Mixture Models and EM Algorithm

S. Sumitra

Department of Mathematics Indian Institute of Space Science and Technology

Clustering problems could be solved by applying model-based approach, which consists in using certain models for clusters and attempting to optimize the fit between the data and the model. Each cluster (component) can be mathematically represented by a parametric distribution, for eg, Gaussian (continuous) or a poisson (discrete). The entire data set is therefore modelled by a mixture of these distributions. An individual distribution used to model a specific cluster is often referred to as a component distribution.

Let there be k clusters. Let the random variable C denote the component with values 1,..k. Here we are considering Gaussian mixture models. So $x_j/(C = i) \sim N(\mu_i, \sum_i)$ where μ_i and Σ_i are the mean and covariance matrix of the i^{th} class.

A data point is generated by first choosing a component and then generating a sample from that component. By total probability theorem,

$$p(x) = \sum_{i=1}^{k} p(C=i)p(x/C=i)$$
(1)

[p(C = i) is analogous to p(y = i) in Gaussian discriminant analysis.]

To determine in which cluster each x_j belongs, $p(C = i/x_j)$ has to be found. Now

$$p(C = i/x_j) = p_{ij} = \frac{p(C = i)p(x_j/C = i)}{p(x_j)}, i = 1, 2, \dots, k, j = 1, 2, \dots, N$$
(2)

Hence $\sum_{i=1}^{k} p_{ij} = 1$. Let $w_i = p(C = i), i = 1, 2, \dots, k$. Therefore the unknown parameters of a mixture of Gaussians are w_i, μ_i and Σ_i .

The EM algorithm can be applied to determine the unknown parameters. The EM algorithm has two main steps: E step & M step. In the E-step, it assumes the values of the model (that is w_i, μ_i and Σ_i) and find $P(C = i/x_j), i = 1, 2, ..., k, j = 1, 2, ..., N$. In the M-step, it updates the parameters of the model. The process iterates until convergence.

E step

In the E step, compute the probabilities p_{ij} , i = 1, 2, ..., k, j = 1, 2, ..., N.

M step

Compute the new mean, covariance and component weights as follows:

$$\mu_{i} = \frac{\sum_{j=1}^{N} p_{ij} x_{j}}{\sum_{j=1}^{N} p_{ij}}$$

[For sure event, $\mu_i = \frac{\sum_j 1\{x_j \in C = i\}x_j}{\sum_j 1.\{x_j \in C = i\}}$. Here, we don't know whether x_j is in component *i*. We only know $p(C = i/x_j)$.]

$$\Sigma_{i} = \frac{\sum_{j} p_{ij} (x_{j} - \mu_{i}) (x_{j} - \mu_{i})^{T}}{\sum_{j=1}^{N} p_{ij}}$$
$$w_{i} = \frac{\sum_{j=1}^{N} p_{ij}}{N}$$

[Compare these formulas with those of Gaussian discriminant analysis] The algorithm can be summarized as follows:

Algorithm 1 EM algorithm

Initialize μ_i , Σ_i , w_i , i = 1, 2, ..., kIterate until covergence: E Stepfor i = 1 to k do for j = 1 to N do calculate $p(x_j/C = i) = \frac{1}{(2\pi)^{n/2} |\Sigma_i|^{1/2}} \exp{-\frac{1}{2}(x_j - \mu_i)^T \Sigma_i^{-1}(x_j - \mu_i)}$ calculate $p_{ij} = \frac{p(x_j/C = i)w_i}{\sum_{i=1}^k p(x_j/C = i)w_i}$ end for $p_i = \sum_{j=1}^N p_{ij}$ end for M Stepfor i = 1 to k do calculate $\mu_i = \frac{\sum_{j=1}^N p_{ij}x_j}{p_i}$ calculate $\Sigma_i = \frac{\sum_{j=1}^N p_{ij}(x_j - \mu_i)(x_j - \mu_i)^T}{p_i}$ set $w_i = \frac{p_i}{N}$ end for end

References

- (1) Artificial Intelligence by Stuart Russel and Peter Norwig(2) Andrew Ng's Lecture Note