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Lagrange multiplier method is a technique for finding a maximum or minimum of a function

F(x,y,z) subject to a constraint (also called side condition) of the form G(x,y,z) = 0.

Geometric basis of Lagrange multiplier method can be explained if the functions are of two

variables. So we start by trying to find the extreme values of F(x,y) subject to a constraint

of the form G(x,y) = 0. In other words, we seek the extreme values of F(x,y) when the point

(x,y) is restricted to lie on the level curve G(x,y) = 0. Figure blow shows this curve together

with several level curves of F(x,y) = c, where c is a constant. To maximize F(x,y) subject

to G(x,y) is to find the largest value of c such that the level curve, F(x,y) = c, intersects

G(x,y) = 0. It appears from figure that this happens when these curves just touch each other,

that is, when they have a common tangent line. This means that the normal lines at the point

(x0,y0) where they touch are identical. So the gradient vectors are parallel. That is
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Figure 1: The four possible cases of varying end points in the direction of y.

∇F(x0,y0) =−λ∇G(x0,y0)

for some scalar λ . The scalar parameter λ is called a Lagrange multiplier. The procedure based

on the above equation is as follows. We have from chain rule,

dF =
∂F
∂x

dx +
∂F
∂y

dy = 0 , dG =
∂G
∂x

dx +
∂G
∂y

dy = 0

Multiplying the second equation by λ and add to first equation yields
(

∂F
∂x

+ λ
∂G
∂x

)

dx +

(

∂F
∂y

+ λ
∂G
∂y

)

dy = 0
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By choosing λ to satisfy
∂F
∂x

+ λ
∂G
∂x

= 0,

for example, so that
∂F
∂y

+ λ
∂G
∂y

= 0

As can be seen, the above two equations are components of the vector equation

∇F − λ∇G = 0 (1)

Thus, the maximum and minimum values of F(x,y) subject to the constraint G(x,y) = 0 can

be found by solving the following set of equations

∂F
∂x

+ λ
∂G
∂x

= 0

∂F
∂y

+ λ
∂G
∂y

= 0

G(x,y) = 0

(2)

This is a system of three equations in the three unknowns x, y, and λ , but it is not necessary
to find explicit values for λ .

If the function to be extremized F and the side condition G are function of three independent

variables x, y, and z, the following system of equation is solved to obtain the minimum or

maximum value of F .
∂F
∂x

+ λ
∂G
∂x

= 0

∂F
∂y

+ λ
∂G
∂y

= 0

∂F
∂ z

+ λ
∂G
∂ z

= 0

G(x,y,z) = 0

(3)

This is a system of four equations in the four unknowns x, y, z, and λ .

Example 1

A rectangular box without a lid is to be made from 27m2 of cardboard. Find the maximum

volume of such a box.

Method I – We first, solve this relatively simple problem without using Lagrange multiplier. Let

the length, width, and height of the box (in meters) be x, y, and z. Then the volume of the

box is

V = xyz

We can express V as a function of just two variables x and y by using the fact that the area of

the five sides of the box is

xy + 2yz + 2xz = 27
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Solving this equation for z, we get

z =
27 − xy
2(x + y)

so that

V = xy
27 − xy
2(x + y)

=
27xy − x2y2

2(x + y)

We compute the partial derivatives:

∂V
∂x

=
y2(27 − 2xy − x2)

2(x + y)2

∂V
∂y

=
x2(27 − 2xy − y2)

2(x + y)2

If V is a maximum, then ∂V/∂x = ∂V/∂x = 0, but x = 0 or y = 0 gives V = 0, so we must

solve the equations

27 − 2xy − x2 = 0 27 − 2xy − y2 = 0

These equations imply that x = y, it may be noted the both x and y must be positive here.

Putting y = x in one of these equations, we get 27 − 3x2 = 0, which gives x = 3, y = 3, and

z = 1.5. Thus the maximum volume occurs at x = 3, y = 3, and z = 1.5, so that the maximum

volume of the box is 13.5m3.

Method II – Here we wish to maximize

V = xyz

subject to the constraint

G(x,y,z) = xy + 2yz + 2xz − 27 = 0

Using the method of Lagrange multipliers, we look for values of x, y, z, and λ such that

∂V
∂x

+ λ
∂G
∂x

= 0
∂V
∂y

+ λ
∂G
∂y

= 0
∂V
∂ z

+ λ
∂G
∂ z

= 0

xy + 2yz + 2xz = 27

which become

yz + λ (y+2z) = 0 (4)

xz + λ (x+2z) = 0 (5)

xy + λ (2y+2x) = 0 (6)

xy + 2yz + 2xz = 27 (7)

To solve this systems of equations in a convenient manner, we multiply the equation (4) by x,

(5) by y, and (6) by z, then the left sides of these equations will be identical. Thus, we have

xyz = −λ (xy+2xz) (8)

xyz = −λ (xy+2yz) (9)

xyz = −λ (2yz+2xz) (10)
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Figure 2: Illustration of Snell’s law

We observe that λ 6= 0 because λ = 0 would imply xy = yz = xz = 0 and this would contradict

the equation (7). Therefore, from equations (8) and (9), we have xz = yz. Since z cannot be

zero, we have x = y. From equations (9) and (10), we have y = 2z. If we now put x = y = 2z

in equation (7), we get

12z2 = 27

Since x, y, and z are all positive, we therefore have z = 1.5 and so x = 3 and y = 3.

Example 2

Here we will demonstrate how Lagrange multiplier method can be used for proving Snell’s law.

In the case of the inhomogeneous optical medium consisting of two homogeneous media in

which the speed of light is piecewise constant. Suppose that the light travels from a point

P1(x1,y1), with a constant speed v1, in a homogenous medium M1 to a point P2(x2,y2), with a

constant speed v2, in another homogeneous medium M2. The two media are separated by the

line y = y0.

The time of transit of light is given by the geometry as

T =
y1/cosφ1

v1
+

y2/cosφ2

v2

and is then subject to the geometrical constraint that

L = x1 + x2 = y1 tanφ1 + y2 tanφ2

Applying the condition (2)

∂T
∂φ1

+ λ
∂L
∂φ1

=
y1

v1
secφ1 tanφ1 + λy1 sec2 φ1 = 0

∂T
∂φ2

+ λ
∂L
∂φ2

=
y2

v2
secφ2 tanφ2 + λy2 sec2 φ2 = 0
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These give as the only solution

sinφ1 = −λv1 sinφ2 = −λv2

or
sinφ1

v1
=

sinφ2

v2

where the angles are measured with respect to the normal of the boundary between the two

media.
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