
MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

MA122 - Computer Programming and
Applications

Indian Institute of Space Science and Technology

April 26, 2017

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Lecture 33

1 enumeration

2 Pointer to a Data Member

3 Object using new

4 Automatic Conversions and Type Casts

5 overloading << operator

6 overloading << operator: General Method

7 Allowed and Not Allowed

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

example 1

1 #include<iostream>

2 using namespace std;

3 int main()

4 {

5 enum CarTyre { normal, wet, snow, sports };

6 int Number = 0;

7 bool IsValid = false;

8 CarTyre FrontLeft = normal;

9

10

11 //int Number2 = "A" //as the character "

A" is not a valid integer;

12 //bool IsValid2 = 1.42; //as 1.42 is a

floating point value and not a boolean

13 //CarTyre FrontLeft2 = giraffe //as giraffe is not

a valid CarTyre;

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

example 1

1

2 if(Number == 1)

3 cout<<Number<<endl;

4

5 if(IsValid == false)

6 cout<<"It is valid"<<endl;

7

8 if(FrontLeft == normal)

9 cout<<" It works"<<endl;

10

11

12 return 0;

13 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

example 2

1 #include<iostream>

2 using namespace std;

3 int main()

4 {

5 enum Color { red, green, blue };

6 Color r = red;

7 switch(r)

8 {

9 case red : std::cout << "red\n"; break;

10 case green: std::cout << "green\n"; break;

11 case blue : std::cout << "blue\n"; break;

12 }

13

14 return 0;

15 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

example 3

1 #include<iostream>

2 using namespace std;

3 int main()

4 {

5

6 enum Foo { a, b, c = 10, d, e = 1, f, g = f + c };

7 //a = 0, b = 1, c = 10, d = 11, e = 1, f = 2, g =

12

8 Foo r = b;

9 switch(r)

10 {

11 case a : std::cout << a<<endl; break;

12 case b: std::cout << b<<endl; break;

13 case c : std::cout << c<<endl; break;

14 }

15

16 return 0;

17 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Lecture 33

1 enumeration

2 Pointer to a Data Member

3 Object using new

4 Automatic Conversions and Type Casts

5 overloading << operator

6 overloading << operator: General Method

7 Allowed and Not Allowed

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Pointer to a data member

1 #include <iostream>

2

3 using namespace std;

4 class Data

5 {

6 public:

7 int a;

8 void print() { cout << "a is="<< a<<endl; }

9 };

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

pointer to a object

1 int main()

2 {

3 Data d, *dp;

4 dp = &d; // pointer to object

5

6 int Data::*ptr=&Data::a; // pointer to data member ’a

’

7

8 d.*ptr=10;

9 d.print();

10

11 dp->*ptr=20;

12 dp->print();

13 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Lecture 33

1 enumeration

2 Pointer to a Data Member

3 Object using new

4 Automatic Conversions and Type Casts

5 overloading << operator

6 overloading << operator: General Method

7 Allowed and Not Allowed

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Pointer to a data member

1 #include <iostream>

2 using namespace std;

3 class Test

4 {

5 private:

6 ~Test() { cout << "Destroying Object\n"; }

7 public:

8 Test() { cout << "Object Created\n"; }

9 friend void destructTest(Test*);

10 };

11

12 // Only this function can destruct objects of Test

13 void destructTest(Test* ptr)

14 {

15 delete ptr;

16 cout << "Object Destroyed\n";}

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

object using new

1

2 int main()

3 {

4 /* Uncommenting following following line would

cause compiler error */

5 // Test t1;

6

7 // create an object

8 Test *ptr = new Test;

9

10 // destruct the object to avoid memory leak

11 destructTest(ptr);

12

13 return 0;

14 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Lecture 33

1 enumeration

2 Pointer to a Data Member

3 Object using new

4 Automatic Conversions and Type Casts

5 overloading << operator

6 overloading << operator: General Method

7 Allowed and Not Allowed

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Type Casts

1 #include<iostream>

2 int main()

3 {

4 long count = 8; // int value 8 converted to type

long

5 double time = 11; // int value 11 converted to type

double

6 int side = 3.33; // double value 3.33 converted to

type int 3

7 //int * p = 10; // type clash

8 int *p=(int *) 10;

9 return 0;

10 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Example

1 #include <iostream>

2 #include <fstream>

3 using std::cout;

4 class Stonewt

5 {

6 private:

7 enum {Lbs_per_stn = 14}; // pounds per stone

8 //static const int Lbs_per_stn = 14;

9 int stone; // whole stones

10 double pds_left; // fractional pounds

11 double pounds; // entire weight in

pounds

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Example

1 public:

2 Stonewt(double lbs); // constructor for

double pounds

3 Stonewt(int stn, double lbs); // constructor for

stone, lbs

4 Stonewt(); // default constructor

5 ~Stonewt();

6 void show_lbs() const; // show weight in

pounds format

7 void show_stn() const; // show weight in stone

format

8 };

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Example

1 // construct Stonewt object from double value

2 Stonewt::Stonewt(double lbs)

3 {

4 stone = int (lbs) / Lbs_per_stn; // integer division

5 pds_left = int (lbs) % Lbs_per_stn + lbs - int(lbs);

6 pounds = lbs;

7 }

8 // construct Stonewt object from stone, double values

9 Stonewt::Stonewt(int stn, double lbs)

10 {

11 stone = stn;

12 pds_left = lbs;

13 pounds = stn * Lbs_per_stn +lbs;

14 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Example

1 Stonewt::Stonewt() // default constructor, wt =

0

2 {

3 stone = pounds = pds_left = 0;

4 }

5 Stonewt::~Stonewt() // destructor

6 {

7 }

8 // show weight in stones

9 void Stonewt::show_stn() const

10 {

11 cout << stone << " stone, " << pds_left << " pounds\

n";

12 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Example

1 // show weight in pounds

2 void Stonewt::show_lbs() const

3 {

4 cout <<pounds << " pounds\n";

5 }

6 void display(const Stonewt & st, int n);

7 int main()

8 {

9 Stonewt incognito = 275; // uses constructor to

initialize

10 Stonewt wolfe(285.7); // same as Stonewt wolfe =

285.7;

11 Stonewt taft(21, 8);

12 cout << "The celebrity weighed ";

13 incognito.show_stn();

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Example

1 cout << "The detective weighed ";

2 wolfe.show_stn();

3 cout << "The President weighed ";

4 taft.show_lbs();

5 incognito = 276.8; // uses constructor for

conversion

6 taft = 325; // same as taft = Stonewt(325)

;

7 cout << "After dinner, the celebrity weighed ";

8 incognito.show_stn();

9 cout << "After dinner, the President weighed ";

10 taft.show_lbs();

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Example

1 display(taft, 2);

2 cout << "Thewrestler weighed even more.\n";

3 display(422, 2);

4 cout << "No stone left unearned\n";

5 return 0;

6 }

7 void display(const Stonewt & st, int n)

8 {

9 for (int i = 0; i < n; i++)

10 {

11 cout << "Wow! ";

12 st.show_stn();

13 }

14 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Lecture 33

1 enumeration

2 Pointer to a Data Member

3 Object using new

4 Automatic Conversions and Type Casts

5 overloading << operator

6 overloading << operator: General Method

7 Allowed and Not Allowed

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend2

1 #include <iostream>

2 class Time

3 {

4 private:

5 int hours;

6 int minutes;

7 public:

8 Time();

9 Time(int h, int m = 0);

10 Time operator*(double n) const;

11 friend Time operator*(double m, const Time & t);

12 friend void operator<<(std::ostream & os, const

Time & t);

13 };

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend2

1 Time::Time()

2 {

3 hours = minutes = 0;

4 }

5 Time::Time(int h, int m)

6 {

7 hours = h;

8 minutes = m;

9 }

10 Time Time::operator*(double mult) const

11 {

12 Time result;

13 long totalminutes = hours * mult * 60 + minutes *

mult;

14 result.hours = totalminutes / 60;

15 result.minutes = totalminutes % 60;

16 return result;

17 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend2

1

2 Time operator*(double m, const Time & t)

3 {

4 return t * m;

5 }

6

7 void operator<<(std::ostream & os, const Time & t)

8 {

9 os << t.hours << " hours, " << t.minutes << "

minutes"<<std::endl;

10 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend2

1 int main()

2 {

3 using std::cout;

4 using std::endl;

5 Time weeding(4, 35);

6

7

8 Time adjusted;

9 //adjusted = weeding * 1.5;

10 adjusted = 1.5*weeding;

11 cout << "adjusted work time = ";

12 cout << adjusted;

13 return 0;

14 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Lecture 33

1 enumeration

2 Pointer to a Data Member

3 Object using new

4 Automatic Conversions and Type Casts

5 overloading << operator

6 overloading << operator: General Method

7 Allowed and Not Allowed

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend3

1 #include <iostream>

2 class Time

3 {

4 private:

5 int hours;

6 int minutes;

7 public:

8 Time();

9 Time(int h, int m = 0);

10 Time operator*(double n) const;

11 friend Time operator*(double m, const Time & t);

12 friend std::ostream & operator<<(std::ostream & os

, const Time & t);

13

14 };

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend3

1 Time::Time()

2 {

3 hours = minutes = 0;

4 }

5 Time::Time(int h, int m)

6 {

7 hours = h;

8 minutes = m;

9 }

10 Time Time::operator*(double mult) const

11 {

12 Time result;

13 long totalminutes = hours * mult * 60 + minutes *

mult;

14 result.hours = totalminutes / 60;

15 result.minutes = totalminutes % 60;

16 return result;

17 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend3

1

2 Time operator*(double m, const Time & t)

3 {

4 return t * m;

5 }

6

7 std::ostream & operator<<(std::ostream & os, const

Time & t)

8 {

9 os << t.hours << " hours, " << t.minutes << "

minutes";

10 return os;

11 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

friend3

1 int main()

2 {

3 using std::cout;

4 using std::endl;

5 Time weeding(4, 35);

6

7

8 Time adjusted;

9 //adjusted = weeding * 1.5;

10 adjusted = 1.5*weeding;

11 cout <<"Hello"<<endl<< adjusted<<endl;

12 return 0;

13 }

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Lecture 33

1 enumeration

2 Pointer to a Data Member

3 Object using new

4 Automatic Conversions and Type Casts

5 overloading << operator

6 overloading << operator: General Method

7 Allowed and Not Allowed

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

ptg7068951

574 Chapter 11 Working with Classes

Operator Description

= Assignment operator

() Function call operator

[] Subscripting operator

-> Class member access by pointer operator

Note
This chapter does not cover every operator mentioned in the list of restrictions or in Table
11.1. However, Appendix E, “Other Operators,” summarizes the operators that are not cov-
ered in the main body of this text.

In addition to these formal restrictions, you should use sensible restraint in overload-
ing operators. For example, you shouldn’t overload the * operator so that it swaps the
data members of two Time objects. Nothing in the notation would suggest what the
operator did, so it would be better to define a class method with an explanatory name
such as Swap().

More Overloaded Operators
Some other operations make sense for the Time class. For example, you might want to
subtract one time from another or multiply a time by a factor.This suggests overloading
the subtraction and multiplication operators.The technique is the same as for the addition
operator: you create operator-() and operator*() methods.That is, you add the follow-
ing prototypes to the class declaration:

Time operator-(const Time & t) const;
Time operator*(double n) const;

Table 11.1 Operators That Can Be Overloaded

+ - * / % ^

& | ~ ! = <

> += -= *= /= %=

^= &= |= << >> >>=

<<= == != <= >= &&

|| ++ -- , ->* ->

() [] new delete new [] delete []

n Most of the operators in Table 11.1 can be overloaded by using either member or
nonmember functions. However, you can use only member functions to overload
the following operators:

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Only Member Functions

ptg7068951

574 Chapter 11 Working with Classes

Operator Description

= Assignment operator

() Function call operator

[] Subscripting operator

-> Class member access by pointer operator

Note
This chapter does not cover every operator mentioned in the list of restrictions or in Table
11.1. However, Appendix E, “Other Operators,” summarizes the operators that are not cov-
ered in the main body of this text.

In addition to these formal restrictions, you should use sensible restraint in overload-
ing operators. For example, you shouldn’t overload the * operator so that it swaps the
data members of two Time objects. Nothing in the notation would suggest what the
operator did, so it would be better to define a class method with an explanatory name
such as Swap().

More Overloaded Operators
Some other operations make sense for the Time class. For example, you might want to
subtract one time from another or multiply a time by a factor.This suggests overloading
the subtraction and multiplication operators.The technique is the same as for the addition
operator: you create operator-() and operator*() methods.That is, you add the follow-
ing prototypes to the class declaration:

Time operator-(const Time & t) const;
Time operator*(double n) const;

Table 11.1 Operators That Can Be Overloaded

+ - * / % ^

& | ~ ! = <

> += -= *= /= %=

^= &= |= << >> >>=

<<= == != <= >= &&

|| ++ -- , ->* ->

() [] new delete new [] delete []

n Most of the operators in Table 11.1 can be overloaded by using either member or
nonmember functions. However, you can use only member functions to overload
the following operators:

MA122 -
Computer

Programming
and

Applications

enumeration

Pointer to a
Data Member

Object using
new

Automatic
Conversions
and Type
Casts

overloading
<< operator

overloading
<< operator:
General
Method

Allowed and
Not Allowed

Not Allowed

ptg7068951

573Time on Our Hands: Developing an Operator Overloading Example

Overloading Restrictions
Most C++ operators (see Table 11.1) can be overloaded in the manner described in the
preceding section. Overloaded operators (with some exceptions) don’t necessarily have to
be member functions. However, at least one of the operands has to be a user-defined type.
Let’s take a closer look at the limits C++ imposes on user-defined operator overloading:

n The overloaded operator must have at least one operand that is a user-defined type.
This prevents you from overloading operators for the standard types.Thus, you can’t
redefine the minus operator (-) so that it yields the sum of two double values
instead of their difference.This restriction preserves program sanity, although it may
hinder creative accounting.

n You can’t use an operator in a manner that violates the syntax rules for the original
operator. For example, you can’t overload the modulus operator (%) so that it can be
used with a single operand:

int x;
Time shiva;
% x; // invalid for modulus operator
% shiva; // invalid for overloaded operator

Similarly, you can’t alter operator precedence. So if you overload the addition opera-
tor to let you add two classes, the new operator has the same precedence as ordinary
addition.

n You can’t create new operator symbols. For example, you can’t define an
operator**() function to denote exponentiation.

n You cannot overload the following operators:

Operator Description

sizeof The sizeof operator

. The membership operator

.* The pointer-to-member operator

:: The scope-resolution operator

?: The conditional operator

typeid An RTTI operator

const_cast A type cast operator

dynamic_cast A type cast operator

reinterpret_cast A type cast operator

static_cast A type cast operator

This still leaves all the operators in Table 11.1 available for overloading.

	enumeration
	Pointer to a Data Member
	Object using new
	Automatic Conversions and Type Casts
	overloading << operator
	overloading << operator: General Method
	Allowed and Not Allowed

