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Clustering problems could be solved by applying model-based approach, which
consists in using certain models for clusters and attempting to optimize the fit be-
tween the data and the model. Each cluster (component) can be mathematically
represented by a parametric distribution, for eg, Gaussian (continuous) or a poisson
(discrete). The entire data set is therefore modelled by a mixture of these distribu-
tions. An individual distribution used to model a specific cluster is often referred to
as a component distribution.

Let there be k clusters. Let the random variable C denote the component with
values 1, ..k. Here we are considering Gaussian mixture models. So xj/(C = i) ∼
N(µi,

∑
i) where µi and Σi are the mean and covariance matrix of the ith class.

A data point is generated by first choosing a component and then generating a
sample from that component. By total probability theorem,

p(x) =
k∑

i=1

p(C = i)p(x/C = i) (1)

[p(C = i) is analogous to p(y = i) in Gaussian discriminant analysis.]
To determine in which cluster each xj belongs, p(C = i/xj) has to be found. Now

p(C = i/xj) = pij =
p(C = i)p(xj/C = i)

p(xj)
, i = 1, 2, . . . k, j = 1, 2, . . . N (2)

Hence
∑k

i=1 pij = 1. Let wi = p(C = i), i = 1, 2. . . . k. Therefore the unknown
parameters of a mixture of Gaussians are wi, µi and Σi.

The EM algorithm can be applied to determine the unknown parameters. The
EM algorithm has two main steps: E step & M step. In the E-step, it assumes
the values of the model (that is wi, µi and Σi) and find P (C = i/xj), i = 1, 2, . . . k,
j = 1, 2, . . . N . In the M-step, it updates the parameters of the model. The process
iterates until convergence.

1



E step

In the E step, compute the probabilities pij, i = 1, 2, . . . k, j = 1, 2, . . . N.

M step

Compute the new mean, covariance and component weights as follows:

µi =

∑N
j=1 pijxj∑N
j=1 pij

[For sure event, µi =

∑
j 1{xj ∈ C = i}xj∑
j 1.{xj ∈ C = i}

. Here, we don’t know whether xj is in

component i. We only know p(C = i/xj).]

Σi =

∑
j pij(xj − µi)(xj − µi)

T∑N
j=1 pij

wi =

∑N
j=1 pij

N

[Compare these formulas with those of Gaussian discriminant analysis ]
The algorithm can be summarized as follows:
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Algorithm 1 EM algorithm

Initialize µi, Σi, wi, i = 1, 2, . . . k

Iterate until covergence:
E Step
for i = 1 to k do
for j = 1 to N do

calculate p(xj/C = i) =
1

(2π)n/2|Σi|1/2
exp−1

2
(xj − µi)

TΣ−1
i (xj − µi)

calculate pij =
p(xj/C = i)wi∑k
i=1 p(xj/C = i)wi

end for
pi =

∑N
j=1 pij

end for
M Step
for i = 1 to k do

calculate µi =

∑N
j=1 pijxj

pi

calculate Σi =

∑N
j=1 pij(xj − µi)(xj − µi)

T

pi
set wi =

pi
N

end for
end
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