, which is differentiable, and λ is the regularization
parameter. The loss function V (yi, f(xi)) measures the error between the predicted
value f(xi) and given output yi.

The solution f ∗ = arg minf∈F J(f).
Kernel methods can be divided into different types depending upon the loss func-

tion they are using.
It can be proved using the representer theorem that the minimization problem

(10) gives the solution of the learning problem in terms of the number of training
points. That is

f =
N∑
i=1

αikxi

The Representer theorem can be stated as follows:

Theorem 8.1 Denote Ω : [0,∞) → R] a strictly a monotonically increasing func-

tion, by X a set, by c : (X × R2)
N

an arbitrary loss function. Then any f ∈ RKHS
F minimizing the regularized risk functional

c((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) + Ω(||f ||) (11)

admits a representation of the form

f(.) =
N∑
i=1

αikxi . (12)

Proof Given f is the minimiser of the regularized risk functional. Let Y = span(kxi)
N
i=1.

As every finite dimensional subspace of a normed space X is closed in X , Y is closed.
Therefore by projection theorem,

F = Y ⊕ Y ⊥

. Hence f = fy + fy⊥ , fy ∈ Y, fy⊥ ∈ Y ⊥. Now f(xi) = 〈f, kxi〉 = 〈fy, kxi〉. As

fy ∈ Y, fy =
∑N

i=1 αikxi . Therefore f(x) = fy(x) =
∑N

i=1 αik(xi, x). Hence fy⊥ has
no role in determining the value of f .

Now ||f ||2 = ||fy + fy⊥ ||2 = (||fy||2 + ||fy⊥ ||2) ≥ |fy||2 Therefore ||f || ≥ ||fy||.
Therefore Ω(||f ||) ≥ Ω(||fy||). Thus fy satisfies the given points and also has the

least value for Ω. Therefore f = fy =
∑N

i=1 αikxi .
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Any function of the form f =
∑N

i=1 αikxi + f ′, f ′ ∈ Y ⊥ satisfies the given points, of

which
∑N

i=1 αikxi has the least norm. The significance of the representor theorem
is that the number of terms in the minimiser of regularized risk functional depends
only of the number of training points, that is, it is independent of the dimensionality
of RKHS space.

If f ∈ F , f(x) = 〈f, kx〉. Is that possible to model a function that generates the
data of the form f̃(x) = 〈f, kx〉+ b, b ∈ R by making use of kernel theory?. For that
we make use of semi parametric representor theorem.

Theorem 8.2 (Semiparametric Representer Theorem) Suppose that in addition to
the assumptions of the previous theorem we are given a set of M real valued functions
{Ψp}Mp=1 on X with the property that the N ×M matrix (Ψp(xi))ip has rank M. Then

any f̃ := f + h with f ∈ F and h ∈ span{Ψp} minimizing the regularized risk
functional

c((x1, y1, f̃(x1)), . . . , (xN , yN , f̃(xN))) + Ω(||f ||) (13)

admits a representation of the form

f̃(.) =
N∑
i=1

αikxi +
M∑
i=1

βpΨp. (14)

where βp, p = 1, 2 . . .M are uniquely determined.

Proof Given f̃ = f + h is the minimiser of the regularized risk functional. Let
Y = span(kxi)

N
i=1. As every finite dimensional subspace of a normed space X is

closed in X , Y is closed. Therefore by projection theorem,

F = Y ⊕ Y ⊥

Hence f̃ = fy + fy⊥ + h, fy ∈ Y, fy⊥ ∈ Y ⊥. Now f̃(xi) = 〈f, kxi〉+ h(xi) = 〈fy, kxi〉+
h(xi). As fy ∈ Y, fy =

∑N
i=1 αikxi . Therefore f̃(x) =

∑N
i=1 αik(xi, x) + h(x). Hence

fy⊥ has no role in determining the value of f̃ .
Now ||f ||2 = (||fy + fy⊥ ||2 = (||fy||2 + ||fy⊥ ||2) ≥ |fy||2 Therefore ||f || ≥ ||fy||.

Therefore Ω(||f ||) ≥ Ω(||fy||). Thus fy + h satisfies the given points and fy has the

least value for Ω. Therefore f = fy =
∑N

i=1 αikxi . Hence f̃ =
∑N

i=1 αikxi + h

Now h(xi) =
∑M

p=1 βpψp(xi), i = 1, 2, . . . N . This is a set of N linear equations
with M unknowns. This can be represented as v = β1v1 + β2v2 + . . . βMvm where
vl = (ψl(x1), ψl(x2), . . . ψl(xN))T , l = 1, 2, . . .M and v = (h(x1), h(x2), . . . h(xN))T .
By the given conditions {v1, v2, . . . vM} are linearly independent. Therefore the βi, i =
1, 2, . . .M can be uniquely determined.
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Examples

1. For SV regression with the ε insensitive loss c((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) =
1

λ

∑
i max(0, |f(xi)− yi| − ε) and the regularisor Ω(||f ||) = ||f ||2 where λ > 0

and ε ≥ 0 are fixed parameters which determine the tradeoff between regular-
ization and fit to the training set. In addition a single M = 1 constant function
Ψ1(x) = c, c ∈ R is used as an offset that is not regularized by the algorithm.

2. In SVM classification c((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) =
1

λ

∑
i max(0, 1−

yif(xi) , the regularisor Ω(||f ||) = ||f ||2 and Ψ1(x) = c, c ∈ R is used as an
offset that is not regularized by the algorithm.

Hence , for both the above cases, f̃ := f + b.
[Refer: A Generalized Representer Theorem by Bernhard Scholkopf,

Ralf Herbrich and Alex J. Smola, Robert Williamson]

8.1 Kernel Methods: General Form

The solution to (10) has the general form

f̃(x) =
N∑
i=1

αik(xi, x) + b, αi, b ∈ R, xi, x ∈ X . (15)

Training a model requires the choice of few relevant quantities:

• the kernel function, that determines the shape of the decision surface;

• a parameter in the kernel function (eg: for gaussian kernel:variance of the
Gaussian, for polynomial kernel: degree of the polynomial)

• the regularization parameter λ.

8.2 Hyperplane Models in RKHS

If f̃ is the unknown function of a datamodeling problem, then by kernel theory

f̃(x) = f(x) + b = 〈f, kx〉+ b,∀x ∈ X ; f, kx ∈ F , b ∈ R (16)

Consider Hf,b : F → R where

Hf,b(g) = 〈f, g〉+ b,∀g ∈ F (17)
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Comparing (16) and (17),

f̃(x) = Hf,b(kx), x ∈ X , kx ∈ F

Thus finding f̃ in input space is equivalent in finding Hf,b in RKHS.
Now Π = {kx ∈ F : Hf,b(kx) = 〈f, kx〉 + b} is a hyperplane in RKHS with

parameters f and b and its equation can be written as Hf,b(kx) − 〈f, g〉 − b = 0,
that is f̃(x) − 〈f, g〉 − b = 0. Hence Π divides F into two halves: Π+ = {kx ∈ F :
f̃(x)− 〈f, g〉 − b ≥ 0} and Π− = {kx ∈ F : f̃(x)− 〈f, g〉 − b < 0}.

In the case of classification, if x is in positive class in input domain, then kx is in
Π+ and if x is in negative class in input domain, then kx is in Π−. Therefore corre-
sponding to the decision boundary in input space, there exists a decision boundary
in RKHS which a hyperplane. Similarly in the case of regression, (kx, Hf,b(kx)) lies
in hyperplane Π in RKHS.
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