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Abstract 

Tropical forests, with their high carbon storage and productivity, are vital to the 

Earth's carbon cycle.  They act as both carbon sinks and sources, with nearly half 

their carbon stored in tree aboveground biomass (AGB). Therefore, accurate 

mapping and monitoring of forest AGB is crucial for designing effective carbon 

emission reduction strategies and gaining a deeper understanding of the 

dynamics of Earth's carbon cycle.  

However, the large-scale AGB maps over Indian region from 1880 to 2021, 

generated through integration of Earth Observation (EO) and forest inventory 

plot data, reports markedly divergent AGB estimates despite accounting for 

reported uncertainties. These discrepancies stem from the inherent challenges 

involved in scaling up AGB measurements. While plot-level AGB values act as 

the primary basis for large-scale EO based AGB mapping, these values are 

estimated rather than directly measured. Consequently, plot-level AGB 

estimation introduces several uncertainties that cascade and magnify throughout 

the upscaling process when linked to EO data. 

These uncertainties originate from several sources at both plot- and EO-

level including (a) measurement errors inherent to field data collection at plot-

level, (b) choice of allometric model to convert tree measurements to AGB, (c) 

plot size limitations and their representativeness across large area, (d) number of 

sample plots required for upscaling, (e) geolocation inaccuracies when linking 

field data to EO proxies, (f) saturation of EO signals with increasing biomass, 

potentially leading to underestimation. Finally, the generated AGB maps should 

incorporate uncertainty estimates through nested propagation of errors from 

various originating sources so as to not only develop defensible estimates at 

regional/national scales but also to enable robust biomass change detection to 

assess progress towards climate change goals.   

This thesis attempts to address the challenges associated with estimating 

aboveground biomass (AGB) across large spatial scales in tropical Indian forests. 

It aims to establish a reference workflow or set of protocols to minimize 

uncertainties inherent in AGB estimations. Under this overarching aim, the 

objectives of this thesis are divided into four parts. First, the influence of plot size 

on the accuracy of plot-level AGB estimates was evaluated. Simulated forests 

plots were generated based on reference plot network (of 1-ha and 32-ha) across 

diverse Indian forest sites. The results show that relative error in plot-level AGB 

decreases with increasing plot size. While a 10x10 m plot yielded a 50% error, it 

significantly reduced to 5% at 70x70 m (0.49 ha) with a minimal reduction in 
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further increments to plot-size. Hence, 70x70 m was recommended the optimal 

plot size for reliable AGB estimation in Indian tropical forests. 

Second, the most significant source of uncertainty in spatial AGB prediction 

– the choice of allometric model used to convert tree measurements to biomass is 

targeted. By using Terrestrial Laser Scanners (TLS), the study develops a method 

for non-destructively estimating tree volume using 3D point cloud data. Using 

the non-destructive tree volume from TLS allometric models were developed for 

central Indian tropical deciduous forests of India. TLS based models showed 

greater accuracy in estimating tree-level AGB when compared to the traditional 

allometric models. However at larger plot sizes (1 ha+) the errors have been 

minimal, highlighting the need for higher plot size in mitigating AGB 

uncertainty. However, comprehensive error metrics from the allometric model 

remain crucial for robust large-scale AGB estimation and uncertainty 

propagation. 

Third, the established high-quality ground reference plots (1-ha each) were 

utilized to create reference AGB maps using Airborne LiDAR (Light Detection 

and Ranging) data. LiDAR offers 3D forest structure information and is found to 

directly link biomass estimated on ground to landscape level with high accuracy. 

For this, data from 13 sites across global tropics were collected and compiled (5 

in Asia and 8 in Africa) and produced reference AGB maps by generating site-

specific LiDAR-AGB models. Alongside, spatial uncertainty maps were also 

generated by propagating random errors from various potential sources through 

Monte Carlo method with 1000 iterations. This approach addresses the critical 

need for uncertainty propagation in the hierarchical chain of spatial AGB 

modeling, leading to robust and defensible regional estimates. The generated 

reference AGB maps were made available on open-access database and serve as 

valuable calibration and validation datasets for current and future EO missions 

(GEDI, BIOMASS, NISAR), ultimately enhancing the accuracy and reliability of 

large-scale AGB mapping initiatives. Finally, the practical application of these 

maps was demonstrated by using them to evaluate and refine the accuracy of the 

ongoing global AGB mapping mission using NASA's GEDI spaceborne LiDAR 

system, specifically over on Indian forests. 

In essence, the current work examines the impact of several uncertainties 

from various ground and EO sources, highlighting the crucial role of high quality 

reference data at various stages in hierarchical modelling chain of spatial AGB 

estimation. The study advocates for adhering to best practices outlined by the 

Committee on Earth Observation Satellites (CEOS) to generate robust reference 

LiDAR aided reference AGB maps. This enables calibration of EO data and the 

creation of reliable and defensible regional and national AGB estimates, fulfilling 

the Intergovernmental Panel on Climate Change's (IPCC) needs for monitoring 

carbon stocks and fluxes. 
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Chapter 1   

 

Introduction 

Forest ecosystems play a crucial role in the global carbon cycle as they constitute 

the largest terrestrial carbon pool, storing approximately 76-98% of the terrestrial 

organic carbon (Houghton et al., 2009; Pan et al., 2011). Moreover, these 

ecosystems absorb greenhouse gases (GHG) and offsets roughly 30% of 

anthropogenic CO2 emissions through carbon sequestration and thus mitigating 

climate change (Friedlingstein et al., 2020). Consequently, accurate measurement 

and mapping of forest carbon (or biomass) represent critical components for 

quantifying carbon stocks and conducting comprehensive climate change impact 

assessments.  

The Intergovernmental Panel on Climate Change (IPCC) categorized 

terrestrial ecosystems into five distinct carbon pools. These pools encompass 

various organic matter components, including above-ground biomass (living 

trees, plants, etc.), below-ground biomass (root systems), litter (fallen leaves and 

twigs), woody debris (dead logs and branches), and soil organic matter (humus 

and other organic compounds within the soil) (Eggleston et al., 2006). Among the 

five carbon pools, above-ground biomass (AGB) is the most visible, dominant, 

dynamic and important pool of the terrestrial ecosystem, constituting around 

~45% of the total terrestrial ecosystem carbon pool (Bonan, 2008). Although 

below-ground biomass (BGB) significantly contributes to the overall carbon pool, 

estimating it presents considerable challenges due to its hidden nature. 

Estimating BGB often relies on indirect methods, leveraging relationships with 

AGB and incorporating forest stratification as necessary. 

Above-ground biomass (AGB) represents approximately 70 – 90% of the 

total biomass (Cairns et al., 1997) and remains in a perpetual state of flux due to 

factors like fire, logging, storms, and land-use changes. This dynamic behavior 

significantly influences atmospheric carbon fluxes, highlighting the importance 

of prioritizing research and conservation efforts focused on AGB.  

The most accurate way to measure a tree AGB is to fell and weigh all 

individual components of the tree. However, this method is demonstrably 

impractical due to its prohibitive costs, time consumption, and logistical 

challenges. Consequently, tree AGB estimation relies on allometric equations, 
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relationships developed by destructively measuring a representative sample of 

trees and linking specific tree dimensions like diameter at breast height (DBH) 

and height to tree AGB (Basuki et al., 2009; Chave et al., 2014; FSI, 1996). These 

tree-level AGB estimates are gathered over a fixed area (termed as plot) to 

provide overall AGB description of that specific region. However, generating a 

comprehensive spatial description of AGB solely based on data from field plots 

is not feasible. Achieving a reasonable level of accuracy with minimal uncertainty 

would necessitate an exceptionally high sampling intensity, making it 

impractical for large-scale assessments. Therefore, remote sensing is used as a 

tool for upscaling small scale field measurements to large-scale maps (Lu, 2006). 

1.1 EO based Above Ground Biomass Mapping 

Recent advancement of Earth observation (EO) technologies, encompassing 

various remote sensing methods, have revolutionized large-scale spatial AGB 

estimation. By capturing data from satellites and sensors on factors like 

vegetation height, structure, and spectral reflectance, remote sensing methods 

allow for cost-effective and efficient mapping of vast areas, including previously 

inaccessible regions (Franklin, 1986; Weishampel et al., 1996). Large-scale EO 

based AGB maps are predominantly generated by linking a few field-sampled 

AGB estimates with appropriate proxy variables from remote sensing data. 

Numerous studies have demonstrated that various Earth observation (EO) 

sensors offer distinct advantages for spatial AGB estimation. 

Among remote sensing options for large-scale above-ground biomass 

(AGB) estimation, optical data perhaps offers the most promising alternative due 

to its unparalleled global coverage, consistent availability, and interpretability. 

Data from diverse platforms offering spatial resolutions ranging from sub-meter 

to hundreds of meters (e.g., IKONOS, Worldview, Cartosat, SPOT, Sentinel, 

Landsat, MODIS) has consistently produced large-scale AGB maps (Baccini et al., 

2004; Fararoda et al., 2021; Foody et al., 2003; Hu et al., 2016; Ploton et al., 2012; 

Reddy et al., 2016). Additionally, radar systems like TerraSAR and ALOS provide 

valuable cloud-penetrating capabilities and detailed vegetation structure. The 

advent of cost-effective spaceborne radar acquisition since 2000 has significantly 

enhanced radar's role in AGB estimation (Liu et al., 2015; Saatchi et al., 2011; 

Santoro et al., 2021; Santoro and Cartus, 2023; Thumaty et al., 2016).  

While traditional remote sensing techniques utilizing optical and 

microwave data have been effective in estimating aboveground biomass (AGB) 

through image-based methods and empirical relationships, they often struggle 

to accurately capture the complexities of forest ecosystems. This limitation results 

in signal saturation and high uncertainties, particularly in areas with high AGB. 

The advent of LiDAR (Light Detection and Ranging) systems provided a unique 

opportunity to capture three-dimensional vegetation canopy structure and 
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provided direct measurements of canopy height, which is one of the three main 

descriptors of AGB along with forest closure and forest type (Koch, 2010). 

Moreover, LiDAR enables the precise extraction of several stand-and tree-level 

vegetation structure metrics, leading to significantly improved AGB estimates 

compared to traditional methods (Garcia et al., 2010; Lim and Treitz, 2004; 

Popescu, 2007; Véga et al., 2015). 

1.2 Forest Structure from LiDAR 

Forest structure transcends a single, readily measured value. It can be defined as 

the physical and temporal distribution of trees in a forest stand (Oliver et al., 

1996). It can be characterized by the position of trees, the vertical layering and the 

tree species mixture. While not directly measurable as a single quantity, forest 

structure can be effectively characterized through a variety of quantifiable 

variables such as species distribution, vertical and horizontal spatial patterns, 

tree and crown attributes, diameter-at-breast height, stand volume, leaf area 

density, clumping index and/or combinations of them (Figure 1.1). 

 

Figure 1.1. Major structural characteristics of the forest canopy (Seidel et al., 2011) 

The structure of the forest canopy regulates the quantity and quality of light 

distributions in both space and time with in the stand, which in turn affects the 

presence or absence of understory vegetation and influences temperature, 

relative humidity and physiological activity of tree organs and many other 

organisms within a forest (Jennings et al., 1999; Kobayashi and Iwabuchi, 2008).  
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Table 1.1. Potential contributions of forest stand structure elements from LiDARs 

Forest Stand 

Element 
Structural attributes LiDAR Derivation 

Canopy height Height of overstorey Direct retrieval 

Vertical distribution of 

under-storey and other 

surfaces 

Direct retrieval 

Sub-canopy topography Direct retrieval 

Foliage Vertical foliage profiles Modeled/In-direct 

retrieval 

Number of strata Modeled/In-direct 

retrieval 

Foliage density within 

different strata 

Modeled/In-direct 

retrieval 

Canopy Cover / Leaf Area 

Index 

Fusion with other 

sensors 

Tree Measurements Diameter at breast height 

(DBH) 

Direct retrieval 

Diameter distribution Direct retrieval 

Stem counts per ha Direct retrieval 

Individual tree volumes Modeled/In-direct 

retrieval 

Stand Biomass Stand Basal Area Modeled/In-direct 

retrieval 

Standing Volume Modeled/In-direct 

retrieval 

Above-ground Biomass Modeled/In-direct 

retrieval 

Tree Species Species diversity or richness Fusion with other 

sensors 

Relative abundance of key 

species 

Fusion with other 

sensors 

Forest structure analysis presents a significant challenge due to the inherent 

complexity of forest stands. Traditionally, acquiring detailed and accurate 

information on the vertical and horizontal structure of forest layers relied heavily 

on datasets obtained through remote sensing techniques like optical, microwave 

imagery, and aerial photographs (Latifi, 2012). However, these methods 

primarily provided horizontal information, failing to capture the crucial aspect 
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of vertical vegetation distribution within forests. Attempts have been made to 

extract canopy height information using techniques like stereo-photogrammetry 

and interferometry. However, their practical limitations, including issues with 

canopy overlap and the accuracy of retrieval, restrict their widespread 

application. 

In contrast to these conventional methods, Light Detection and Ranging 

(LiDAR) technology has emerged as a transformative tool.  LiDAR offers a 

significant advantage by providing a precise 3-D descriptions of the forest 

ecosystem and enabling information on forest structure for a variety of purposes. 

Unlike conventional remote sensing methods that predominantly rely on the 

passive reflection of electromagnetic waves, LiDAR employs an active approach 

by illuminating the targeted area with concentrated laser pulses. These pulses 

propagate outward, and the time it takes for the reflected light to return to the 

sensor is accurately measured. This time information is subsequently utilized for 

precise calculation of distances to various objects within the laser beam's path 

(NOAA, 2012).  

In essence, LiDAR operates on a principle analogous to radar technology, 

with a crucial difference: it employs light pulses instead of microwave waves. 

The light pulses emitted by a LiDAR sensor when flown over the vegetation 

system, has the ability to penetrate vegetation gaps and openings within the 

foliage. This capability enables LiDAR to "see" beyond the top layer of leaves, 

revealing the intricate vertical structure of the forest. The resulting three-

dimensional structural and spatial information, eliminating of the influence of 

background, under-story, and canopy geometry, can be effectively utilized for 

characterizing forest structure (Lefsky et al., 1999a; Morsdorf et al., 2006). As 

highlighted in Table 1.1, LiDAR provides valuable data to in directly measuring 

and estimating several crucial forest structural attributes at both plot and single 

tree level (Dubayah and Drake, 2000).   

1.3 LiDAR Remote Sensing for Forest AGB Characterization 

LiDAR technology employs active laser scanners to capture detailed information 

about the environment, including terrain and physical features like forests. The 

direct measurements obtained from LiDAR, including canopy height, individual 

tree parameters (such as diameter, height, branching structures), sub-canopy 

topography, and stem density, are strongly linked to forest biomass. This 

inherent link allows LiDAR data to serve as foundational information for 

generating robust AGB estimates, ultimately enhancing the accuracy of spatial 

AGB maps. Hence, by providing precise and detailed insights into forest 

structure, LiDAR technology has emerged as a crucial tool for enhancing the 

precision and reliability of forest AGB estimations.  
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However, the attempt to mitigate uncertainty in AGB mapping using 

LiDARs depends upon various parameters linked to the design of LiDAR 

systems and the choices made in data acquisition and deployment platforms. 

Each parameter offers a distinct perspective on describing tree canopies, thereby 

contributing to the enhancement of forest AGB mapping. In the context of forest 

AGB mapping, the key classifications of LiDAR systems necessitate 

understanding, broadly categorized based on (A) the area illuminated by LiDAR 

systems on the ground, (B) the technology employed to record reflected laser 

pulses from the target surface, and (C) the platforms on which LiDAR systems 

are deployed—namely, terrestrial, airborne, or satellite platforms. 

1.3.1 Small footprint or large footprint LiDAR systems 

The size of the footprint, defined as the area on the ground illuminated by a single 

laser pulse determines the effectiveness of a LiDAR system to characterize 

canopy structure. The footprint size is influenced by two main factors: sensor 

distance from the target and laser beam divergence. Satellite-based LiDAR 

systems typically feature larger footprints, spanning several meters, compared to 

airborne (centimeters) and terrestrial (millimeters) systems due to varying 

distances between the sensor and the target area. This distinction between small 

footprint and large footprint LiDAR systems has direct implications for forest 

structure analysis, impacting aspects such as canopy penetration, spatial 

resolution, and data acquisition efficiency.  

Small footprint LiDAR systems typically emit laser pulses with narrow 

beams, resulting in smaller illuminated areas on the ground. These systems offer 

higher spatial resolution, enabling detailed capture of fine-scale forest features 

such as individual tree crowns and understory vegetation (Lim et al., 2003). 

However, their limited footprint coverage may pose challenges in adequately 

sampling larger forested areas, particularly in dense canopy environments. On 

the other hand, large footprint LiDAR systems emit laser pulses with wider 

beams, covering larger areas on the ground per pulse. While these systems 

provide broader coverage and are more efficient for mapping extensive forest 

landscapes, they sacrifice spatial resolution compared to their small footprint 

counterparts. This compromise in resolution may result in reduced detail in 

forest structure characterization, particularly regarding smaller vegetation 

elements. Dubayah et al. (2000) highlight that small footprints may not be ideal 

due to potential oversampling of crown shoulders and missing treetops. 

Conversely, large footprints offer advantages like reduced cost for mapping 

extensive areas and capturing vertical forest structure details. 

The selection between small and large footprint LiDAR systems depends 

on the specific objectives of forest analysis and the trade-offs between resolution 

and coverage requirements. Understanding the impact of footprint size is 
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essential for optimizing data acquisition strategies tailored to specific research 

goals and ensuring accurate interpretation of forest structure information by 

considering the limitations associated with each footprint size.  

1.3.2 Full waveform or Discrete return LiDAR Systems 

The other critical factor influencing the information acquired by LiDAR is the 

technology employed to record the energy of the reflected pulses from the target 

surface. They can be categorized as either discrete return (DR) or full waveform 

(FW) systems (Lim et al., 2003) on the basis whether they record the range to the 

first return and/or last return (DR systems) or fully digitize the return signal (FW 

systems) (Figure 1.2) . They differ from one another mainly with respect to the 

range measurement method, which implies significant differences in sensor 

hardware design. On the application side, it results in distinctively different 

number of range measurements recorded for each emitted laser pulse and 

subsequent substantial differences in data processing and analysis tools. As a 

result, the data collected by DR and FW sensors representing the same 3D target 

may look dramatically different (Parrish and Scarpace, 2007). 

 

Figure 1.2. Conceptualisation of different LiDAR systems over a vegetation canopy (a) 

Intersection of the laser illumination area with the tree crown and signals received with 

the (b) discrete return, (c) full waveform LiDAR systems 

Full waveform LiDAR captures the entire temporal profile of the returning 

laser pulse for each transmitted beam. A full waveform (FW) LiDAR measures 

the full profile of a return signal by sampling it in fixed time intervals, typically 

1 ns (equivalent to 15 cm sampling distance), with theoretically quasi-continuous 

recording of the reflected energy for each emitted laser pulse. This allows for the 

measurement of the height distribution of illuminated surfaces (Wagner et al., 

2008). While offering a complete digitized vertical profile at a sub-meter scale, 

the spatial resolution is typically coarser, ranging from 10 to 100 meters (Wagner 

et al., 2008). Due to its ability to provide detailed information about the reflected 

signal, full waveform LiDAR finds primary application in research (Lefsky et al., 

2002). 
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Discrete return LiDAR, in contrast, focuses on capturing specific points 

within the returning signal where significant peaks indicate features encountered 

by the laser beam. These systems can capture information from one to five return 

signals per pulse (Hofton et al., 2006). The first return typically corresponds to 

the closest object reflecting the laser beam. This is often the topmost layer of 

vegetation or the ground surface in open areas. However, in densely forested 

environments where the tree canopy is close together, the situation becomes 

more complex. The laser pulse may be reflected by elements like foliage before 

reaching the ground, resulting in second or third-return signals (Lefsky et al., 

2002). The final-return signal usually originates from the ground surface itself 

(Reutebuch et al., 2005; Wagner et al., 2008). This phenomenon of multiple 

returns is crucial for understanding the structure of forested areas using discrete 

return LiDAR. 

1.3.3 Airborne, Terrestrial and Spaceborne LiDAR systems 

The platform chosen for LiDAR deployment significantly influences the type of 

data acquired. Factors like the intended application, required measurement 

range, and the size of the area being covered all play a crucial role in platform 

selection (Lefsky et al., 2002). The major platforms are listed below (Figure 1.3).  

 Aircraft (Airborne LiDAR system) 

 Tripod or Mobile (Terrestrial LiDAR system) 

 Satellite (Space-borne LiDAR system). 

 

Figure 1.3. LiDAR platforms used in forestry applications 

Airborne (or Aerial) LiDAR systems (ALS), typically mounted on airplanes 

or drones, offers exceptional detail and covers large areas with high efficiency. 
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Airborne LiDAR boasts sub-meter level accuracy and utilizes a small footprint 

(less than 1 meter) for detailed measurements (Næsset, 2004). Data acquisition 

can be in either discrete or waveform return format depending on the operating 

wavelength (typically 1064 nm) and flight altitude.  

Due to its ability to cover large regions effectively, ALS is widely used for 

applications like biomass studies, forest inventory, and habitat modeling. ALS 

provides direct measurement of canopy height, and has proven their ability to 

directly measure forest structure, including canopy height and crown 

dimensions and estimate forest attributes, including tree, plot and stand level 

estimates for tree height (Falkowski et al., 2006; Maltamo et al., 2004), stem 

volume (Hyyppa et al., 2001; Naesset, 1997), basal area (Lefsky et al., 1999b; 

Means et al., 2000) and tree species (Brandtberg, 2007; Van Aardt et al., 2008). It 

also plays a vital role in large-scale regional assessments for carbon quantification 

efforts (Asner et al., 2012). 

Terrestrial LiDAR (TLS) systems offer a unique perspective for capturing 

detailed 3D data of specific locations. They come in two main configurations: 

tripod-mounted scanners, providing high-resolution views from a single 

position, and mobile scanners mounted on vehicles or carried by personnel for 

broader area coverage. A key advantage of TLS is its ability to capture discrete 

objects from multiple angles. TLS is more useful for capturing small (relative to 

those captured from an aircraft) irregular objects such as buildings, earthworks 

and landforms such as cliff faces which can be profiled and monitored during 

mining. For complex objects with occlusions (hidden areas), TLS data acquired 

from multiple viewpoints can be merged to create a comprehensive 3D 

representation. However, this process can be time-consuming in dense 

environments like forests (Popescu et al., 2007).  

One limitation of TLS is its operational range. Compared to airborne 

LiDAR, the effectiveness of TLS is hampered by occlusions caused by foliage and 

dense vegetation. Additionally, detailed TLS data collection can be expensive 

compared to other LiDAR technologies. Mobile Laser Scanning (MLS) addresses 

some of these limitations. Mounted on vehicles or carried on foot, MLS offers 

broader area coverage while still capturing valuable 3D data. Despite limitations, 

both TLS and MLS find valuable applications in forestry. They excel at capturing 

high-resolution 3D data of individual trees and forest structure, enabling the 

extraction of specific tree attributes like diameter, height, and crown width 

(Liang et al., 2018; Morsdorf et al., 2009; R Suraj Reddy et al., 2018). Furthermore, 

TLS/MLS is well-suited for in-depth analyses requiring intricate 3D information, 

such as tropical forest mapping and monitoring landform changes. 

Satellite-mounted LiDAR systems, also known as spaceborne LiDAR, offer 

a unique vantage point for studying Earth's surface. Compared to airborne 

LiDAR, spaceborne systems hold a distinct advantage: circumventing limitations 
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imposed by airspace restrictions. Furthermore, spaceborne LiDAR excels in 

capturing data from geographically remote locations like the ice caps and polar 

regions. These areas often pose significant challenges for traditional airborne 

operations due to harsh weather conditions and logistical limitations.  Satellite-

based LiDAR can play a crucial role in these areas, enabling vital 3D profiling 

that contributes significantly to scientific research endeavors. 

Despite its reach, spaceborne LiDAR employs a larger footprint, typically 

ranging from 25 to 80 meters in radius (Lefsky et al., 2002). This translates to the 

efficient sampling of various forest structures as the satellite traverses its orbital 

path.  Additionally, the number of sampling points progressively increases as the 

satellite moves across its track, providing a broader data density. Recent 

advancements in space technology have opened exciting possibilities for forest 

structure measurement. Earth observation missions like NASA's ICESat-2 and 

GEDI serve as prime examples. These missions provide invaluable LiDAR data, 

crucial for analyzing three-dimensional aspects of vegetation biomass and 

structure (Biradar et al., 2020; Liang et al., 2018). 

In brief, Different LiDAR systems mounted on various platforms cater to 

biomass information at varying scales: at individual tree-level (using TLS), stand-

level (using ALS or MLS), at regional scales (using Space LiDARs). A recent 

review by Borsah et al., (2023) highlighted that airborne LiDAR is the most 

frequently used platform due to its ability to efficiently cover large areas while 

maintaining high accuracy. Spaceborne LiDAR usage is less common, and 

terrestrial LiDAR plays a limited role in large-scale AGB assessments. Notably, 

most studies focus on local-scale analyses, with fewer investigations conducted 

at regional or global scales. 

1.4 Uncertainty in Spatial AGB estimation 

The uncertainty in spatial above-ground biomass (AGB) maps stems from several 

contributing factors. The primary limitation is the inherent uncertainty 

associated with biomass estimation methods at various stages throughout the 

data acquisition and analysis process. Ground data or Field data, often collected 

through plot-based inventory measurements serves as the ground truth for 

calibrating and validating remote sensing techniques used for spatial AGB 

estimation. However, limitations exist. Primarily ground-level biomass 

measurements are seldom conducted directly and instead rely on estimations 

derived from volume equations, introducing errors due to extrapolation from 

merchantable volume and overlooking variations in wood density. Moreover, 

inconsistencies in forest area definitions and spatial layers compound these 

uncertainties. 

Next, field plots represent only a small fraction of the total forest area, 

potentially leading to biased estimations, particularly in areas with high spatial 
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heterogeneity (McRoberts et al., 2010). Further, scaling these ground biomass 

measurements, typically conducted on small plots, to remote sensing pixel 

resolutions introduces inherent errors due to spatial aggregation. Additionally, 

geo-location errors in ground measurements contribute to inaccuracies. The 

sensitivity of different remote sensing data (optical and microwave) also plays a 

role, with limitations in capturing high-biomass regions due to saturation. 

Furthermore, the representativeness of ground samples across vast landscapes 

raises doubts about their ability to accurately reflect regional biomass 

distributions. 

Accurately mapping Above Ground Biomass (AGB) across vast areas 

requires acknowledging and addressing inherent uncertainties throughout the 

data acquisition and analysis process. These limitations arise from factors like 

field measurements, remote sensing data quality, and chosen modelling 

approaches. Addressing them is crucial for two main reasons. Firstly, mitigating 

these uncertainties allows for the generation of more reliable spatial AGB maps, 

reflecting the true distribution of biomass across the landscape. Secondly, precise 

estimations of uncertainty are essential when using Earth Observation (EO) data 

to track changes in biomass over time. This ensures that observed changes are 

demonstrably larger than the inherent margin of error in the data. Addressing 

these multifaceted challenges is crucial for generating reliable and representative 

maps of AGB, ultimately enabling effective monitoring and management of this 

vital carbon resource. 

1.4.1 Role of LiDAR in reducing Uncertainty in Spatial AGB estimation 

The spatial AGB estimation across vast areas necessitates a hierarchical approach 

(Figure 1.4). This process involves progressively building upon ground 

measurements to generate regional AGB maps. However, inherent uncertainties 

arise at each stage, propagating to the final estimations.  

 

Figure 1.4. Hierarchical process of Spatial AGB estimation and associated uncertainties 
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A. Ground Measurements: Forest inventories gather data like tree diameter-

at-breast height (DBH), height, and species information. Measurement 

errors in this initial stage introduce the first layer of uncertainty. 

B. Plot-Level AGB Estimation: Pre-established allometric models convert 

these measurements into individual tree AGB and subsequently sum them 

to obtain plot-level AGB. Errors associated with these allometric models 

contribute to uncertainties in both tree and plot-level AGB estimates. 

C. Remote Sensing Integration: Plot-level AGB is then linked to remotely 

sensed data proxies by establishing models. This stage introduces further 

complexities: 

– Upscaling plot data (smaller than remote sensing pixels) inherently 

introduces errors due to the mismatch in spatial resolution.  

– The developed models may have inherent errors that propagate to 

the final AGB map. 

Recognizing and mitigating uncertainties throughout the multi-stage 

process of spatial Above-Ground Biomass (AGB) estimation is crucial for 

generating reliable forest biomass assessments. These uncertainties accumulate 

from ground measurements to the final regional maps, impacting their accuracy. 

Techniques like LiDAR, which capture the intricate three-dimensional structure 

of forests through precise laser measurements, offer valuable insights into key 

characteristics directly influencing biomass, such as tree height, crown size, and 

density. Utilizing distinct LiDAR systems in different stages has the potential to 

improve the accuracy of AGB estimation at various stages. However, the high 

cost and resource limitations associated with LiDAR restrict its widespread use 

for comprehensive regional coverage. Exploring alternative techniques, 

potentially in conjunction with LiDAR, remains necessary to achieve broader 

coverage for reliable large-scale biomass assessments.  

Terrestrial LiDAR systems offer dense three dimensional (3D) 

virtualization of forest systems, which could provide the basis for building 3D 

tree models using quantitative structure models (QSMs). A QSM is a geometric 

model that describes a complete tree using a hierarchical collection of cylinder 

objects estimating topological, geometrical and volumetric details of the tree’s 

woody structure (Raumonen et al., 2013). QSMs are reported to be adequate to 

estimate stem volumes (or biomass) at individual tree levels with very low bias 

in a non-destructive manner (Hackenberg et al., 2015; Mayamanikandan et al., 

2019). The non-destructive tree volume estimation overcomes nearly every 

complicating factor associated with destructive sampling, including the issue of 

insufficient sample size in the development of allometric equations (Chave et al., 

2004; Stovall et al., 2018). On the other hand, though QSMs could provide tree-

level estimations of tree volume and biomass (when combined with wood 

density information), estimating tree-level biomass for all trees over a given area 

is still a daunting task. Nevertheless, the non-destructive QSM derived tree 
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volumes would aid in the development and improvement of site-specific (and 

species-specific) allometric equations for tree volume estimation, which are still 

a major source of uncertainty in field biomass estimation (Réjou-Méchain et al., 

2019). 

Aerial LiDAR systems provides direct measurement of canopy height, 

which is one of the three main descriptors of AGB along with forest closure and 

forest type (Koch, 2010). Its high-resolution laser scanning capabilities provide a 

detailed three-dimensional (3D) representation of the forest canopy, allowing 

researchers to extract crucial structural features directly linked to biomass, such 

as tree height, crown size, and density (Hyyppa et al., 2001; Lefsky et al., 1999b; 

Means et al., 2000; Naesset, 1997).  

Despite its advantages, the high cost and limited coverage of LiDAR 

necessitate exploring alternative techniques for large-scale forest assessments. 

Satellite remote sensing emerges as a promising solution due to its broader 

scalability (Avitabile et al., 2016). Current research focuses on leveraging LiDAR-

derived AGB maps from smaller study areas to calibrate regional AGB 

estimations using textural and spectral properties obtained from multi-spectral 

and microwave satellite imagery (Duncanson et al., 2021; Labrière et al., 2022). 

However, further development and testing across diverse forest types are crucial 

before widespread regionalization. 

The recent launch of spaceborne LiDAR systems like GEDI (Global 

Ecosystem Dynamics Investigation) and ATLAS (Advanced Topographic Laser 

Altimeter System) offers new possibilities for gathering forest structure 

information across vast areas. However, it's important to note that these systems 

primarily collect profile measurements, not comprehensive scans. Therefore, 

directly scaling up these measurements necessitates the integration of suitable 

satellite imagery (both optical and microwave data). 

By combining LiDAR data with readily available satellite imagery, 

researchers strive towards not only achieving precise one-time spatial estimates 

of AGB but also monitor AGB changes over time. This integrated approach holds 

significant promise for comprehensive and dynamic forest biomass assessment 

crucial for sustainable forest management and carbon monitoring efforts. 

1.5 Aim, Motivation and Objectives 

Accurate regional Above-Ground Biomass (AGB) estimation necessitates a 

multifaceted approach that minimizes uncertainties across various stages of the 

process. This begins with collecting high-quality ground measurements and 

minimizing their inherent errors by considering all factors influencing the 

upscaling process. At ground-level data, these factors include plot size, volume 

equations, geolocation accuracy, and sampling uncertainty. 
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Systematic collection and analysis of these measurements alongside 

existing volume equations are crucial. However, further refinement can be 

achieved by developing volume equations specific to the local forest ecosystem 

and expanding wood density measurements across diverse tree species.  By 

incorporating spatial variability within trees – the way wood density can differ 

from trunk base to branches – these expanded measurements provide a more 

nuanced characterization of biomass distribution.  Ultimately, this 

comprehensive approach, encompassing meticulous ground data collection, 

local volume equations, and detailed wood density measurements, paves the 

way for more accurate and reliable regional AGB estimations. 

 

Figure 1.5. Schematic flow of development of reference sites by collecting high-quality 

ground measurements and systematically generated reference LiDAR maps to serve as 

calibration/validation data for EO based spatial AGB estimation 

While high-quality ground measurements are essential for accurate 

regional Above-Ground Biomass (AGB) estimates, incorporating forest structure 

data from Aerial LiDAR offers significant potential for further improvement.  

Unlike traditional methods, LiDAR-derived forest structure metrics exhibit a 

non-saturating relationship with AGB, allowing for more accurate biomass 

descriptions, especially when combined with high-quality ground data.  This 

non-saturating relationship enables the generation of high-quality, high-

resolution reference AGB measurements at a landscape level, covering the entire 

area encompassed by the LiDAR data.  These LiDAR-based reference maps 

literally multiplies the ground measurements with a factor of 10 to 100 (based on 

the LiDAR area coverage) and serve as calibration and validation data for 
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integrating information from various Earth Observation (EO) sources (Figure 

1.5). 

However, to fully leverage these LiDAR-derived reference maps, both 

ground-level and LiDAR-based AGB measurements require thorough 

characterization, including uncertainty quantification. This enhances the 

sensitivity of biomass estimation models that utilize multi-source remote sensing 

data.  While implementing these steps comprehensively across vast areas might 

not be feasible, establishing a network of well-characterized reference sites 

presents a viable alternative.  These reference sites, ideally covering a few 

hundred hectares each, would require high-quality ground measurements and 

complete Aerial LiDAR coverage. 

Building upon this concept, this study proposes a two-pronged approach 

for Indian forests: (A) Enhancing Ground-Level Field Data to improve the quality 

of ground-level field data and understand how various factors influence biomass 

estimation at the plot level. (B) Generating Reference AGB Maps using high-

quality field data and detailed 3D forest structure information derived from 

Aerial LiDAR. These reference maps will serve as valuable calibration and 

validation data for existing and future EO missions. Overall, this study would 

also establish reference protocols for generating such datasets at various stages, 

ultimately leading to the creation of more accurate regional AGB maps in the 

future. 

In this context, this study aims to address the following research questions. 

 Ground Sampling Size: What is the minimum ground sampling size 

required to ensure accurate biomass representation at individual sampling 

points across diverse forest types? 

 Plot Design and Uncertainty: Can optimizing plot size or shape (e.g., circular 

vs. square) reduce ground measurement uncertainty, including geolocation 

errors, for improved data quality? 

 Optimal Plot Size: Is there an optimal ground-level plot size for maximizing 

the accuracy and efficiency of ground-level biomass measurements across 

different forest types? 

 Non-Destructive Volume Equations: Can we develop reliable non-

destructive volume equations for biomass estimation using detailed 3D point 

clouds captured by Terrestrial LiDAR data? 

 Allometric Model Selection: How does the choice of allometric models 

(traditional vs. locally derived models) affect the accuracy of plot-level AGB 

measurements, particularly when considering variations in species 

composition? 
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 Sample Representativeness: How can we improve the representativeness of 

ground samples collected in the field? Can we leverage metrics derived from 

Aerial LiDAR data to guide efficient and representative sample generation 

across a landscape? 

 Uncertainty Propagation: How can we effectively propagate uncertainties 

associated with ground measurements throughout the upscaling process to 

generate reliable regional-scale AGB estimates? 

1.5.1 Specific Objectives 

This thesis investigates the inherent uncertainties associated with Earth 

Observation (EO)-based aboveground biomass (AGB) estimation in the Indian 

region. By analyzing and quantifying these uncertainties, the research aims to 

establish a high-quality reference AGB dataset. This dataset will serve as a crucial 

tool for improving the accuracy and reliability of current and future EO-based 

biomass mapping across India. 

I. Optimizing Plot Design for Accurate Plot-level AGB Estimates: 

 Establish tree-marked large plots across diverse Indian forest types. 

 Analyze the impact of plot size and shape on plot-level AGB estimates to 

determine the optimal design for accurate biomass assessments. 

II. Developing non-destructive volume equations using Terrestrial LiDAR 

 Develop methodologies to estimate individual tree volume using 3D point 

clouds from terrestrial LiDAR. 

 Construct new, locally-derived allometric models for improved biomass 

estimation. 

 Quantify the impact of these improved allometric equations on overall 

plot-level AGB estimates compared to traditional approaches. 

III. Generating High-Quality Reference LiDAR AGB Maps with Uncertainty 

Estimates: 

 Utilize high-quality ground data and Aerial LiDAR measurements to 

generate reference AGB maps at the landscape level. 

 Quantify and account for spatial uncertainty within the resulting LiDAR-

derived AGB maps. 

IV. Calibration and Validation of Existing EO-Based AGB Products: 

 Calibrate and validate existing EO-based AGB products against the high-

quality LiDAR AGB maps developed in objective 3. 
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1.6 Thesis Structure 

This thesis is organized to address the previously outlined research objectives in 

dedicated chapters. Each chapter is self-contained and follows a consistent 

structure: introduction, research problem, data used, methodology, results and 

analysis, discussion, and conclusions. 

Chapter 1: Introduction 

 The current chapter offers a comprehensive overview of spatial aboveground 

biomass (AGB) mapping techniques, highlighting the limitations of 

traditional methods. It underscores the potential of Light Detection and 

Ranging (LiDAR) technology in overcoming these challenges by providing 

detailed 3D stand structure information. Additionally, it introduces a novel 

hierarchical approach for generating high-quality spatial AGB maps, which 

combines field data and Aerial LiDAR coverage to establish reference sites, 

crucial for calibration and validation of Earth Observation (EO) data, leading 

to more accurate AGB estimations. 

Chapter 2: Review of Spatial AGB Estimates over India 

 This chapter delves into a detailed literature review on historical AGB 

estimates over Indian forests from 1880 to date. It consolidates estimates from 

various studies, enabling analysis of variability and discrepancies arising 

from different methodologies, underlying assumptions and EO data used. 

Moreover, it explores the inherent challenges associated with upscaling AGB 

estimates along with associated uncertainties and discusses the importance 

of reference sites in streamlining this process to generate defensible AGB 

estimates at regional/national scales. 

Chapter 3: Optimizing Plot Design for Accurate Plot-level AGB estimates  

 This chapter focuses on the influence of plot size and design on reducing 

uncertainty in ground-based field plot AGB measurements. Utilizing a 

network of established large plots (1-ha) across tropical Indian forests, the 

chapter investigates the relationship between smaller plot sizes and the large 

plot reference. This is achieved by generating synthetic plots to determine 

the optimal field plot size for minimizing field-level errors associated with 

ground sample variability. 

Chapter 4: Developing non-destructive volume equations using Terrestrial 

LiDAR 

 This chapter presents the application of 3D point clouds obtained from 

Terrestrial LiDAR (TLS) data for creating virtual 3D tree models. It illustrates 

how these models can accurately estimate tree volumes, comparable to 
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traditional destructive sampling methods. Additionally, the chapter 

investigates the utilization of TLS data for developing non-destructive tree 

volume equations tailored for tropical forest ecosystems in India. It conducts 

a comparative analysis of these equations against conventional methods, 

emphasizing the potential enhancements in accuracy and efficiency. 

Chapter 5: Generating High-quality reference LiDAR AGB maps with 

uncertainty estimates 

 This chapter builds upon the insights gained from Chapters 3 and 4, which 

focused on improving ground-level data collection. It establishes a 

standardized protocol for compiling field data across diverse tropical Indian 

forest sites, ensuring consistency and facilitating robust data analysis. 

Furthermore, the chapter outlines the process of integrating the standardized 

field data with detailed 3D structural metrics derived from Aerial LiDAR 

data. This integrated dataset is utilized to generate high-quality reference 

AGB maps at the landscape level for four key tropical Indian forest sites. 

Additionally, the geographical scope is expanded, detailing the application 

of a similar methodology to produce nine additional reference maps for sites 

in Africa and Thailand.  

 Moreover, the chapter discusses on the implementation of a Monte Carlo 

approach to integrate errors from all potential sources in a hierarchical 

manner. This method propagates random errors through the estimation 

process from ground measurements to map level, thereby establishing 

reference AGB maps along with associated uncertainty measures. 

Chapter 6: Calibration and Validation of Existing EO-Based AGB products 

 This chapter leverages the reference maps generated over Indian forests to 

demonstrate the application of LiDAR-derived AGB maps for calibrating and 

validating EO data. Here, the focus is on the Global Ecosystem Dynamics 

Investigation (GEDI) LiDAR mission data, but the approach can be extended 

to other EO products. 

Chapter 7: Conclusions and Future Scope 

 This chapter provides a concise summary of the key findings and inferences 

drawn from the entire research endeavor. It reiterates the significance of the 

research in improving the accuracy and reliability of EO-based spatial AGB 

estimates for tropical forest ecosystems, emphasizing the value of Aerial 

LiDAR integration for this purpose. 

 

 

 



19 
 

 

 

Chapter 2   

 

Review of Spatial AGB Estimates over India 

The critical role of forest aboveground biomass (AGB) in regulating global carbon 

cycling and mitigating climate change necessitates its accurate assessment. In the 

current time, several researchers (both in India and across the globe) have 

utilized various data sources, like satellite imagery and field measurements, to 

estimate forest AGB at National scales. These efforts have yielded a plethora of 

regional and global biomass maps encompassing India. However, a 

comprehensive review and evaluation, particularly of India-centric maps, 

remains conspicuously absent from current scientific literature. This chapter aims 

to bridge this knowledge gap by rigorously examining a wide range of existing 

forest AGB maps for India.  

The endeavor to conduct a meaningful comparative analysis across these 

maps is not without its inherent challenges. Discrepancies exist due to the 

utilization of diverse methodologies within different studies. These 

methodological variations manifest in maps with varying units (e.g., tonnes per 

hectare, megagrams), spatial resolutions, and the application of distinct 

conversion factors. Additionally, some maps exclusively present AGB estimates, 

while others offer total biomass assessments. Furthermore, discrepancies exist in 

the forest masks used by different studies. 

2.1 Current Forest Biomass Maps over India 

Over Indian forests, numerous studies have generated above-ground biomass 

(AGB) estimates as part of the global or regional assessments.  Presently, there 

exist approximately 18 global and 15 regional (India-specific) AGB assessments 

(Figure 2.1). It is noteworthy that some assessments attempt to estimate AGB for 

multiple years, providing valuable temporal data. The initial AGB assessment for 

India dates back to 1880, employing conventional bookkeeping methods. Over 

time, methodological advancements have facilitated the incorporation of Earth 

Observation (EO) data. This integration has significantly increased the number 

of national AGB maps, particularly following the 2000s with the enhanced 

accessibility of EO data. 
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However, ensuring data consistency and comprehensiveness remains a 

significant challenge. Not all studies generate spatially explicit AGB maps.  Some 

studies restrict their output to regional estimates, hindering in-depth analysis at 

the grid level. Additionally, methodological discrepancies exist, with individual 

studies employing unique approaches, utilizing different grid sizes, and 

incorporating diverse input parameters. 

 

Figure 2.1. List of Studies providing Biomass Estimates over India (1991 - 2023) 

To facilitate a structured analysis, the available map categories can be 

broadly classified into three groups based on the methodologies employed for 

map generation: 

(A)  Conventional Methods (Stratification and Multiplication) 

Conventional methods rely on field sampling or bookkeeping approaches 

to generate initial AGB or biomass assessments (Brown et al., 2001; Rajashekar et 

al., 2018; Richards et al., 1994). Field sampling involves the establishment of 

sample plots where detailed inventory measurements are subsequently 

conducted. Conversely, bookkeeping methods utilize pre-established conditions 

and attempt to estimate AGB based on factors influencing biomass, such as 

human activity and population density. Once a collection of AGB estimates is 

obtained, it is multiplied by the total forest area (derived from remote sensing 

imagery, topographical sheets, or ground surveys) to generate regional or 

national-scale AGB estimates. This method essentially functions through a two-

step process of stratification and multiplication. First, the forest area is stratified 

using factors such as forest area, density, or other relevant descriptors. Sample 

estimates of AGB are then collected within each strata. Finally, based on the 

average and statistical distribution of AGB within each strata, the total 

regional/national AGB is estimated through multiplication. 

(B) Remote Sensing Approach 

The remote sensing approach leverages forest characteristics detectable 

from satellite data, such as structure, reflectance, backscatter, and other 

properties (Baccini et al., 2012; Fararoda et al., 2021; Saatchi et al., 2011; Santoro 

and Cartus, 2023). Here, field samples collected from traditional forest 
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inventories are linked to corresponding remote sensing variables. This 

calibration process allows the available remote sensing data to be extrapolated to 

regional/national scales. With the increasing availability of data and 

advancements in methodologies, the linkages are established using a wide range 

of sophisticated techniques, including machine learning models, support vector 

machines, and deep learning algorithms. Overall, various remote sensing 

parameters are linked to the field-estimated AGB to generate spatially explicit 

AGB maps. 

(C) Map Fusion Approach 

As the name suggests, this method aims to combine individual AGB maps 

generated from different methodologies to create a new, improved map with 

potentially higher accuracy (Avitabile et al., 2016; Spawn and Gibbs, 2020; Zhang 

and Liang, 2020). Here, multiple AGB maps are fused into a single map by 

addressing potential biases between them using an independent dataset. This 

combined map is expected to be more accurate and reliable compared to the 

individual input maps. 

2.1.1 Spatial Biomass Estimations over Indian Forests: 1880 – 2021 

A comprehensive review identified a total of 85 biomass (AGB or total biomass) 

assessments generated by 33 studies encompassing India within their scope (both 

global and national). Notably, some studies included multi-temporal 

assessments, providing valuable data across different time periods.  

 

Figure 2.2. Historical Timeline of Forest Aboveground Biomass (AGB) Estimations in 

India by various studies. 

Figure 2.2 depicts a historical timeline of aboveground biomass (AGB) 

estimations conducted in India by various studies. Each data point (dot) 

represents the year of an assessment, with multi-temporal assessments 
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(assessments conducted for multiple years) connected by a band. The color 

coding of both dots and bands corresponds to the specific method employed by 

the study for AGB estimation.  

Of the total 85 assessments, 28 originated from regional Indian studies. 

These studies focused solely on India and did not produce spatial biomass maps. 

Their outputs were primarily tabulated data with national-scale biomass 

estimates. In contrast, most global studies generated spatial biomass maps and 

made them available through open-access platforms. However, a significant 

limitation across both global and regional studies was the lack of uncertainty 

estimates associated with the AGB assessments. 

However, a significant challenge to data comparability lies in the 

heterogeneity of these assessments. Each map exhibits variations in several key 

aspects: 

 Spatial Resolution: Spatial resolution varies considerably, ranging from 

coarse (1°) to fine (30 meters). 

 Units: The units employed for biomass quantification differ across studies. 

 Methodological Discrepancies: The methodologies used for AGB 

estimation vary between studies. 

 Forest Mask Inconsistencies: The forest masks employed to define forest 

areas differ across studies. 

 Conversion Factor Variations: The conversion factors used to convert 

different biomass components (e.g., leaves, stems) to total biomass or AGB 

also vary. 

Further complicating comparisons, some studies solely report AGB 

estimates, while others provide total biomass assessments. This heterogeneity 

necessitates standardization efforts to facilitate meaningful comparisons 

between these AGB assessments and enable a more comprehensive 

understanding of forest biomass in India. 

2.2 Standardization of Biomass maps 

To facilitate a meaningful comparative analysis of the AGB maps across India, 

we implemented a two-pronged standardization approach. First, all maps were 

standardized to a common grid resolution of 5 kilometers. This ensures 

consistent spatial representation and facilitates direct comparisons between 

maps with varying original resolutions. Second, we addressed the inconsistency 

in reported biomass values due to issues related to units and also forest masks. 

Since directly converting all maps to a single unit (e.g., Mega gram) might 

introduce additional errors, we opted to generate consistent total biomass 

density maps.  These maps express biomass per unit area (e.g., Mega gram per 

hectare) by dividing the original biomass estimates by the corresponding forest 
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area within each grid cell.  This normalization process accounts for discrepancies 

in the forest masks used by different studies and allows for a more accurate 

comparison of the actual biomass content within defined forest areas. While the 

issue of using diverse forest masks cannot be fully resolved, generating biomass 

density maps offers a robust approach for comparative analysis across these 

datasets. 

 

Figure 2.3. Flowchart depicting the methodology used for standardizing the biomass 

maps over India 

The key steps involved in the standardization process are as below. 

A. Spatial Reference System: All maps were first reprojected to the Albers 

Equal Area projection. This ensures consistent spatial representation and 

facilitates accurate comparisons, regardless of the original projection used 

by each study. 

B. Geographic Extent:  Each map was then clipped to the boundary of India, 

ensuring all analyses focus solely on forest areas within the country. 

C. Forest Mask Consistency:  Ideally, all studies should provide the forest 

mask to define forest areas. However, if a forest mask was not provided 

with a particular map, a new mask was generated by assuming pixels with 

non-zero biomass values represent forest cover.  

D. Reference Grid:  A reference 5-kilometer grid for India was generated to 

serve as a common spatial framework for all standardized maps and 

facilitate further analysis. 

E. Grid Resolution and Resampling:  Both the forest mask and biomass 

maps for all studies were then aggregated to a common reference 5-

kilometer grid scale using a weighted area average resampling technique. 
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This resampling process ensures consistent spatial resolution across all 

maps and minimizes information loss during the aggregation process. 

F. Biomass Unit Standardization:  Following resampling, the units of 

biomass were standardized.  Studies reporting AGB estimates were 

converted to total biomass by multiplying the AGB value by a factor of 

1.27, which represents a typical conversion factor for forests (IPCC). Also, 

the biomass from Mg ha-1 is converted into Mg C ha-1 by using a common 

multiplier of 0.47 across all studies. 

G. Biomass Density Maps:  Finally, at the standardized 5-kilometer grid 

scale, the total biomass for each grid cell was divided by the 

corresponding forest area. This generates biomass density maps, which 

express biomass per unit area (e.g., Mega gram per hectare).  This 

normalization process accounts for discrepancies in the original forest 

masks and allows for a more accurate comparison of the actual biomass 

content within defined forest areas. 

 

Figure 2.4. Standardized biomass density estimate for India based on the original 

available AGB map from Avitabile et al., 2016. 

Figure 9 presents a standardized biomass density map for India. This map 

originated from a global AGB map created by Avitabile et al., (2016). The original 

map boasted a finer spatial resolution of 1 kilometer and employed the GLC 2000 

forest mask. However, it solely offered estimates of aboveground biomass (AGB). 

To facilitate its inclusion in the comparative analysis, a two-step standardization 

process was implemented. First, the map was resampled to a common grid 

resolution of 5 kilometers using a weighted area average resampling technique, 

ensuring consistency with other standardized maps. Second, since the original 

map lacked total biomass estimates, a total biomass density map was generated 

by multiplying the AGB values by a factor of 1.27, a typical conversion factor for 

Indian forests. The resulting standardized map depicts total biomass density 

(e.g., Mega gram Carbon per hectare) across India at a 5-kilometer grid resolution 

to enable direct comparison with other standardized biomass density maps. 
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2.3 Variability of Biomass Estimates  

Following the standardization of biomass maps, the total biomass carbon density 

for India was estimated. This involved dividing the total biomass carbon derived 

from the standardized 5-kilometer maps by the total forest area obtained from 

the same standardized maps. This calculation yielded a national-scale biomass 

carbon density value for each respective assessment year included in the analysis. 

For studies that lacked biomass maps entirely, a two-step approach was 

employed. First, their total biomass estimates were standardized based on 

whether they represented AGB or total biomass (using the conversion factor of 

1.27 for AGB).  Second, this standardized total biomass estimate was then divided 

by the total forest area reported by the specific study. This comprehensive 

approach facilitates a direct comparison of biomass carbon density across time, 

as estimated by various studies, despite potential inconsistencies in their original 

methodologies and map formats. 

 

Figure 2.5. Temporal Variability of Biomass Carbon Density across Indian Forests 

Figure 2.5 depicts the temporal variability of biomass carbon density across 

Indian forests, as estimated by various studies. Each data point (dot or triangle) 

represents a single biomass assessment for India conducted by a specific study. 

The color coding differentiates the data points based on the study that generated 

the estimate (The color is linked to the methods used as in Figure 2.2). Lines 

connect data points from the same study when they represent multiple 

assessments conducted over time. For example, the line connecting the 

dots/triangles for 1880, 1920, 1950, 1970, and 1980 indicates that these biomass 

assessments were all derived from a single study by Richards et al., (1994).  
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The Figure 2.5 visually highlights the substantial variability observed in 

biomass carbon density estimates across different studies and time periods. This 

variability underscores the need for standardized methodologies and data 

collection approaches to facilitate more robust comparisons and a clearer 

understanding of forest biomass dynamics in India. 

2.3.1 Inconsistencies of Biomass Estimates over India: 2000 – 2023 

Separate analysis was conducted for biomass assessments conducted after the 

year 2000. This period coincides with the increased use of methodologies that 

link field biomass or AGB estimates with remote sensing parameters.  Studies 

within this timeframe employed a wide range of Earth Observation (EO) data, 

including optical, passive and active microwave sensors, and LiDAR 

measurements.  This segregation facilitates visualization of the dispersion 

patterns observed in AGB estimates across India. 

 

Figure 2.6. Total Biomass Carbon Estimates over India from 2000 - 2023 as estimated by 

various studies. 

A total of 30 biomass assessments for India were identified for the period 

2000-2023.  Significant variations were observed across these assessments in 

terms of both total biomass carbon and associated forest area (Figure 2.6).  

Reported values for total biomass carbon ranged from a minimum of 1625 Tg C 

to a maximum of 7885 Tg C, with a coefficient of variation (CV) of 43.7%.  This 

substantial variability can be largely attributed to disparities in total forest area 

estimates reported by individual studies.  Forest area values ranged from a 
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minimum of 20.68 million hectares (Mha) to a maximum of 125.18 Mha, with a 

CV of 31%.  

Furthermore, analysis of standardized total biomass density revealed 

similar patterns of variation (Figure 2.7). Values ranged from a minimum of 30 

Mg C ha-1 to a maximum of 151 Mg ha-1, with a CV of 48%. These findings 

highlight the ongoing challenges associated with achieving consistent and 

comparable estimates of forest biomass across different studies. The observed 

variations emphasize the importance of promoting standardized methodologies 

and data collection approaches for future assessments. 

 

 

Figure 2.7. Violin box-plots showing the estimates of Total Biomass Carbon, Forest Area 

and Total Biomass Density over Indian forests from 2000 to 2023 
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2.3.2 Snapshot of Spatial Variability from Indian Biomass Maps: 2000 – 2023 

Among the 30 biomass assessments available for the 2000-2023 period, we were 

able to acquire standardized maps for 19 (18 global and 1 Indian).  These 

standardized AGB maps were then utilized to calculate the coefficient of 

variation (CV) for biomass carbon density at a 5-kilometer grid scale. 

The analysis of spatial variability within these standardized biomass 

estimates reveals even more pronounced disparities.  The CV across the 5-

kilometer grid cells ranged from 0% to a concerning 250%, with an average CV 

of 94% and a median CV of 91% (Figure 13).  These wide variations are 

particularly significant in regions with low biomass, where accurate estimation 

is especially critical. 

These findings underscore the critical need for standardized AGB estimates, 

not only at the regional level but also across spatial scales.  Establishing and 

adhering to common protocols and methodologies are essential for building a 

robust and consistent understanding of India's forest biomass and its temporal 

changes. This standardized approach is crucial for effective monitoring of forest 

health and dynamics. 

 

Figure 2.8. The coefficient of variation (CV) in biomass carbon density at 5km grid scale, 

calculated across 19 Maps generated by different studies between 2000 and 2023. Higher 

CV values indicate greater variability (Units: %) 
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2.4 Challenges in Regional Forest Biomass Mapping 

Accurately mapping forest biomass or above-ground biomass (AGB) across 

diverse regions in India remains a complex undertaking due to inherent 

limitations and uncertainties associated with current methodologies. The 

uncertainties in EO-based biomass mapping stems from several contributing 

factors (Figure 2.9) and differ for different methods and assumptions and hence 

causing a substantial variability in the overall AGB estimates over India.  

 

Figure 2.9. Steps involved in Hierarchical AGB mapping from ground to regional scale. 

The Phase-1 typically involves estimating AGB using traditional volume 

equations derived from tree height and diameter measurements. While 

seemingly straightforward, this method introduces errors.  These equations are 

often tailored to estimate merchantable volume, potentially neglecting variations 

in wood density across different tree species and parts.  Furthermore, the absence 

of a comprehensive wood density database for various tree species and regions 

introduces additional uncertainties. Scaling ground-based measurements 

conducted on small plots to the larger resolutions of remote sensing pixels 

inherently introduces spatial aggregation errors.  Compounding these issues are 

potential geolocation errors associated with the ground measurements 

themselves. 

Remote sensing data, while a valuable tool, also presents its own 

limitations.  Optical and microwave sensors, have varying sensitivities that can 

hinder accurate biomass estimation.  For instance, optical data can saturate in 

regions with high biomass, rendering it less effective.  The representativeness of 

ground samples used for calibration purposes becomes questionable when 

extrapolating them across vast and ecologically diverse landscapes.  These 

samples might not fully capture the true regional variability in biomass 

distribution.  

Data availability and consistency pose further challenges.  Inconsistencies 

in forest area definitions and spatial layers across different studies lead to 

discrepancies in the spatial extent of the resulting biomass estimates.  The 

absence of uncertainty estimations in many existing AGB assessments makes it 

difficult to assess the reliability and confidence intervals of the generated biomass 

maps.  Furthermore, while numerous regional biomass assessments exist, many 

lack spatially explicit maps, hindering in-depth analysis at the regional or grid 

level, and often provide only national-level estimates. 
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Finally, characterizing changes in biomass over time using Earth 

Observation (EO) data presents a unique challenge.  This approach requires 

highly accurate individual biomass estimates for each time period being 

analyzed.  However, for meaningful change detection, the actual change in 

biomass needs to be significantly larger than the inherent uncertainty associated 

with the individual estimates. 

Addressing these multifaceted challenges is paramount for generating 

reliable and representative maps of regional AGB in India.  Overcoming these 

hurdles will ultimately enable effective monitoring and management of this vital 

carbon resource, informing critical decision-making related to forest 

conservation and climate change mitigation strategies. 

2.5 Towards Improved Forest Biomass Estimates 

The ever-increasing importance of accurate forest biomass estimates necessitates 

the development of more robust methodologies. However, uncertainties 

introduced at various stages of the hierarchical biomass mapping process can 

propagate errors to the final results (Figure 2.10).  Minimizing these errors is 

essential for generating reliable estimates. 

 

Figure 2.10. Phased approach transitioning from ground measurements to EO based 

regional biomass maps 

The initial phase focuses on plot-level above-ground biomass (AGB) 

estimation (Figure 2.10). Here, efforts should prioritize improving the accuracy 

of allometric models and potentially increasing plot sizes. Larger plots can 

address issues like sample representativeness, geolocation errors, and difficulties 

in linking ground data to EO data.  High-quality ground data from larger plots 

can significantly reduce uncertainties at the outset.  

However, challenges persist when linking ground measurements to EO 

data across vast regions. These include limitations in total sample size, sampling 

intensity, and potential signal saturation in EO data itself. Airborne LiDAR (Light 
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Detection and Ranging) emerges as a potential solution. LiDAR-derived AGB 

maps can act as a powerful intermediary, providing high-quality training data 

for calibrating EO data. This approach can facilitate the generation of reliable and 

defensible AGB estimates at national or even global scales. 

A critical element is establishing a network of "super-sites" that can generate 

extensive forest inventory data over large areas. Ideally, these sites would 

undergo multiple censuses over extended periods and be combined with long-

term airborne LiDAR data collection (Figure 1.5). This comprehensive approach 

would provide a robust foundation for reliable AGB mapping and enable long-

term monitoring of global change impacts on forest ecosystems.  

By implementing these solutions at each stage of the hierarchical biomass 

mapping process, we can significantly reduce uncertainties and generate more 

accurate and reliable regional biomass maps. This will ultimately enhance our 

understanding of forest biomass distribution and dynamics, supporting 

informed decision-making related to forest conservation and climate change 

mitigation strategies. 

This thesis explores the possibility of overcoming these limitations and 

developing a more robust methodology for generating reliable regional forest 

biomass maps in India. By focusing on improvements at various stages of the 

hierarchical biomass mapping process, the study aims to minimize uncertainties 

and generate more accurate estimates. The proposed solutions encompass 

refinements in allometric models used for plot-level biomass estimation, 

potentially increasing plot sizes, and leveraging airborne LiDAR data as a bridge 

between ground measurements and Earth Observation (EO) data. Through these 

advancements, this thesis strives to contribute to a more comprehensive 

understanding of forest biomass distribution and dynamics in India, ultimately 

supporting informed decision-making for forest conservation and climate change 

mitigation strategies. 
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Chapter 3   

 

Optimizing Plot Design for Accurate Plot-level AGB 

estimates  

Accurate estimation of aboveground biomass (AGB) at the plot level is critical for 

reducing uncertainties in large-scale AGB quantification. This, in turn, is essential 

for achieving the goals of international initiatives like REDD+ (Reducing 

Emissions from Deforestation and Forest Degradation) and INDCs (Intended 

Nationally Determined Contributions) that address climate change mitigation. 

While remote sensing plays a vital role in spatial AGB mapping, the accuracy of 

these estimates can be significantly influenced by several factors related to the 

design of field plots used for data collection. This chapter specifically investigates 

the impact of field plot size and shape on the accuracy of AGB estimates. We 

analyze data collected from a network of spatially explicit field plots established 

across three distinct tropical forest sites in India.  Here, we use data from 1-

hectare plot network to evaluate the influence of these plot design characteristics. 

3.1 Introduction 

Forests represent the largest aboveground carbon stock in the terrestrial 

biosphere, and strongly influence global CO2 exchange through forest 

degradation and re-growth (Pan et al., 2011). Consequently, there has been an 

increasing interest in accurate assessment of this carbon in recent times (Harris 

et al., 2012; Saatchi et al., 2011).  

Advancements in remote sensing and GIS-based AGB mapping hold 

promise for reducing uncertainties in forest AGB estimates, crucial for effective 

emissions mitigation strategies. However, the accuracy of these broad-scale 

estimates heavily relies on the quality of reference field inventory data (Mitchard 

et al., 2011; Réjou-Méchain et al., 2019). Since remote sensing variables are 

calibrated against field data, any uncertainties in field biomass measurements 

can propagate to large-scale estimates (Pelletier et al., 2011; Réjou-Méchain et al., 

2014). While previous studies have explored uncertainties at national and global 

scales (Baccini et al., 2008; Pan et al., 2011; Rajashekar et al., 2018; Saatchi et al., 

2011; Santoro et al., 2021), uncertainties related to field inventory data in tropical 

forests remain relatively understudied. 
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Advancements in remote sensing and GIS-based AGB mapping hold 

promise for reducing uncertainties in forest AGB estimates, crucial for effective 

emissions mitigation strategies. However, the accuracy of these broad-scale 

estimates heavily relies on the quality of reference field inventory data (Mitchard 

et al., 2011; Réjou-Méchain et al., 2019). Since remote sensing variables are 

calibrated against field data, any uncertainties in field biomass measurements 

can propagate to large-scale estimates (Pelletier et al., 2011; Réjou-Méchain et al., 

2014). While previous studies have explored uncertainties at national and global 

scales (Baccini et al., 2008; Pan et al., 2011; Rajashekar et al., 2018; Saatchi et al., 

2011; Santoro et al., 2021), uncertainties related to field inventory data in tropical 

forests remain relatively unexplored.   

As the estimation of tree-level AGB, and subsequently plot-level AGB (sum 

of AGB of all trees within the plot), is derived from tree inventories rather than 

direct measurement, achieving accurate AGB estimates hinges on various factors. 

These factors encompass determining the optimal reference plot size, obtaining 

precise measurements of tree variables like diameter at breast height (DBH) and 

height, assigning appropriate wood density values for each tree species, and 

selecting suitable biomass allometric and height–diameter (H–D) models, 

dependent upon the availability of tree height measurements. Notably, one of the 

most significant factors influencing accuracy is plot size (Chave et al., 2004; 

Gobakken and Næsset, 2009). 

The field plot size significantly impacts the accuracy of AGB estimates due 

to boundary effects, where smaller plots expose a large portion of trees to the plot 

boundary (Mayamanikandan et al., 2020). Conversely, larger plot sizes mitigate 

these boundary effects by reducing the perimeter-to-area ratio, resulting in more 

precise AGB estimates (Asner et al., 2012; Chave et al., 2004). Furthermore, larger 

plots help mitigate errors arising from field plots to satellite image co-registration 

problems (Frazer et al., 2011). Despite these advantages, large plots present 

certain limitations because they are cost and time intensive and more 

complicated to measure. The cost of forest field inventories are predominantly 

influenced by sample size and plot size. Hence, it becomes crucial to optimize the 

sample size, and plot size to achieve a balance that minimizes the inventory cost 

while maintaining an acceptable level of estimation accuracy for forest inventory 

attributes.  

Réjou-Méchain et al., (2014) highlight significant local spatial variability in 

AGB density for standard plot sizes, with average deviations of 46.3 % for 

replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. 

They recommend using field data from large plots for calibration of remote 

sensing products. Similarly, a study conducted in productive forests in Norway 

found that increasing plot size from 200-250 m2 to 1,000-4,000 m2 resulted in a 

notable reduction in standard deviation from 20-25% to 10-15% (Næsset, 2002). 
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Similarly,  Chan et al. (2021)  and Navarro-Cerrillo et al. (2017) uses circular plot 

of varying radius to predict the AGB using airborne LiDAR based canopy height 

measurement and reported higher accuracies with larger plot radius, suggesting 

better suitability of the large plots for AGB estimation. Zolkos et al., (2013) 

conducted a comprehensive review of studies on AGB estimation by various 

remote sensing platforms and sensors and observed a strong correlation between 

model errors and plot size. Enlarging plot size resulted in rapid decrease in 

model estimation error.  

Currently over Indian forests, Forest Survey of India carries out field 

Inventories using nested sampling design with sample area of 0.08 ha (< 0.1ha) 

for national AGB estimates (FSI, 2021).  Further, remote sensing based regional 

and national AGB estimates using national scale field inventories are mainly 

based on the conventional 0.1 ha size plot (Fararoda et al., 2021; Rajashekar et al., 

2018) which produces larger estimation error due to smaller plots sizes 

(Mayamanikandan et al., 2020). Hence there is a justified need to optimize the 

field inventory plot size for improved AGB estimates which are consistent with 

global efforts (Duncanson et al., 2021). 

In this context, this study focuses on investigating how plot size and shape 

influence plot-level AGB estimation across various forest types in India. 

Additionally, we aim to identify the optimal plot size for accurate AGB estimates 

within Indian forests. 

3.2 Materials and Methods 

3.2.1 Study Area 

This study utilizes field inventory measurements collected across three 

geographically distinct sites within the Tropical Indian Region. These sites 

encompass a diverse range of forest types, as shown in Figure 3.1. Field 

campaigns conducted between 2015 and 2020 captured data from various forest 

ecosystems.  

 Betul (BTL), Madhya Pradesh: represents a dry deciduous forest system 

dominated by Tectona grandis, with additional co-dominant species like 

Diospyros melanoxylon, Lagerstroemia parviflora, and Madhuca longifolia 

 Achanakmar (ACK), Chhattisgarh: features a moist deciduous forest is 

characterized by the dominance of Shorea Robusta alongside Terminalia 

alata, Anogeissus latifolia, and Ougeinia dalbergioides. 

 Yellapur (YLP), Karnataka: encompasses a transition zone from dry 

deciduous to moist deciduous and wet evergreen forests. . The dominant 

tree species in YLP's deciduous forests include Tectona grandis, Terminalia 

paniculata, and Xylia xylocarpa, while the evergreen forests are 
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characterized by Diospyros buxifolia, Syzygium gardneri, and Knema 

attenuata. 

A comprehensive description of these study sites, including details on their 

geographical location, climatic conditions, and specific tree measurements, can 

be found in Table 3.1. 

 

Figure 3.1. Study Area Map showing the distinct study sites and spatial distribution of 

the 1-ha size field plots in the Betul (BTL), Achanakmar (ACK) and Yellapur (YLP) site 

is also shown.  

A total of 51, 1-ha (100m x 100m) plots were established (BTL – 13, ACK – 

16 and YLP – 22) across these diverse sites, ensuring accurate geolocation and 

north orientation using Differential Global Positioning System (DGPS) and 

Electronic Total Station (ETS). Each plot was further subdivided into 25 quadrats 

(0.04 ha each) using ETS for conducting inventory measurements. Within each 
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quadrat, detailed information was collected for trees exceeding a diameter at 

breast height (DBH) of 9.55cm (circumference > 30cm). This data included species 

identification, DBH, and precise relative positioning within the quadrat 

(accuracy ±0.5m achieved using ropes and measuring tapes). Additionally, tree 

heights were measured for a subset of trees within each plot using a NIKON 

Forestry Pro Laser range finder. 

Table 3.1. Sample plots statistic and climate parameters across study sites. Nxxx indicates 

total number of plots, DBH measurements, and Height measurements. Mean Annual 

Temperature and Mean Annual Precipitation are computed using WorldClim Version 

2.1 data. 

Site NPlots  

(1ha) 

NDBH NHt Hrange Densityrange 

(Stem/ha) 

MAT 

(⁰C) 

MAP 

(mm) 

BTL 13 3972 642 7-29 150 - 437 25.6 ± 0.3 1266 ± 27 

ACK 16 5750 962 4.4-34.5 186 - 509 23.3 ± 0.7 1328 ± 42 

YLP 22 8519 4847 1.7-45 140 - 749 24.4 ± 0.5 2383 ± 421 

3.2.2 Impact of plot-size on plot-level AGB estimation 

To comprehensively assess how plot size and shape influence aboveground 

biomass (AGB) estimates, we generated various synthetic plots with different 

dimensions based on actual tree locations (Figure 3.2). These plots ranged from 

small squares (10m x 10m, 0.01 ha) to larger squares (90m x 90m, 0.81 ha). The 

additional plots upto 6.76 ha were also generated for BTL based on the large 32-

ha continuous plot data. Additionally, we generated circular plots with seven 

different sizes (0.08 ha to 0.5 ha) to isolate the impact of shape while maintaining 

constant area (Figure 3.2).  

To solely evaluate the uncertainty caused by plot size, we controlled for 

errors arising from the allometric model by using the equation by Chave et al., 

(2014) for tree-level AGB calculations. For each synthetic plot, we calculated the 

total AGB by summing the AGB of all trees within its boundaries. We then scaled 

the AGB values to represent a 1-hectare area and calculated the relative error (RE) 

as an indicator of estimation accuracy (Figure 3.3). To ensure reliable estimates, 

we randomly generated 100 synthetic plots for each size class. 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =  
𝑆𝑐𝑎𝑙𝑒𝑑 𝐴𝐺𝐵 − 𝑅𝑒𝑓𝐴𝐺𝐵

𝑅𝑒𝑓 𝐴𝐺𝐵
∗  100 
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Figure 3.2. Schematic illustration of synthetic plot generation using mapped tree 

locations within a 1-ha reference plot. Circle centers represent individual tree positions, 

and their radii are proportional to the corresponding tree diameters at breast height 

(DBH). 

 

 

Figure 3.3. Flow chart of methodology used for estimating impact of plot-size on plot-

level AGB estimation. 
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3.3 Results 

3.3.1 Betul, Madhya Pradesh 

We began the analysis by focusing on the Betul site in Madhya Pradesh because 

it has a unique advantage - a very large, continuous field plot spanning 32 

hectares. This extensive plot allowed us to generate synthetic plots of various 

sizes, ranging from a small 0.04 hectares to a larger 6.76 hectares (Figure 3.4). 

Notably, plots exceeding 0.64 hectares were derived from this large 32-hectare 

plot for practical reasons. The analysis revealed significant variations in relative 

error (RE) across different plot sizes, particularly for smaller plots, based on the 

100 simulations we conducted. Figure 3.4 illustrates this variability in RE for each 

simulated plot size. 

 

Figure 3.4. Variability of Relative Error (%) with increase in plot size 

The analysis revealed a clear correlation between plot size and relative error 

(RE) in AGB estimates. As plot size increased, the RE demonstrably decreased. 

The average RE started at approximately 24% for plots as small as 0.04 hectares 

and steadily declined to around 1.5% for the largest plots of 6.76 hectares (Figure 

3). This trend is particularly pronounced for plots smaller than 0.5 hectares, 

where the overall variability of RE was significantly higher. 

The interquartile range (IQR), which quantifies the dispersion of the data, 

further corroborated this diminishing uncertainty with increasing plot size. The 

IQR decreased from a maximum of 25% for the smallest plots to around 1% for 

the largest ones. Importantly, both the mean RE and IQR fell below 10% for plots 

exceeding 0.5 hectares. These findings align with the notion that larger plot sizes 
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(up to 0.64 hectares or more) can effectively mitigate uncertainty in AGB 

estimates by incorporating a more representative sample of the inherent 

heterogeneity within the forest stand (Chave et al., 2004). 

To further explore the influence of plot shape on AGB estimation accuracy, 

we conducted an analysis while maintaining a constant plot area. Synthetic 

circular plots of seven distinct sizes were generated, ranging from 0.08 hectares 

to 0.5 hectares. Additionally, corresponding square plots with equivalent areas 

were created (Figure 3.5). The boxplot in Figure 3.5 depicts the RE for both 

circular and square plots across various plot sizes, based on 100 simulations. 

 

Figure 3.5. Relative error with respect to plot shape keeping the plot area as constant for 

Betul (BTL). 

The results interestingly indicate that irrespective of plot shape (circular or 

square), the average RE exhibited a consistent decreasing trend with increasing 

plot size. The RE dropped from approximately 20% for the smallest plots (0.08 

hectares) to about 8% for the largest (0.5 hectares). However, it is noteworthy that 

for a given area, a circular plot necessitates a smaller perimeter compared to a 

square plot. This suggests that when aiming for similar plot areas, circular plots 

might introduce marginally higher uncertainty. 

Our analysis demonstrates a clear advantage of increasing plot size for 

mitigating uncertainty in AGB estimates. However, practical considerations 

necessitate a balance between accuracy and feasibility. While plots exceeding 0.64 
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hectares effectively capture stand heterogeneity, logistical constraints like 

challenging terrain and accessibility often render larger plots (>2 ha) impractical. 

Additionally, the diminishing reduction in error (7.2% at 0.64 ha to 4.2% at 2 ha) 

suggests a limited benefit for significantly larger plots. Therefore, considering the 

trade-off between accuracy and implementation challenges, plots exceeding 0.64 

hectares are recommended for optimal AGB estimation across diverse Indian 

forest ecosystems. 

3.3.2 Across All Study Sites 

To assess the influence of plot size across diverse forest types, synthetic plots 

ranging from 0.04 ha (20 x 20 m) to 0.81 ha (90 x 90 m) were generated using data 

from all three study sites (BTL, ACK, and YLP) (Figure 3.1). Figure 3.6 depicts the 

trend of relative error (RE) in AGB estimates for each site as plot size increases. 

 

Figure 3.6. Field measurement error associated with different plot sizes. The straight lines 

at each point indicate the relative error variability across 100 simulations per plot size. 

As evident in Figure 3.6, RE consistently decreases across all sites with 

increasing plot size. At the smallest plot size (0.01 ha, 10 x 10 m), RE is around 

50%. This value drops significantly to approximately 10% at a plot size of 0.25 ha 

(50 x 50 m). A further reduction in RE is observed with an increase to 0.49 ha (70 

x 70 m), bringing it down to roughly 5%. Notably, expanding plot size beyond 

this threshold has minimal impact on RE (Figure 3.6).Based on this analysis, we 

recommend a minimum plot size of 70 x 70 m (0.49 ha) as the optimal reference 

for AGB estimation in Indian tropical forests. This plot size effectively balances 

accuracy with feasibility, ensuring reliable estimates while optimizing resource 

allocation for upscaling models.  
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As previously discussed (refer to discussion on plot shape in the previous 

section), plot shape has minimal influence on RE when maintaining a constant 

area. While both circular and square plots exhibit a decreasing RE trend with 

increasing size (Figure 3.5), circular plots with a smaller perimeter compared to 

squares of the same area may introduce slightly higher uncertainty. Therefore, 

plots exceeding 0.5 ha are recommended for reliable AGB upscaling with 

minimal uncertainty, regardless of their specific shape (circular or square). 

3.4 Discussion 

This study clearly demonstrates the critical role of plot size in achieving accurate 

aboveground biomass (AGB) estimates in tropical forests. This accuracy is crucial 

not only for cost-effective field campaigns but also for effectively linking field 

measurements with remotely sensed data. Such integration benefits REDD+ 

initiatives and forest carbon cycle studies.  

The current research investigated the impact of plot size and shape on 

representing field AGB. We generated a wide range of synthetic plots (varying 

in size and shape) from a network of large plots across central Indian dry 

deciduous forests. Our findings confirm the positive effect of increasing plot size 

on field AGB estimates. The mean relative error (RE) decreased significantly with 

increasing area, highlighting the importance of capturing spatial heterogeneity. 

Smaller plots (0.04 ha) often miss this variation, leading to over- or 

underestimation of AGB. In contrast, larger plots (6.76 ha) capture more diverse 

tree populations and provide a more accurate representation of mean AGB 

values.  

Interestingly, despite the theoretical advantage of circular plots (minimized 

boundary effects due to lower perimeter-to-area ratio), our study found minimal 

influence of plot shape (circular vs. square) on field AGB estimates for tropical 

deciduous forests, as long as the plot area remains constant. This finding 

emphasizes the primary importance of plot size for accurate AGB estimation in 

this specific forest type.  

While accuracy improves with increasing plot size, there's a diminishing 

return on investment beyond a certain size threshold. The RE decreased 

significantly from 0.04 ha (24%) to 0.64 ha (7%), but the decrease was marginal 

for larger plots (0.64 ha to 1.96 ha and 1.96 ha to 6.76 ha). Considering the rising 

costs of fieldwork with increase in plot size, a minimum size of 0.64 ha to 1 ha 

provides a good balance between estimation accuracy and plot establishment 

cost for reliable AGB estimation in tropical dry deciduous forests of India. 

Another key element concerns the influence of plot positioning errors (due 

to GPS inaccuracies) on AGB estimates derived from remote sensing data. 

Smaller plots exhibited a higher bias in RMSE% compared to larger plots. This is 
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likely because larger plots have a greater overlap with remote sensing data, 

mitigating potential errors associated with imprecise GPS locations (Frazer et al., 

2011; Gonçalves et al., 2017; Zhang et al., 2013). 

3.5 Summary 

This study investigated the impact of plot size, shape, and location errors on AGB 

estimation in a tropical dry deciduous forest, considering both field 

measurements and remote sensing predictions. Our findings demonstrate the 

clear advantage of larger plots for achieving accurate and reliable AGB estimates. 

Larger plots not only capture greater spatial heterogeneity, leading to lower 

coefficient of variation (CV), but also could significantly improve the fit of 

models with remote sensing data by minimizing edge effects.  

However, a practical balance is crucial. While plots exceeding 1 ha offer 

marginal gains in precision compared to the additional cost of establishment, a 

size range of 0.64 ha to 1 ha provides an optimal balance between accuracy and 

feasibility for this specific study area. This plot size range ensures precise spatial 

AGB modeling while remaining cost-effective.  

Our emphasis on large plots aligns with the findings presented in the 

previous section, which highlighted the importance of capturing spatial 

variability for accurate AGB estimation across diverse Indian forest types. 

Therefore, establishing calibration and validation reference plots exceeding 0.5 

ha is recommended for future initiatives focused on large-scale AGB mapping 

(viz., GEDI, NISAR, BIOMASS etc.,) and the development of globally consistent 

AGB reference maps.  

A critical element in minimizing uncertainty associated with plot-level AGB 

estimation is the selection of an appropriate allometric model. The next chapter 

delves into this aspect, evaluating the impact of allometric models on uncertainty 

and exploring methods to reduce it. Additionally, the chapter examines the errors 

introduced by allometric models at larger plot sizes, a crucial step in generating 

high-quality ground data for calibrating and validating Earth Observation (EO) 

data.  
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Chapter 4   

 

Developing non-destructive volume equations using 

Terrestrial LiDAR 

Estimating Above-Ground Biomass (AGB) across large regions requires ground 

reference plots for calibrating and validating remote sensing products.  

Traditionally, reference plot AGB relies on allometric models that estimate tree-

level biomass based on diameter and height measurements along with species 

information. However, recent advancements in Terrestrial Laser Scanning (TLS) 

offer exciting possibilities for non-destructive tree volume extraction from 

detailed 3D canopy structure data. In this chapter, we leverage 3D point clouds 

captured by TLS to develop a framework for constructing local allometric 

equations tailored to tropical dry deciduous forests in Betul, Madhya Pradesh, 

India. This framework utilizes TLS data to model individual trees and extract 

their volumes, ultimately leading to the development of more accurate and 

localized allometric equations for improved AGB estimations. 

4.1 Introduction 

Forests are crucial to the global carbon cycle as they hold approximately 45% of 

the terrestrial carbon in live above-ground biomass (Bonan, 2008) and offsets 

nearly 30% of anthropogenic CO2 emissions through carbon sequestration 

(Friedlingstein et al., 2020). Nevertheless, quantitative information on the spatial 

distribution and absolute magnitude of above-ground biomass of forests 

(hereinafter used interchangeably as “AGB” or “biomass”) remain substantially 

uncertain, in part due to the measurement errors in tree-level biomass 

estimations (Mitchard et al., 2014a).  

Accurately estimating tree-level above-ground biomass (AGB) traditionally 

involved destructive sampling - felling and weighing entire trees (Brown, 1997). 

While this method yields the most accurate measurements, it is prohibitively 

costly, time-consuming, and impractical for large-scale assessments. 

Consequently, most contemporary AGB estimates rely on indirect methods, 

primarily allometric equations (Réjou-Méchain et al., 2019). These equations 

calculate tree volume based on readily measurable parameters like diameter at 

breast height (DBH) and tree height (Calders et al., 2014; Kearsley et al., 2017). 
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However, these equations often rely on extensive destructive sampling, 

propagating potential errors and biases through calculations for entire stands 

and large-scale biomass mapping (Chen et al., 2015). Therefore, selecting an 

appropriate allometric model becomes crucial for minimizing these errors in 

spatial AGB estimates (Picard et al., 2015).  

Although generalized allometric models for different forests and tree 

species exists (Basuki et al., 2009; Chave et al., 2014), the use of these equations 

can potentially lead to bias in AGB estimation for a particular species since 

biomass is also dependent on several other underlying factors such as 

topography, environmental conditions, stand age, species composition, and 

disturbance history. Therefore, using species- and site-specific allometric models 

is considered substantial improvement in reducing the uncertainty in upscaling 

the forest biomass from field to satellite measurements (Brown, 1997; Réjou-

Méchain et al., 2019). Nonetheless, the development of such equations is highly 

limited by numerous factors including the number of samples, cost, labor, 

restrictions, and complex topography. Hence there is a significant need for 

alternative, non-destructive approaches to assess forest biomass accurately and 

sustainably. 

Recently, Terrestrial Laser Scanning (TLS) has shown its potential to 

estimate basic tree attributes (viz., DBH, height, crown width, crown volume etc.) 

using dense three dimensional (3D) point clouds with a high degree of accuracy 

and precision (Bienert et al. 2006; Huang et al. 2011; Maas et al. 2008; Reddy et al. 

2018). Further, the detailed point clouds from TLS provide the basis for building 

3D tree models using quantitative structure models (QSMs). A QSM is a 

geometric model that describes a complete tree using a hierarchical collection of 

cylinder objects estimating topological, geometrical and volumetric details of the 

tree’s woody structure (Raumonen et al., 2013). QSMs are reported to be adequate 

to estimate stem volumes (or biomass) at individual tree levels with very low bias 

in a non-destructive manner (Hackenberg et al., 2015; Mayamanikandan et al., 

2019). The non-destructive tree volume estimation overcomes nearly every 

complicating factor associated with destructive sampling, including the issue of 

insufficient sample size in the development of allometric equations (Chave et al., 

2004; Stovall et al., 2018). On the other hand, though QSMs could provide tree-

level estimations of tree volume and biomass (when combined with wood 

density information), estimating tree-level biomass for all trees over a given area 

is still a daunting task. Nevertheless, the non-destructive QSM derived tree 

volumes would aid in the development and improvement of site-specific (and 

species-specific) allometric equations for tree volume estimation, which are still 

a major source of uncertainty in field biomass estimation (Réjou-Méchain et al., 

2019). 
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In this context, the current work aims to assess the use of terrestrial LiDAR 

data in estimating tree volumes using QSMs and then to develop site-specific 

allometric models for tropical dry deciduous forests in the Central Indian region. 

In brief, the objectives of the present work are to (1) generate QSMs for major tree 

species in the study area using 3D point clouds, (2) estimate QSM based tree 

volumes for the TLS sampled trees, (3) develop allometric equations for tree 

volume estimation using tree structure attributes (viz., DBH and height), and (4) 

assess the accuracy and precision of TLS allometric models. 

4.2 Materials and Methods 

4.2.1 Study Area 

The study area is located within tropical dry deciduous forests of the Betul 

district, Madhya Pradesh, India (Figure 4.1). Its geographical coordinates are 21° 

49′ to 21° 54′ N latitude and 77° 21′ to 77° 27′ E longitude, with an elevation of 

approximately 507 meters above sea level. The climate experiences distinct 

seasons: hot summers and cool winters.  

 

Figure 4.1. Study site location map showing 13 permanent plots (12- 1ha and 1 -32ha) 

in tropical dry deciduous forests of Betul, Madhya Pradesh (India). Digital elevation 

model in the background. The TLS samples and the destructive tree measurements are 

also shown as dots and triangles respectively. 

The average annual rainfall is around 1100 mm, while the mean 

temperature hovers around 27°C (Rodda et al., 2021). The landscape is 

predominantly flat, characterized by a dominant presence of Teak (Tectona 

grandis) with an average stand height of ~22 meters. Other prominent tree species 
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include Lagerstroemia parviflora, Anogeissus latifolia, Madhuca indica, Terminalia 

alata, and Diospyros melanoxylon. The vegetation exhibits strong seasonality, with 

peak canopy cover occurring from September to October, followed by a complete 

leaf-off period between April and May. 

4.2.2 Identification of dominant species 

To generate robust allometric models, we focused on volumetric measurements 

from the most influential tree species within the study area. We identified these 

dominant and co-dominant species using the Importance Value Index (IVI) 

analysis. IVI considers a species' relative frequency, relative density, and relative 

dominance within the tree community structure (Curtis and McIntosh, 1951; 

Kent, 2011). For the IVI analysis, we utilized tree-level data collected during field 

inventory work described in Chapter 3 (Objective-I) related to plot size and its 

impact on overall field biomass accuracy. This data encompassed 13 spatially 

distributed plots across the study area (Figure 4.1). Twelve plots were 1-hectare 

squares arranged in a regular grid (100 x 100 meters each), with one additional 

irregular plot covering a continuous area of 32 hectares.  

Table 4.1. Detailed information on the number of TLS samples used for individual species 

and their associated importance value index (IVI) based on the available permanent plot 

data at the study site. DBHmin and DBHmax are minimum and maximum diameter at 

breast height values respectively. IQR indicates the inter quartile range of the diameter 

distribution of tree species between 5th and 95th Quartiles 

  Large Permanent Plot Data TLS Tree Samples 

Species Name IVI 
DBHmin  

[cm] 

DBHmax  

[cm] 

IQR  

[cm] 

DBHmin  

[cm] 

DBHmax  

[cm] 
N 

Tectona grandis 103.9 7.6 68.9 10 - 38 11.1 46.2 33 

Phyllanthus emblica 20.9 8.0 38.5 10 - 27 9.7 26.6 11 

Lagerstroemia parviflora 19.7 9.5 44.6 9 - 25 9.9 25.1 12 

Terminalia paniculata 15.4 9.8 60.5 10 - 39 10.0 28.8 13 

Diospyros melanoxylon 14.4 7.6 52.4 9 - 34 10.2 35.8 16 

Terminalia alata 12.9 9.5 78.6 12 - 51 10.2 43.3 19 

Miscellaneous (Other 

Species) 
 8.9 118.7 10 - 42 9.7 41.8 23 

Using the BiodiversityR package (Kindt and Kindt, 2015), we calculated the 

IVI for each species within the region by summing its relative frequency, relative 

density, and relative dominance. Based on this analysis, the identified dominant 

and co-dominant species with their corresponding IVI values were: Tectona 

grandis (103.9), Diospyros melanoxylon (20.9), Phyllanthus emblica (19.7), Terminalia 

alata (15.4), Lagerstroemia parviflora (14.4), Terminalia Paniculata (12.9) (Table 4.1).  
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4.2.3 TLS Data Collection and Processing 

Following the identification of dominant and co-dominant species through IVI 

analysis, we employed a RIEGL VZ-1000 terrestrial laser scanner (RIEGL Laser 

Measurement Systems GmbH) to capture detailed 3D point cloud data during 

the 2019-2020 period. The sampling strategy focused on ensuring variability in 

both tree species and diameter range within the selected dominant and co-

dominant groups to create more robust and generalizable allometric models 

(Table 4.1). Each TLS scan was acquired in high-speed mode with a pulse 

repetition rate of 300 kHz, with a resolution of 0.05-degree vertical and horizontal 

angles. To guarantee complete 3D tree structure capture, each tree was scanned 

from a minimum of three different directions, resulting in a comprehensive 360° 

coverage. In conjunction with the TLS data acquisition, basic tree inventory 

measurements of diameter at breast height (DBH) and tree height were collected 

in the field using a measuring tape and hypsometer. 

Table 4.2. Description of the datasets used for the current study 

 
No. of 

samples 
Measurement Type Usage 

Dataset-A 5 
TLS and ground 

Destructive samples 

For standardization of 

parameters in TreeQSM 

approach 

Dataset-B 127 TLS only 
For development of 

allometric models 

Dataset-C 25 

20 trees with only ground 

destructive samples and 

5 trees from Dataset-A 

For validation of 

generated allometric 

models using Dataset-B 

A total of 132 trees across various species, with a focus on dominant and co-

dominant species identified through IVI analysis (Table 4.1), were scanned using 

the TLS system to capture their 3D structure. The sampling strategy aimed for 

variability in both tree species and diameter range to ensure the development of 

robust allometric models. Due to regulations protecting trees at the study site, 

destructive sampling (complete felling and weighing) was only possible for five 

Tectona grandis trees (referred to as Dataset-A; N=5 trees). This destructive 

sampling involved felling the trees, sectioning them into smaller parts for weight 

measurement using a weighing machine and metal chains in the field. Wood 

density for each tree was then determined in the lab using the oven-drying 

method (105°C for 48 hours) and the water displacement method. The limited 

destructive samples (Dataset-A; N = 5 trees; destructive samples + TLS data) were 

used to establish a standardized method for estimating tree volume from 3D 

point cloud data captured by TLS. The remaining 127 TLS scans (Dataset-B; 

N=127 trees; TLS tree samples only) were then employed to estimate tree volume 
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using this standardized 3D tree modeling approach. Ultimately, these volume 

estimates from Dataset-B will be used to develop non-destructive allometric 

equations based on TLS data. 

 

Figure 4.2. Flowchart describing the methodology used in the study 

The allometric models developed using Dataset-B were validated using an 

independent destructive sampling measurement. This measurement involved 20 

trees collected during 2019. These trees were not scanned with TLS prior to 

felling, making them an ideal validation dataset. Since the destructive sampling 

measurements from Dataset-A were not used in allometric model development, 

they also serve as a valuable validation resource.  Therefore, a combined dataset 

of 25 trees (referred to as Dataset-C in this manuscript; N = 25; destructive 

samples only) was used to validate the non-destructive allometric models 

developed for tree volume estimation using Dataset-B. The summary details of 

the three datasets used in the current study are provided in Table 4.2. A detailed 

flowchart explaining the overall workflow is shown in Figure 4.2. 

The TLS data collected for each tree was processed in accordance with the 

standard protocols. The three TLS scans captured for each tree from different 

directions were co-registered and merged. This process involved using 

artificially placed targets within the scans to facilitate alignment and achieve a 

comprehensive 3D coverage of each tree for virtual reconstruction. Automatic co-

registration was performed using the triangulation algorithms available in the 

RiSCAN PRO 2.0 software (RIEGL Laser Measurement Systems GmbH). For this 

process, reflective stickers were placed on the tree of interest in each scan to aid 

identification during co-registration. Following co-registration and merging, the 

merged scan data was normalized by estimating a ground model using the 
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minimum elevation approach (Reddy et al. 2018). This step helps to remove any 

ground level variations from the data. Next, the tree of interest was manually 

segmented from the background using CloudCompare software. This 

segmentation process essentially isolates the tree points from the surrounding 

environment. 

 

Figure 4.3. The step-by-step procedure of (A) TLS-scanning of a (B) selected tree, (C) 

isolating using visual techniques in cloudcompare, (D) leaf removal. The final data is 

then used for QSM modeling using TreeQSM library. (E) and (F) shows the zoomed 

portion of the selected tree and respective 3D model as wireframe. 

Finally, individual tree point clouds were manually filtered to remove 

leaves, leaving only the tree stem and branches. The resulting tree skeletons were 

then processed for volume estimation using the QSM approach. This method 

involves fitting cylinders in a hierarchical order to approximate the tree structure 
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(Raumonen et al., 2013). Figure 4.3 visually illustrates the steps involved in the 

QSM approach for tree volume estimation. 

4.2.4 Tree Volume Estimation using TreeQSM 

A QSM, or Quantitative Structure Model,  of a tree is a model representing a 

woody tree structure from detailed TLS point clouds using geometric primitives 

(cylinders in this case) and can quantitatively describe the basic topological 

(branching structure), geometric and volumetric properties of a tree (Raumonen 

et al., 2013). In this work, we utilized the open-source TreeQSM library (Version 

2.4.0; https://github.com/InverseTampere/TreeQSM ) to construct QSMs of trees 

(Raumonen et al., 2013). Several studies have demonstrated the effectiveness of 

TreeQSM in generating 3D tree models and estimating tree volume, ultimately 

leading to accurate AGB estimations with minimal bias (Calders et al., 2014; de 

Tanago et al., 2018).  

The TreeQSM algorithm reconstructs trees in a two-step process: 

segmentation and cylinder fitting. First, segmentation separates the point cloud 

data into the main trunk and individual branches. This process utilizes a "cover 

set" approach, working in two phases with small subsets of points called patches. 

In the first phase, large constant size patches with radius (defined as Patch 

Diameter 1; PD1) are used across the tree to identify a coarse tree architecture 

and branches. In the second phase, a finer cover with patch size varying from a 

minimum Patch Diameter 2 (PD2min) to a maximum Patch Diameter 2 

(PD2max). This step refines the branch topology by capturing finer details. 

Following segmentation, individual branch elements are reconstructed by 

fitting cylinders to the point cloud data using a least squares approach. A critical 

parameter in TreeQSM is the selection of PD2min, as it determines the smallest 

branch feature that can be resolved with the given data and ultimately affects 

volume estimation accuracy. Additionally, due to the randomness of patch 

generation, TreeQSM recommends generating multiple models with the same 

parameter settings. This allows for the calculation of modeling confidence based 

on the resulting estimates from these 3D tree models (de Tanago et al., 2018; 

Raumonen et al., 2015).  

To optimize the TreeQSM parameters (PD1, PD2min, and PD2max) for this 

study, we adopted a literature review-based approach (Brede et al., 2019; Calders 

et al., 2015; de Tanago et al., 2018). PD1 was set to a constant value of 10 cm for 

all trees. PD2min values were varied from 4 cm to 6 cm with increments of 0.5 

cm, and PD2max values ranged from 10 cm to 14 cm with intervals of 1 cm. We 

then generated ten TreeQSM models for each possible parameter combination. 

The optimum settings for PD2min and PD2max were selected based on mean 

point-cylinder model distances from the trunk and first order branches (Calders 

et al., 2018). The final 3D tree model was generated using the optimized 
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parameter settings. Tree volume was then estimated by summing the volumes of 

all cylinders within the 3D model. To evaluate the reconstruction method's 

robustness and assess tree volume uncertainty, we created 20 models for each 

tree using the optimal parameter combination. The mean tree volume and 

standard deviation were calculated from these 20 models. We employed 

MATLAB (Version 9.5) for the TreeQSM reconstruction process and R Statistical 

software (Version 4.1.3) for further data analysis. 

4.2.5 Development and Evaluation of TLS based Allometric Models 

Allometric models were developed to estimate tree volume using the non-

destructive volumes derived from the TLS measurements. We opted for log-

linear regression as it has been one of the accurate descriptors of tree allometry 

in Central Indian forests compared to other descriptors (Chaturvedi and 

Raghubanshi, 2015). Also, this is the most common form of equation to describe 

tree allometry in biomass studies (Jenkins et al., 2003; Lin et al., 2017; Moussa and 

Mahamane, 2018). We employed a combination of DBH (diameter at breast 

height) and tree height as predictor variables to explain tree volume using two 

different equation forms, as shown below: 

 𝑉 = exp(𝑎 + 𝑏 (𝑙𝑛(𝐷𝐵𝐻))) (1) 

 𝑉 = exp(𝑎 + 𝑏 (𝑙𝑛(𝐷𝐵𝐻2 × 𝐻𝑒𝑖𝑔ℎ𝑡 ))) (2) 

Where V represents tree volume, a and b are the estimated parameters of the 

fitted model, DBH is measured in meters, and H represents tree height in meters. 

The log-linear relationships with high RMSE tend to underestimate the 

predicted value when back-transformed to log units, so a correction factor has 

been proposed to remove this bias. During the back transformation of log-linear 

relationships, a correction factor has been proposed to reduce the systematic bias 

in the predicted value (Baskerville, 1972). The correction factor (CF) uses the 

mean square error (MSE) and is calculated as:  

 𝐶𝐹 =  𝑒
𝑀𝑆𝐸

2  (3) 

Where MSE is the mean square error of the modelled equation as per Equations 

(1) and (2).  

The allometric equations were evaluated in terms of the coefficient of 

determination (R2) and uncertainty using the destructive sampled tree 

measurement data as the reference value. The model uncertainty was calculated 

in terms of Bias, rBias%, root mean square error (RMSE) and rRMSE% of the 

estimated value and the corresponding reference measurement value.  
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𝐵𝑖𝑎𝑠 =  

1

𝑛
∑(𝑦𝑖 − 𝑦𝑟𝑖)

𝑛

𝑖=1

  
(4) 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 −  𝑦𝑟𝑖)2𝑛

𝑖=1

𝑛
 

(5) 

 
𝑟𝐵𝑖𝑎𝑠% =  

𝐵𝑖𝑎𝑠

𝑦�̅�
 ×  100% 

(6) 

 
𝑟𝑅𝑀𝑆𝐸% =  

𝑅𝑀𝑆𝐸

𝑦�̅�
 ×  100% 

(7) 

Where yi is the estimated value of the ith tree using the TreeQSM approach, 

yri represents the reference measurement value of that tree, 𝑦�̅� represents the 

average value of all the reference measurements, and n represents the total 

number of tree samples used.  

Apart from the model uncertainty, the validation uncertainty was 

computed using the independent destructive sampling dataset (Dataset-C). Also, 

the concordance correlation coefficient (CCC; Lin 1989) was calculated to 

compare the agreement of TLS derived tree volumes with reference 

measurements. In addition, we have also performed an uncertainty analysis of 

the generated allometric models with respect to change in sample size. 

4.2.6 Comparison with other Conventional Allometric models over Indian 

forests 

We also compared our models with the commonly used generic models in 

tropical forests of India (Table 4.3; derived from FSI (1996) and Chave et al., 

(2014)). A tree-level comparison was used to evaluate the TLS-based and the 

generic allometric models using the independent destructive sampling dataset 

(Dataset-C). Absolute and relative RMSE and bias were computed using the 

equations mentioned in the previous section. Further, we computed the average 

bias at plot-level in terms of AGB (by employing the reported wood density 

values at the species level; Table 4.3) for the 13 permanent plots at the study site 

due to choice of tree-level allometry using the generic models versus the newly 

developed models using TLS.  

Table 4.3. Traditional allometric models used at the study site to predict tree volumes and 

AGB using diameter and height as predictive variables. The wood density (WD) values 

for Chave et al., 2014 model are used as per species information. 
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 Species Model WD 

FSI 

(1996) 

Tectona grandis 
V = 0.04346 − 0.26352 √DBH

+ 8.79334 DBH2 
0.55 

Phyllanthus 

emblica 

-NA- Miscellaneous equation is 

used 
0.63 

Lagerstroemia 

parviflora 

V = 0.01617 − 0.66446 DBH
+ 9.71038 DBH2 

0.62 

Terminalia 

paniculata 

V = 0.131 − 1.87132 DBH
+ 9.47681 DBH2 

0.63 

Diospyros 

melanoxylon 

V = 0.0333 − 0.93267 DBH
+ 8.15911 DBH2

+ 1.30093 DBH3 
0.68 

Terminalia alata 
V = 0.131 − 1.87132 DBH

+ 9.47681 DBH2 
0.63 

Miscellaneous 

(Other Species) 

V = 0.0697 − 1.4597 DBH
+ 11.79933 DBH2

− 2.35397 DBH3 
0.63 

 

Chave 

et al., 

2014 

General Equation 

(for all species) 
V = 0.0559 (WD x DBH2x 𝐻) - 

 

4.3 Results and Discussion 

4.3.1 DBH and Tree Height 

To ensure robust allometric model development, TLS sampling focused on 

dominant and co-dominant species identified through permanent plot data 

(Table 4.1). This strategy was aimed to capture a representative range of species 

and diameter classes across the study site (Figure 4.1).  The diameter range of the 

sampled trees using TLS closely matched the 5th and 95th percentiles of the 

diameter distribution for each species based on the permanent plot data (Table 

4.1).  

The accuracy of the TLS-derived DBH and height estimates was validated 

for all 132 trees (Dataset-A & Dataset-B) by comparing them with reference field 

measurements collected during data acquisition (Figure 4.4). The estimated DBH 

ranged from 8.1 cm to   42.73 cm, with reference values spanning from 9.7 cm to 

46.2 cm.  A strong positive correlation (R² = 0.96; n = 132; p < 0.01) was observed 

between the estimated and reference DBH values (Figure 4.4A). The root mean 

squared error (RMSE) was 1.9 cm, translating to a relative RMSE (rRMSE) of 

8.9%. Notably, the majority of residuals fell within ±3.0 cm of the reference 
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values. The relative RMSE was slightly higher in the lower DBH range (<20 cm) 

at 11.8%, decreasing to 3.3% for trees with DBH greater than 40 cm.  

Similarly, tree height estimates using the TLS-QSM method exhibited a 

strong positive correlation (R² = 0.98; n = 132; p < 0.01) with reference field 

measurements (Figure 4.4B). The RMSE for height estimation was 0.54 m, 

corresponding to a rRMSE of 4.1%. The uncertainty in tree height estimation has 

not changed substantially with the increase in tree height (Figure 4.4B). 

 

Figure 4.4. Scatterplot showing comparison of TLS-derived parameters with field 

measurements for (A) DBH and (B) height for the TLS scanned trees). 

4.3.2 Tree Volume 

The accuracy of the QSM-derived tree volume estimates from TLS data was 

evaluated by comparing them with reference volumes obtained from destructive 

sampling measurements (Dataset-A). The estimated TLS volumes showed a close 

agreement with the reference values, exhibiting a bias of < 6% (Table 4.4). A linear 

regression analysis between the estimated and reference volumes revealed a 

strong positive correlation (R² = 0.99) with a slope of 1.09, indicating a slight 

overestimation of tree volume for larger trees (Figure 4.5). The standard 

deviation in the estimated tree volume due to the random variation of patch 

diameters within the TreeQSM method was found to be less than 5%, indicating 

a high level of reliability for non-destructive volume estimations using TLS. 

Additionally, the root mean squared error (RMSE) was 0.012 m³, and the 

concordance correlation coefficient (CCC) was 0.98 (95% Confidence Interval: 

0.95 – 0.99). Given the high level of agreement between the TLS-derived tree 

volumes and the destructive samples, the parameterization used for Dataset-A 

was applied to the remaining 127 trees (Dataset-B) to compute non-destructive 

tree volumes for allometric model development. 
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Table 4.4. Non-destructive tree volume estimates in comparison with the destructive 

measurements for 05 teak (Tectona grandis) trees as part of Dataset-A. Where Xvol denotes 

the volume with respect to various methods (X) employed in the study. 

 

Field 

Height 

(m) 

Field 

DBH 

(cm) 

Weight 

(kg) 

Desvol 

(m3) 

TLSvol 

(m3) 

Bias 

(%) 

FSIvol 

(m3) 

Chavevol 

(m3) 

Tree1 19.30 43.93 1041.85 1.847 1.926 4.3% 2.466 2.082 

Tree2 17.87 23.87 283.18 0.487 0.459 -5.7% 0.655 0.569 

Tree3 20.20 40.43 1076.84 1.783 1.895 6.3% 2.068 1.845 

Tree4 24.76 47.75 1383.15 2.188 2.296 4.9% 2.939 3.155 

Tree5 25.46 52.20 1449.56 2.593 2.758 6.4% 3.543 3.878 

 

Figure 4.5. Comparison of destructive tree volume estimates for Tectona grandis trees 

with the TLS-QSM derived tree volumes for Dataset-A. 

4.3.3 Allometric Models 

The 127 trees in Dataset-B encompassed a broad diameter range (9.7 cm to 46.2 

cm) and represented various species commonly found in tropical dry deciduous 

forests of India (Figure 4.6). This dataset provided the foundation for developing 
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local, species-specific allometric models. Subsequently, we utilized the non-

destructive tree volumes derived from the TLS-QSM method (refer to section 

4.2.4 for details on TLS-QSM) as the dependent variable in allometric model 

development.  Diameter at breast height (DBH) and tree height were employed 

as the independent predictor variables in two separate log-linear model forms, 

as shown in Equations (1) and (2). 

Following model fitting and bias correction, the final allometric models for 

the entire site (including all species data from Dataset-B; n = 127) are presented 

in their back-transformed log-linear forms below: 

 𝑉 = 9.543 ∗ (𝐷)1.93 (8) 

 𝑉 = 0.681 ∗ (𝐷2𝐻)0.739 (9) 

Where V is the estimated tree volume (m3), D is the diameter at breast height (m), 

and H is the tree height (m). 

 

Figure 4.6. Species-level information of all trees at the study site as violin plot indicating 

the density distribution and range using all the tree samples data from 55-ha permanent 

plots. The red dots indicate the girth values of 127 acquired TLS samples for allometric 

model development. 

The allometric model that incorporates tree height as a predictor variable 

(height-inclusive model) exhibited superior performance compared to the model 

using only diameter (diameter-exclusive model). The height-inclusive model 

achieved a higher coefficient of determination (R² = 0.94) and a lower root mean 
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squared error (RMSE) of 21.1% when compared to the diameter exclusive 

allometric model (R2 = 0.93; RMSE = 24.4%) (Figure 4.7).  

Table 4.5 presents detailed information about species-specific allometric 

equations developed in both model forms (with and without height) using the 

tree volume from TLS data in a non-destructive way. The RMSE for these models 

ranged from 15.2% to 21.4% for the height-inclusive model and 17.8% to 28.2% 

for the diameter-exclusive model. This trend confirms that including tree height 

as a predictor variable consistently reduces the overall error in volume estimation 

across all species (Table 4.5). Notably, for the mixed-species category 

(miscellaneous), incorporating height substantially reduced the RMSE from 

28.2% to 19.3%. 

To assess model uncertainty beyond the fitting data, relative RMSE errors 

were computed using the independent data (Dataset-C; n = 25 trees). Since the 

species-specific samples were few, the errors were computed using all species 

information. With RMSE of 10.9% compared to diameter-exclusive allometric 

model (RMSE = 13.5%), the all-species model showed better performance with 

inclusion of height as predictor variable. Using the species-specific models, the 

RMSE is 15.4% and 21.6% for diameter-height and diameter models respectively, 

for the independent dataset. However, the samples were sparse for testing 

species-specific models. 

 

Figure 4.7. Site-specific allometry derived from TLS-QSM tree volumes with (A) 

Diameter and Height (B) Diameter as predictive models. 
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Table 4.5. General and species-specific allometric model coefficients (a & b as defined in Equations (1) & (2)) and respective standard errors (se) 

for the dominant and co-dominant tree species at the study site using TLS-QSM volume estimates. R2 is based on the fit of the species-specific 

log-transformed observations using the model coefficients after bias removal. Relative RMSE (%) was calculated as the average of all relative 

RMSE estimates across all diameter classes. RMSE-Valid indicates the validation RMSE error using Dataset-C evaluated using general species 

equation. 

Equation Species n 
DBH Range 

[cm] 
a a [se] b b[se] R2 

RMSE 

(%) 

RMSE 

- Valid 

(%) 

DBH2 H 

  

  

  

  

  

All Species 127 9.7 - 46.2 -0.4134 0.0268 0.7387 0.0186 0.94 21.1 10.9 

Tectona grandis 33 11.1 - 46.2 -0.3826 0.0341 0.7400 0.0297 0.95 17.6 

  

Phyllanthus emblica 11 9.7 - 26.6 -0.4432 0.0775 0.7689 0.0557 0.95 15.2 

Lagerstroemia parviflora 12 9.9 - 25.1 -0.6069 0.1780 0.7313 0.0996 0.90 17.9 

Terminalia paniculata 13 10.0 - 28.8 -0.2168 0.1492 0.7548 0.0913 0.91 21.4 

Diospyros melanoxylon 16 10.2 - 35.8 -0.4885 0.0736 0.6323 0.0606 0.87 18.8 

Terminalia alata 19 10.2 - 43.3 -0.4036 0.0375 0.7221 0.0362 0.91 17.9 

Miscellaneous  23 9.7 - 41.8 -0.4686 0.1083 0.7221 0.0578 0.97 19.3 

DBH 

  

  

  

  

All Species 127 9.7 - 46.2 2.2212 0.0938 1.9280 0.0535 0.93 24.4 13.5 

Tectona grandis 33 11.1 - 46.2 2.2140 0.1263 1.8389 0.0767 0.98 19.3 

  

Phyllanthus emblica 11 9.7 - 26.6 2.3067 0.3845 2.0039 0.2096 0.94 17.8 

Lagerstroemia parviflora 12 9.9 - 25.1 2.1214 0.5777 1.9782 0.2881 0.88 20.4 

Terminalia paniculata 13 10.0 - 28.8 2.4345 0.4389 1.9536 0.2306 0.92 20.3 

Diospyros melanoxylon 16 10.2 - 35.8 1.7286 0.2609 1.6710 0.1570 0.83 22.3 

Terminalia alata 19 10.2 - 43.3 2.0074 0.1459 1.7688 0.1034 0.88 21.1 

Miscellaneous  23 9.7 - 41.8 2.1817 0.3024 1.9631 0.1559 0.93 28.2 
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4.3.4 Comparison with other Allometric Equations 

The performance of the TLS-derived allometric models was evaluated against 

commonly used volume equations from FSI (1996) and Chave et al. (2014) 

typically applied for AGB estimation across tropical Indian forests (Fararoda et 

al., 2021; Rajashekar et al., 2018).  An independent validation dataset (n = 25; 

Dataset-C) not used in model development was employed for this comparison. 

Since the predictor variables differed between the existing equations (FSI using 

DBH only and Chave et al. including both DBH and height), we compared them 

to corresponding models developed in this study. For a fair comparison, the 

species-specific FSI (1996) models were compared with the TLS-derived 

diameter-only models at the species level, while the Chave et al. (2014) model 

was compared with the all-species model that incorporates both DBH and height 

as predictors. 

 

Figure 4.8. Comparison of destructively measured tree volumes for Dataset-C (n=25 

trees) with different allometric models (A) TLS-DBH and Height, (B) Chave et al., 2014, 

(C) TLS-DBH, and (D) FSI (1996). Generic (all species) TLS allometry models were 

considered in all cases. 
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The locally derived, non-destructive TLS-based allometric models 

demonstrated significant advantages over the commonly used equations within 

the study site (Figure 4.8). The TLS model incorporating both diameter and 

height achieved a substantially lower RMSE (11.1%) and bias (0.7%), along with 

a high concordance correlation coefficient (CCC) of 0.98, compared to the Chave 

et al. (2014) model (RMSE = 32.7%, bias = 15.3%, CCC = 0.91). Similarly, the TLS 

diameter-only model (RMSE = 13.5%, bias = 3.4%, CCC = 0.94) outperformed the 

FSI (1996) diameter-based models (RMSE = 33.2%, bias = 17.8%, CCC = 0.89). 

In summary, the existing volume equations commonly used for tropical dry 

deciduous forests in India exhibited higher uncertainty and a tendency to 

overestimate tree volume and consequently, aboveground biomass at the 

individual tree level. The TLS-derived models offer a more accurate and site-

specific alternative for biomass estimation. 

4.4 Discussion 

Accurate allometric models are essential for reducing uncertainty in biomass 

mapping. This study investigated the potential of Terrestrial Laser Scanning 

(TLS) data as a promising solution. TLS offers detailed 3D information for non-

destructive tree volume estimation. We explored this potential by utilizing TLS 

data to capture intricate tree structures and integrating it with a limited number 

of destructive field measurements. These field measurements played a crucial 

role in validating the accuracy of TLS data and ensuring reliable model 

development. Our findings convincingly demonstrate the superiority of using 

TLS data combined with appropriate modelling techniques compared to relying 

solely on traditional field measurements. The results show that the TLS data 

combined with QSM modeling is much more capable than just replicating simple 

field measurements and providing relevant information on complex tree 

dimensions towards tree volume estimations. 

4.4.1 Allometric Models 

Individual tree AGB is highly influenced by wood density, which exhibits 

significant variation across species, sites, and even within individual trees due to 

age and height (Chave et al., 2009).  While excluding wood density from biomass 

allometry offers greater flexibility for large-scale estimations (Stovall et al., 2018), 

the observed variability in model coefficients underscores the need for region-

specific volume equations (Duncanson et al., 2015).  In recognition of these 

factors, this study focused on developing non-destructive, region-specific 

volume equations for central Indian dry deciduous forests, excluding wood 

density as the dependent variable and utilizing Terrestrial Laser Scanning (TLS) 

data. 
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While QSM offers a effective semi-analytical baseline method for TLS based 

estimation of tree volume with high degree of precision (Hackenberg et al., 2015; 

Stovall et al., 2018), the potential for over- or underestimation remains dependent 

on segmentation parameter selection. In order to reduce the chances of erroneous 

inferences, we employed a limited number of field-based destructive 

measurements (Dataset-A) to validate the TLS derived volume. The results are 

promising, with QSM modeling of 3D point clouds achieving high retrieval 

accuracy (RMSE = 6%, meanBias = -3.2%). This surpasses the accuracy of other 

common allometric models for this site (Table 4.4). These findings align with 

previous studies that utilized QSM-based models for tree volume estimation 

(Calders et al., 2014; Hackenberg et al., 2015). Hackenberg et al. (2015) reported 

volume errors within 10% for 36 trees of various species using high-quality TLS 

data. Calders et al. (2014) observed a slight overestimation (9.68%) of tree 

volumes in open eucalypt forests (Australia) compared to destructive sampling.  

Furthermore, the close agreement between TLS-derived diameter and height 

measurements and field data (Figure 4.4) strengthens the reliability of the TLS-

derived volume estimates for developing non-destructive allometric models. 

 

Figure 4.9. Mean Absolute error distribution in tree volume with respect to tree diameter 

for the independent destructive sampling dataset (Dataset-C) due to varying choice of 

allometric model. The blue line indicates a 20% mean absolute error with respect to mean 

tree volume of the dataset 

Our site-level, generic TLS-QSM allometric models (Table 4.5) 

demonstrated high accuracy when validated against an independent destructive 

measurements (Figure 4.8). Including tree height (H) as a predictor variable 

alongside diameter at breast height (DBH) significantly reduced modeling error, 

achieving the highest coefficient of concordance (CCC) close to 1, indicating 

excellent model reproducibility. Notably, while the root mean square error 

(RMSE) difference between the DBH+H and DBH-only models was minimal, the 
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absolute volume deviations for large diameter trees were considerably higher 

using the DBH-only model (Figure 4.9). Conversely, the DBH+H model exhibited 

consistent volume estimations across the entire diameter range (Figure 4.9), 

highlighting the importance of incorporating height for accurate volume 

prediction, particularly for larger trees. Tree height is an integral part of tree 

growth since trees tend to optimize growth strategies and align physiological 

processes driving tree growth to fill the available 3D space in the canopy in order 

to maximize photosynthetic input and reduce competition (West et al., 1999).  

The inclusion of both DBH and height (H) in the model aligns closely with 

the concept of cylindrical volume estimation, suggesting a near-linear 

relationship (Equations (1) and (2)). The model coefficients likely represent 

variations in wood allocation patterns relative to a standardized diameter and 

height. However, the DBH+H model doesn't entirely replace the need for species-

specific models. Due to differing wood allocation strategies across species, the 

species-level models achieved lower errors compared to the single, combined 

model across all species (Table 4.5). However, these species-specific models were 

not tested with validation measurements (Dataset-C) due to the limited 

availability of destructive tree measurements at the species-level.  

The significant benefit of the TLS in non-destructive volume estimation 

could be ascertained in both large tree volume estimation and increasing the 

sampling size, which are major constraints in the existing allometric models. 

Large trees are often under-represented since they are not easy to be measure due 

to practical limitations. Using allometric models which lack higher diameter 

range would possibly predict the tree volumes with large absolute errors and 

could be potentially unrealistic (Calders et al., 2014). Considering that the large 

trees hold approximately 40% of stand-level biomass (Brown, 1997), increasing 

sampling size particularly for large trees, could potentially alter our 

understanding in terms of forest-wide volume and biomass allocation. 

4.4.2 Uncertainty due to Sample Size 

Traditional volume equations derived from destructive measurements are often 

hampered by limited calibration samples. This can lead to systematic bias when 

applied to estimate tree volumes across diverse diameter and height classes 

(Clark and Kellner, 2012). To assess this limitation, we conducted a sample size 

analysis on model coefficients and uncertainties. We performed iterative random 

sampling from Dataset-B, ranging from 5 to 125 samples in increments of 5. Each 

sample set was used to develop allometric models, which were then evaluated 

against independent destructive measurements (25 trees; Dataset-C). Root Mean 

Square Error (RMSE) and bias were computed for each model. This process was 

repeated 1000 times at each sample size to analyze parameter variations. 
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Figure 4.10. Box-plot variations of TLS-QSM allometry in terms of RMSE and bias 

using [left] diameter-height and [right] diameter as predictor variables with respect to 

varying sample size. The red dotted line indicates the mean-RMSE at the maximum 

sample size. 

Figure 4.10 illustrates the impact of sample size on model performance 

through boxplots of RMSE and bias variations across 1000 simulations. Both 

diameter-only and diameter-height models exhibit a clear trend of stabilizing 

RMSE and bias errors as sample size increases beyond 50-55 samples.  With over 

100 samples, the median RMSE across simulations falls below 1% of the mean 

RMSE obtained using the entire dataset, with an interquartile range (IQR) of less 

than 0.5%. Notably, the inclusion of height alongside diameter (diameter-height 

models) does not significantly alter this stabilization pattern.  

These findings differ from Stovall et al. (2018), where diameter-height 

models achieved stability at 100 samples compared to 200 samples for diameter-

only models. This discrepancy might be attributed to inherent co-linearity 

between height and diameter, with diameter capturing most of the volume 

variation. However, a consistent, systematic median bias is observed in the 

diameter-only models with increasing sample size, while the bias in diameter-

height models remains close to zero. Consequently, diameter-height models 

demonstrate comparatively lower RMSE and are preferable for minimizing 

uncertainty in plot-level biomass predictions. 
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Our findings emphasize the importance of adequate sample size to 

minimize prediction errors and bias in tree volume and subsequent biomass 

estimations. These results align with prior studies demonstrating high variability 

and consistent bias at low sample sizes, using both non-destructive TLS sampling 

(Stovall et al., 2018) and destructive measurements (Roxburgh et al., 2015).  Given 

the efficiency of TLS for non-destructive tree volume acquisition, this technology 

offers the potential to develop or improve numerous allometric equations, 

particularly through targeted measurements stratified by specific geographic 

regions. 

In practice, diameter-only volume equations are often preferred due to the 

readily available nature of diameter measurements in forestry practices. Height 

measurements can be less reliable and often unavailable in existing plots due to 

field measurement challenges (Anderson-Teixeira et al., 2015). However, our 

analysis clearly demonstrates the value of height data in improving overall 

prediction quality. A recent study by Sullivan et al. (2018) highlights that 

including even a relatively small number of individual tree heights (as few as 20) 

in tropical allometry can significantly improve predictive power compared to 

regional or climate-based equations. Thus, TLS-based tree volume equations 

offer a significant advantage by overcoming traditional limitations associated 

with achieving high sample sizes and overcoming difficulties in measuring basic 

parameters like diameter and height. This technology facilitates efficient and 

non-destructive tree volume measurements. 

4.4.3 Comparison with Other Allometric Equations 

TLS-derived allometric models outperformed traditional volume equations 

when applied at the individual tree level (Figure 4.9). Traditional models 

significantly overestimated biomass and exhibited higher uncertainty, 

particularly for large diameter trees (>35-40 cm) in our study region (Figure 4.9). 

This highlights a key limitation of applying these equations at a fine scale. Most 

national/pan-tropical allometric equations are built using data from diverse 

locations and are not intended for small-scale application. In our study site, 

commonly used allometric equations for the Indian region performed adequately 

for smaller diameter trees, but both variability and bias increased significantly 

for larger diameter trees. This discrepancy might be attributed to the limited 

availability of samples within the higher biomass range during model 

development, potentially leading to reduced model accuracy in these classes. 

The observed systematic bias in applying national-scale allometry at the 

local level, particularly for large diameter trees, warrants further investigations. 

Future studies could explore how incorporating regional data or stratifying 

models by diameter class can improve the accuracy of biomass estimates. This 

highlights the advantage of TLS-based approaches, which can efficiently collect 
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data on a large number of trees within a specific region, potentially leading to 

more accurate and regionally-specific biomass models. 

4.5 Summary 

This study successfully evaluated the effectiveness of TLS point clouds for 

generating accurate, non-destructive tree volume estimates at the individual tree 

level. We established a framework for developing local allometric models, 

applicable to both site-level and species-level analyses in central Indian dry 

deciduous forests. These models utilize diameter and diameter-height as 

predictor variables for tree volume computation. Validation demonstrated the 

superiority of TLS allometric models compared to traditional methods. Notably, 

the TLS models achieved lower RMSE (11.1% with diameter and height; 13.5% 

with diameter only) and higher CCC (0.98 and 0.94, respectively) for tree volume 

estimation. Traditional models, on the other hand, exhibited significantly higher 

RMSE (>30%). This suggests that locally derived allometric models based on TLS 

data outperform traditional approaches for individual tree volume predictions. 

The higher errors observed in traditional models for larger diameter classes likely 

stem from potential under-sampling of these trees during model development. 

A key limitation of the current TLS-based volume estimation method lies in 

the parameterization of the TreeQSM approach. This method relies on coincident 

destructive sampling measurements, and in this study, it was specifically 

standardized using teak trees within the study area.  While the independent 

validation dataset helps mitigate substantial bias or errors in the estimated 

volume, potential biases might still be introduced due to variations in tree 

architecture across different species.  Ideally, future studies would incorporate 

coincident TLS and destructive samples from a wider range of species to optimize 

TreeQSM parameterization for diverse tree morphologies and eliminate potential 

errors associated with this approach. 

This study highlights a significant advantage of TLS-based QSM for tree 

volume estimation.  Traditional allometric models often suffer from limitations 

related to sample size requirements.  Many models developed with less than 100 

samples exhibit substantial bias in tree-level volumes and aboveground biomass 

(AGB) estimations. The strength of the TLS-based QSM approach lies in its 

demonstrated robustness for volume estimation without prior knowledge of tree 

structure. This eliminates a major constraint of traditional allometric models and 

facilitates the non-destructive inclusion of large trees, which are often under-

represented due to practical limitations associated with traditional measurement 

techniques. By overcoming these limitations, TLS-based QSM paves the way for 

the development of improved, site-specific allometric models with reduced 

uncertainty in biomass mapping. This could lead to more accurate estimations of 

current and past forest carbon stocks. 
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4.5.1 Influence of allometric model at 1-ha plot sizes 

While allometric models might exhibit some error at the individual tree level, 

these errors tend to cancel out as the number of trees in a plot increases (Chave 

et al., 2004; Réjou-Méchain et al., 2019). This is because the errors are often 

random and independent of each other. Our study confirms this by analyzing 

above-ground biomass (AGB) estimates at large field plots (1-hectare and 

greater) (Figure 4.11). 

 

Figure 4.11. Variability in Plot-level AGB for one plot with increase in plot size as per 

the choice of allometric model for the study site - Betul, Madhya Pradesh 

We have carried out bias estimation in AGB (by using reported wood 

density values; Table 4.3) with respect to the traditionally used volume equations 

(Table 4.3) and the TLS based allometric models at 13 large field plots (1-ha and 

greater sizes; see Section 3.2 for more details on field plots at Betul). Since the 

species-specific TLS models were developed using sample sizes of less than 30 

for most cases, only all species based TLS models were employed in this analysis. 

The observations make it clear that the TLS allometric models (both DBH only 

and DBH+H) are very close with each other at plot level. The FSI allometric based 

estimates were observed to be in ±10% bias with the TLS-allometry based 

estimates (Figure 4.12). However, larger biases at plot-level estimations are 

observed with the pan-tropical model (Chave et al., 2014) compared to TLS-

allometry based estimates (Figure 4.12). The plot-level biases using Chave model 

is strongly linked to the diameter distributions. This highlights a key advantage 

of using larger plots (~1 hectare): the random errors associated with individual 

tree models tend to average out, providing more consistent estimates.  Further, 

our findings support that the bias between allometric models was significantly 

lower for the 32-ha plot compared to smaller plots. However, they impractical to 

establish due to logistical challenges and costs.  
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Figure 4.12. Comparison of Plot-level AGB for all plots using different allometric models 

available for Betul, Madhya Pradesh 

For other study sites (Achanakmar and Yellapur; see Section 3.2), we have 

made a similar analysis comparing the plot-level AGB estimations between FSI 

model and the Chave model. At 1-ha plot size, the plot-level AGB showed 

minimal variability between the two traditionally available models over Indian 

tropical forests.  

 

Figure 4.13. Plot-level (1-ha) comparison of AGB estimates across distinct forest types 

and sites using traditionally available allometric models 



68 
 

4.5.2 Suitability of Allometric Models for Spatial AGB Estimates 

Allometric models, while imperfect for individual trees, become more reliable for 

estimating plot-level AGB with increase in plot sizes (typically 1 hectare and 

above) due to error cancellation. This section guides the selection of the most 

suitable model for spatial AGB assessments across India's diverse forests. Three 

primary options exist (Figure 4.14): 

 Existing FSI Volume Equations: Locally-developed at species level. They 

are readily available. However, these equations lack uncertainty estimates 

and focus on merchantable tree volume, introducing inaccuracies when 

converted to total biomass. 

 Pan-Tropical Chave Model (2014): When locally-derived models are 

unavailable, Chave's model offers a strong alternative. It provides a good 

balance between accuracy and applicability across various forest types. 

Additionally, it incorporates uncertainty estimates, critical for generating 

reliable spatial AGB maps. 

 Locally Developed TLS-based Models: Ideally, non-destructive volume 

equations derived from Terrestrial Laser Scanning (TLS) point clouds 

should be prioritized. These models offer superior accuracy due to: (a) 

Site-specific calibration and (b) Ability to capture large trees, often 

underestimated by traditional methods and (c) detailed uncertainty 

estimates. 

– However, their current limitation lies in availability. Locally 

developed TLS models are not yet extensive, restricting their large-

scale implementation. 

 

Figure 4.14. Suitability Assessment of Allometric Models for Spatial Above-Ground 

Biomass (AGB) Estimation in Indian Forests 
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Recommendations for selection of allometric models towards improved 

spatial AGB estimation over Tropical Indian forests. 

A. Prioritize locally developed TLS models when available for superior 

accuracy. 

B. Use the Pan-Tropical Chave Model (2014) for large-scale applications due 

to its global consistency, uncertainty estimates, and broad applicability. 

C. The use of FSI models could be limited due to limitations in scope and lack 

of uncertainty estimates. 

Prioritizing locally developed TLS models offers the most accurate 

approach. However, their current limitations necessitate alternative models like 

Chave's for large-scale applications. FSI models, while convenient, are less 

suitable due to missing uncertainty estimates and limited scope. Future efforts 

should focus on expanding the availability of locally developed TLS models for 

broader implementation and enhanced spatial AGB assessments across India. 

Statistically significant differences were observed in individual tree 

biomass estimates based on the chosen model, highlighting the importance of 

selection. Plot size also demonstrated a substantial effect, especially for plots 

smaller than 0.5 hectares, due to ground measurement errors. At the 1-hectare 

scale, the Chave model emerged as the preferred option due to its advantages. 

Locally developed TLS models hold promise but require wider implementation. 
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Chapter 5   

 

Generating High-quality reference LiDAR AGB maps 

with uncertainty estimates 

Understanding the global carbon cycle and combating climate change hinges on 

accurately measuring the carbon stored in tropical forests. However, existing 

satellite-derived AGB maps produce markedly divergent estimates and are 

afflicted with uncertainties. While promising new AGB mapping satellite 

missions like GEDI and BIOMASS are on the horizon, their accuracy relies on 

high-quality reference data (Duncanson et al., 2019). 

This chapter addresses this challenge to develop high-quality reference 

AGB data for improving large-scale Spatial AGB estimates for accuracy. Our 

method combines two key data sources: detailed three-dimensional information 

of the forest canopy captured by Aerial LiDAR, and ground-truth measurements 

of AGB within specific areas obtained from well-characterized field plots. 

Additionally, our approach incorporates Monte Carlo simulations to generate 

uncertainty maps alongside each AGB map, to help calibrating EO based AGB 

mapping missions. Initially focused on three Indian sites, collaboration expanded 

the research to encompass a total of 13 sites across South Asia and Central Africa. 

The resulting LiDAR-derived AGB reference maps are openly available at both 

100m and 40m resolutions, covering individual airborne LiDAR footprints 

ranging from 100 to 40,000 hectares. 

5.1 Introduction 

Tropical forests play a vital role in the Earth’s carbon cycle and contribute largely 

to uncertainties in the global carbon budget (Mitchard et al., 2013). Methods to 

accurately map and monitor tropical forest carbon – or aboveground biomass 

(AGB) – are thus urgently needed to improve Earth system models and to help 

design carbon emission mitigation strategies in the context of Reducing 

Emissions from Deforestation and forest Degradation (REDD+) (Herold et al., 

2019; Schimel et al., 2015). In the last decade, spaceborne Earth Observation (EO) 

data in combination with forest inventory measurements have been extensively 

used to generate spatially continuous AGB maps at pan-tropical scale using 

different modelling strategies (Dubayah et al., 2020; Herold et al., 2019; Mitchard 
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et al., 2014a; Réjou-Méchain et al., 2019). However, existing broad-scale maps 

show divergent estimates among themselves and differ from field-derived forest 

AGB stocks at different spatial scales (Fararoda et al., 2021; Mitchard et al., 2013, 

2014a; Réjou-Méchain et al., 2019), indicating the presence of high uncertainties 

in prediction maps. To improve the accuracy and reliability of AGB maps over 

the tropics, several ongoing and upcoming EO missions (NASA’s GEDI, ESA’s 

BIOMASS, NASA-ISRO’s NISAR and JAXA’s ALOS-4 missions, notably) have 

been specifically designed to collect satellite data sensitive to forest structure, 

hence to forest AGB (Amelung and others, 2019; Dubayah et al., 2020; Motohka 

et al., 2021; Quegan et al., 2019). While these new spaceborne datasets will 

undoubtedly revolutionise broad-scale forest AGB mapping, a network of high-

quality reference data is needed to calibrate and validate the mapping algorithms 

(Chave et al., 2019; Labrière et al., 2023). Besides, using the same sets of reference 

data across different EO missions would vastly improve the comparability and 

confidence in the derived AGB maps, enabling their use in a wide range of 

science, policy, and management applications (Duncanson et al., 2019). 

The establishment and long-term maintenance of a network of reference 

forest AGB observatories across the tropics entails a myriad of challenges, 

particularly concerning the representativeness of the network (Labrière et al., 

2023). Ideally, the network should be relatively evenly distributed in space and 

cover the main environmental gradients. While scientific discussions on site 

selection are on-going (Labrière et al., 2023), the Global Ecosystem Dynamics 

Investigation (GEDI) sensor on-board the International Space Station has already 

acquired data for a longer period than its initially projected lifetime. Data users 

would benefit from open-access reference AGB data, particularly in Asia where 

large geographic regions are not represented in the calibration/validation dataset 

of GEDI biomass mapping algorithm (Duncanson et al., 2022; Rodda et al., 2023). 

Besides the notion of spatial representativeness, hurdles related to the temporal 

mismatch between reference AGB and EO data should not be neglected. Rapid 

growth in regenerating forests or forest clearing/degradation – which notably 

characterise rural landscapes around central African cities, where slash-and-burn 

agriculture induces relatively fast dynamics – could rapidly make tens of 

thousands of GEDI data shots unusable. We argue that airborne LiDAR data 

acquired during GEDI lifetime over rapidly changing landscapes are invaluable 

and should be utilized to improve GEDI biomass mapping algorithms, notably 

on the lower-end of the forest biomass gradient to best capture forest degradation 

and regeneration gradients. 

In this context, we aim to generate reference biomass datasets over the 

tropics for eight sites in Central Africa and five sites in South Asia (Figure 5.1) by 

calibrating airborne LiDAR data with locally established field plots. This chapter 

briefly describes (1) the details of the study sites and the datasets used, (2) the 

methodology used to generate the reference AGB maps (Figure 5.2), and (3) the 
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Monte Carlo simulation workflow used to generate uncertainty maps along with 

each reference AGB map. Finally, this paper provides access to these reference 

AGB datasets generated at 100 m and 40 m spatial resolutions over airborne 

LiDAR footprints ranging from 100 to 40,000 ha. 

5.2 Materials and Methods 

5.2.1 Sampling sites and associated inventory and LiDAR datasets 

The co-located forest inventory and LiDAR datasets were compiled from 13 

sampling sites in Central Africa and South Asia encompassing an array of abiotic 

conditions, forest types and structures (Figure 5.1, Table 5.1 and Table 5.2). Forest 

inventories were carried out at each site, and LiDAR datasets were obtained with 

an absolute temporal difference of 2.2 ± 1.9 years (range: 0 – 6.2 years) from the 

field measurements. 

 

Figure 5.1. (A) Overview map showing the locations of sampling sites (n = 13) used in 

the current study. Outlined regions are expanded in (B): South Asian region and in (C): 

Central African region. 

Forest inventories were conducted by different teams but followed similar 

protocols. In each plot, the diameter at breast height (DBH or referred to as D in 

this study, with D ≥ 10 cm) and the taxonomic identification of each tree were 

recorded. Tree relative coordinates within the plots were measured either at the 

individual or at the 20 x 20 m quadrat level. For a subsample of trees within the 

plots, tree height (H) was measured using a laser rangefinder device. Finally, plot 

geographic coordinates were determined using points measured every 20 m 

along the plot borders using a combination of differential GPS measurement 

system and electronic total station (in Asia) or a regular GPS system (in Africa), 

to warrant an accurate link between ground and remote-sensing data.  
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Figure 5.2. Flowchart depicting workflow of the data analysis procedure to generate 

reference AGB datasets. 

The complete inventory dataset includes information on D and H 

measurements for respectively 97,251 and 13,303 trees, and identification rates of 

89% at the species level and 92% at the genus level (8% of the trees were left 

unidentified). The number, size and layout of the inventory plots are uneven 

across sampling sites with, e.g., a single large 25-ha plot in the Forest-Geo “Rabi” 

site, a large 30-ha plot and smaller plots of 1-ha and 0.48-ha in the “Khao Yai” 

site, or a varying number of scattered 1-ha plots (ranging from 2 to 16 in the 

“Atout” and “Achanakmar” site, respectively). In general, the inventoried extent 

per site is smaller in Africa (9 ± 8 hectares) than in Asia (27 ± 13 hectares). For a 

breakdown of plot number, size, tree measurements and identification rates per 

sampling site, please refer to Table 5.3.  

The LiDAR data at each sampling site were acquired between 2012 and 2022 

using either aircraft or unmanned aerial vehicles (UAV, Table 5.2). 
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Table 5.1. Environmental conditions across sampling sites. Over the LiDAR acquisition 

area, the statistics (mean ± standard deviation) of elevation and slope are computed using 

SRTM at 30-m spatial resolution (V3 product), Mean Annual Temperature (MAT) and 

Mean Annual Precipitation (MAP) are computed using WorldClim Version 2.1 data. 

S 

No. 
Site name Region Elevation Slope MAT MAP 

1 Betul S-As 487 ± 48 7.8 ± 5.7 25.6 ± 0.3 1266 ± 27 

2 Achanakmar S-As 813 ± 165 8.8 ± 6.8 23.3 ± 0.7 1328 ± 42 

3 Yellapur S-As 459 ± 110 8.7 ± 7.8 24.4 ± 0.5 2383 ± 421 

4 Uppangala S-As 377 ± 122 18.6 ± 8.5 25.1 ± 0.5 3789 ± 63 

5 Khaoyai S-As 757 ± 34 6.8 ± 4.2 23.3 ± 0.1 1127 ± 7 

6 Nachtigal C-Af 527 ± 50 4.5 ± 3.4 24.4 ± 0.5 1588 ± 17 

7 Mbalmayo C-Af 662 ± 11 5.2 ± 3.3 23.6 ± 0.1 1706 ± 1 

8 Atout C-Af 715 ± 11 5.2 ± 3.0 23.7 ± 0.1 1572 ± 1 

9 Kompia C-Af 705 ± 20 5.7 ± 3.3 23.5 ± 0.1 1606 ± 2 

10 Somalomo C-Af 656 ± 13 4.7 ± 3.0 23.7 ± 0.1 1602 ± 3 

11 Bouamir C-Af 696 ± 14 5.3 ± 3.1 23.5 ± 0.1 1616 ± 2 

12 Mabounié C-Af 88 ± 31 7.3 ± 4.6 26.1 ± 0.1 2034 ± 16 

13 Rabi C-Af 68 ± 15 6.3 ± 3.8 25.6 ± 0.1 1826 ± 4 

 



75 
 

Table 5.2. Sampling site details on forest types, inventory statistics and characteristics of the LiDAR acquisitions. AreaINV indicates the total 

area of field inventories, LiDARDate indicates the month and year of acquisition of LiDAR data and LiDARArea indicates the total area covered 

by LiDAR data over the site. Nrange and BArange indicate the range in number of trees and basal area per hectare across the inventoried area, 

respectively. The associated plant functional types (PFT’s) for each site are derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Land Cover Type product (MCD12Q1) which follows Land Cover Type 5 Classification Scheme; a similar strategy is adopted by GEDI 

Mission. 

Sno Site name Region PFT INVDate AreaINV Nrange BArange LiDARDate LiDARArea Platform 

1 Betul S-As DBT, GSW 02-2016 to 03-2016 46 150 - 437 7.2 - 20.2 04-2014 10000 Aircraft 

2 Achanakmar S-As EBT, DBT 12-2017 to 01-2018 16 186 - 509 10.0 - 31.3 10-2015 11000 Aircraft 

3 Yellapur S-As 
EBT, DBT, 

GSW 
01-2015 & 01-2016 15 140 - 749 20.3 - 43.6 11-2017 40000 Aircraft 

4 Uppangala S-As EBT 03-2013 & 03-2014 23 370 - 838 10.3 - 62.4 11-2013 900 Aircraft 

5 Khaoyai S-As EBT 11-2015 to 04-2018 34.84 394 - 1015 20.8 - 38.1 04-2017 4500 Aircraft 

6 Nachtigal C-Af DBT, GSW 02-2018 to 05-2018 13.16 216 - 538 23.4 - 35.0 01-2012 25000 Aircraft 

7 Mbalmayo C-Af EBT 04-2021 to 07-2021 9 442 - 596 20.1 - 32.5 02-2023 400 UAV 

8 Atout C-Af EBT 07-2017 2 475 - 574 30.8 - 32.0 11-2021 150 UAV 

9 Kompia C-Af EBT 12-2018 2 423 - 519 29.0 - 32.3 12-2019 400 UAV 

10 Somalomo C-Af EBT 09-2022 8 325 - 508 25.4 - 33.6 04-2022 800 UAV 

11 Bouamir C-Af EBT 12-2018 4 362 - 552 24.9 - 35.8 12-2018 1000 UAV 

12 Mabounié C-Af EBT 04-2012 to 10-2012 11 222 - 492 17.7 - 31.4 11-2007 16000 Aircraft 

13 Rabi C-Af EBT 2015 25 392 - 532 20.5 - 36.6 10-2012 1000 Aircraft 
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Table 5.3. Site-level details on field plot layout description, the number of compiled plots at 1-ha (N1ha) and 0.16-ha (N0.16ha), number of total 

trees across all plots (NTrees), number of trees measured for height (NTree_hts). Species, Genus and Family (%) stands for the identification rate 

(in %) at the given taxomonic level. 

No Site Field Plots description N1ha N0.16ha NTrees NTree_hts 
Species 

[%] 

Genus 

[%] 

Family 

[%] 

1 Betul Single plot of 34-ha and 12 distributed plots of 1-ha 34 227 15672 677 95% 96% 96% 

2 Achanakmar 16 distributed plots of 1-ha 16 64 5750 1546 88% 88% 88% 

3 Yellapur 15 distributed plots of 1-ha 15 60 8519 4932 97% 97% 97% 

4 Uppangala Single plot of 10-ha and 13 distributed plots of 1-ha 23 112 14967 1729 61% 61% 61% 

5 Khaoyai Single plot of 30-ha, 1 plot of 1-ha and 8 plots of 0.48ha 31 192 19461 517 100% 100% 100% 

6 Nachtigal 11 distributed plots of 1-ha & 18 distributed plots of 0.16 ha 11 62 4315 703 86% 96% 97% 

7 Mbalmayo 9 distributed plots of 1-ha 9 36 4378 532 74% 97% 99% 

8 Atout 2 distributed plots of 1-ha 2 8 1049   96% 99% 100% 

9 Kompia 2 distributed plots of 1-ha 2 8 942 49 95% 98% 98% 

10 Somalomo 8 distributed plots of 1-ha 8 32 4564 215 93% 99% 99% 

11 Bouamir 4 distributed plots of 1-ha 4 16 1784 171 92% 98% 98% 

12 Mabounié 11 distributed plots of 1-ha 11 44 4425 570 93% 100% 100% 

13 Rabi Single plot of 25-ha 25 144 11425 1662 94% 100% 100% 
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5.2.2 Inventory data processing: computation of reference AGB predictions 

Forest inventories were first split into 1-ha (i.e. 100 x 100 m) and 0.16-ha (i.e. 40 x 

40 m) plots, using information on tree location recorded in the field (i.e. either 

individual tree location or quadrat number). The two plot sizes correspond to the 

two mapping resolutions considered in this study. The 40-m resolution was 

chosen to account for plots where individual tree locations were only recorded 

at 20 x 20 m quadrat-level. In cases where the original plot size was not a multiple 

of the desired output size (typically when splitting 100 x 100 m plots into 40 x 40 

m plots), subplots of the desired outputs size were selected at the edges of the 

original plot, thus leaving-out parts of the original inventory dataset (20 m wide 

bands in the center as per the previous example). The resulting number of 1-ha 

and 0.16-ha plots compiled at each sampling site is provided in Table 5.3. 

Table 5.4. H-D Model coefficients (a, b, c) of the 2nd order log-log polynomial model form 

(𝑙𝑛(𝐻) = 𝑎 + 𝑏 × (𝑙𝑛(𝐷)) + 𝑐 × 𝑙𝑛(𝐷2) +  𝜀), where H is the height of the tree and D 

is the tree diameter. 𝜀 is the normally distributed error to be used during back-

transformation for Baskerville correction 

Sno Site a b c 
sigma 

[𝜺] 
R2 RMSE [m] 

1 Betul -1.163 1.857 -0.194 0.148 0.71 2.37 

2 Achanakmar -1.314 1.770 -0.159 0.250 0.63 4.06 

3 Yellapur 0.563 0.851 -0.050 0.231 0.60 3.75 

4 Uppangala 0.164 1.123 -0.077 0.249 0.67 4.33 

5 Khaoyai 1.094 0.479 0.025 0.329 0.66 4.90 

6 Nachtigal -0.446 1.457 -0.127 0.223 0.72 5.06 

7 Mbalmayo 

-0.081 1.286 -0.104 0.243 0.71 4.61 

8 Atout 

9 Kompia 

10 Somalomo 

11 Bouamir 

12 Mabounié 0.283 1.102 -0.083 0.236 0.66 5.47 

13 Rabi 1.234 0.614 -0.022 0.224 0.58 4.46 
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Subsequently, the BIOMASS R package (Réjou-Méchain et al., 2017) 

(version 2.1.8) within the R statistical platform (version 4.1.3) was used to 

compute reference AGB predictions for forest inventory plots at the two spatial 

resolutions (1-ha and 0.16-ha). To that end, we differentiated sites with a 

cumulated forest inventory area of 10 ha or more (i.e., 8 out of 13 sites, Table 5.2 

and Table 5.3) from those with less than 10 ha of cumulated forest inventory area 

(i.e., 5 sites). In the former case, we developed site-specific tree height-diameter 

(H-D) allometric models using second-order polynomials on log-transformed 

data (modelHD function in the BIOMASS package) and these models were used 

to predict the height of trees without H measurements in each respective site. In 

the latter case, which pertained to sites located in moist dense forests of 

Cameroon (SiteIDs 7 to 11 in Table 5.2), all inventory data from that country and 

biome were pooled into a single training dataset and the same H-D modelling 

procedure was applied. The resulting country- and biome-specific model was 

then used for predicting tree height at those sites. The H-D model coefficients for 

these site-level and Cameroon level model are presented in Table 5.4. Next, a 

wood density (WD) estimate was attributed to each tree based on its taxonomic 

identification using the getWoodDensity function. 

Considering that tree AGB prediction is associated with various sources of 

uncertainty (including measurement errors of the independent variables such as 

tree diameter, height, and wood density, as well as prediction errors of the H-D 

models and the AGB allometric model) (Duncanson et al., 2021; Réjou-Méchain 

et al., 2019), we used  a Monte Carlo approach for uncertainty propagation. 

Specifically, we employed the AGBmonteCarlo function of the BIOMASS 

package (Réjou-Méchain et al., 2017), which allows propagating the above-

mentioned sources of uncertainty and outputs 1000 tree-level and subsequently 

plot-level AGB predictions. Tree AGB predictions were made using the 

pantropical AGB allometric model (i.e., Equation-4 in Chave et al., (2014)). For 

each plot, the 1000 AGB predictions were (i) averaged to obtain a reference plot-

level AGB density (hereafter AGBREF) for the development of LiDAR-AGB 

models and (ii) used for the propagation of uncertainties to the final AGB maps 

(see section “mapping forest AGB and prediction uncertainty”). 

5.2.3 LiDAR data processing: computation of canopy height metrics 

LiDAR data from African and Asian sites were processed using LAStools 

(version 201124) and the lidR R package (version 4.0.1), respectively. The same 

processing chain was applied to generate the canopy metrics in both cases. First, 

a digital surface model (DSM) free of pits and spikes was generated at a 1-m 

resolution by interpolating the highest points on a 1-m grid. Second, a ground 

point classification was performed on the point cloud and a digital terrain model 

(DTM) was interpolated from ground-points. The canopy height model (CHM) 

was then derived by subtracting the DTM from the DSM. Finally, the 1-m CHM 
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was used to compute 15 canopy metrics for each plot (Table 5.5) as candidate 

predictors of forest AGB. 

Table 5.5. List of Canopy Metrics derived from LiDAR-derived CHMs over the forest 

plots extent 

LiDAR Canopy Metric 

(LCM) 
Description 

H40 

Percentile of CHM values 

(ex. H98 for the 98th percentile, in m) 

H50 

H60 

H70 

H80 

H90 

H98 

meanTCH or meanH Mean of CHM values (in m) 

sdH Standard deviation of CHM values (in m) 

CV 
Coefficient of variation of CHM values 

(meanTCH divided by sdH) 

QMCH Quadratic mean of CHM values 

CCF2 

Percentage of CHM values above 2, 5 and 10 m 

(in %) 
CCF5 

CCF10 

rumple 
Roughness of CHM surface 

(rumple_index function in lidR R package) 
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5.2.4 Specification of a general AGB model form 

While LiDAR-based AGB mapping models were trained at the site or regional 

level (for some   Cameroon sites), to minimise local bias in model predictions 

(Asner et al., 2012; Duncanson et al., 2021), we privileged the use of (i) a single 

AGB model form across all sites to facilitate sites inter-comparison and the 

subsequent use of AGB predictions for spaceborne products 

calibration/validation and (ii) a simple, parametric modelling approach, keeping 

the number of predictors to a minimum to avoid overfitting and multicollinearity 

issues. To specify the AGB model form, we used linear mixed-effects models to 

identify the most predictive LiDAR-derived canopy height metrics (LCMs) on 

AGBREF variation while accounting for the hierarchical spatial structure of the 

data. In practice, 15 linear mixed-effects models (one for each LCM) were built 

on the log-transformed variables of AGBREF and LCM (Eq. (10): 

 log(𝐴𝐺𝐵𝑅𝐸𝐹) = 𝑎 + 𝑏 × log(𝐿𝐶𝑀) +  𝑅𝐸𝑠𝑖𝑡𝑒 +   𝜀   (10) 

where a and b are the model’s coefficients, LCM represents the Lidar-

derived Canopy Metric, AGBREF corresponds to the field-derived AGB prediction 

at a given spatial resolution (i.e. 0.16- or 1-ha), REsite denotes the random site 

effect used in linear mixed-effects modelling and 𝜀 is the error term, assumed to 

follow a normally distribution with a mean of zero and a standard error σ. Based 

on the AIC criterion, the meanTCH metric (i.e. the mean of all CHM values in the 

plot area) emerged as the best predictor of AGBREF variation at both 1-ha and 0.16-

ha spatial resolutions (Table 5.6).  

A similar procedure was run on AGBREF prediction models combining each 

pair of LCMs rather than a single predictor. At both spatial resolutions, the best 

two-predictor model resulted in a modest improvement in relative RMSE (i.e., 

<0.2%, Table 5.7) compared to the model based on meanTCH only. The latter 

model form was thus selected for biomass mapping. In line with the H:D 

modelling procedure, LiDAR-based AGB mapping models were either trained at 

the site-level (for sites with a cumulated forest inventory area of 10 ha more) or 

on a pooled training dataset containing all inventory data from Cameroonian 

moist dense forests (for sites with a cumulated forest inventory area smaller than 

10 ha), henceforth referred to as the “regional” AGB model. It is noteworthy that 

including sites as an additional fixed-effect covariate in the regional model did 

not yield significant effects for this variable at a 5% risk (neither in terms of site-

level intercepts nor in terms of interactions between sites and the meanTCH 

predictor), suggesting a minimal site effect on the regional model’s predictions, 

if any. 
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Table 5.6. LiDAR-AGB Linear Mixed Effects Model performance statistics at 1-ha and 0.16-ha plot sizes. The table is sorted in ascending order 

based on the column “AIC” (Akaike information criterion) when the respective LiDAR Canopy Metric (LCM) is used for Eq. (10. R2 and RMSEs 

(in Mg ha-1 and in %) are computed on back-transformed predictions. 

Plot Size (1-ha) Plot Size (0.16-ha) 

LCM AIC* R2 
RMSE  

[Mg ha-1] 

RMSE  

[%] 
LCM AIC R2 

RMSE  

[Mg ha-1] 

RMSE  

[%] 

meanH -180.42 0.89 43.62 15.2% meanH 149.94 0.71 88.55 32.4% 

RH60 -169.22 0.88 44.75 15.6% QMCH_chm 194.11 0.70 89.31 32.7% 

RH50 -167.22 0.88 45.27 15.8% RH90 379.89 0.65 96.81 35.4% 

RH70 -151.53 0.87 45.83 16.0% RH98 642.43 0.59 105.29 38.5% 

QMCH_chm -148.49 0.88 45.30 15.8% RH40 869.25 0.60 106.49 39.0% 

RH80 -133.52 0.87 47.14 16.5% RH50 889.42 0.59 106.84 39.1% 

RH40 -114.58 0.86 48.46 16.9% CCF10 928.45 0.50 116.11 42.5% 

RH90 -102.74 0.85 50.54 17.7% RH60 975.37 0.59 106.68 39.0% 

RH98 -23.33 0.79 59.26 20.7% RH80 1033.34 0.62 103.08 37.7% 

CCF10 15.74 0.72 70.11 24.5% RH70 1036.05 0.59 106.41 38.9% 

CCF5 66.87 0.63 79.56 27.8% CCF5 1101.04 0.46 120.43 44.1% 

CV 85.22 0.61 81.18 28.4% CCF2 1105.63 0.45 121.80 44.6% 

CCF2 90.21 0.60 82.20 28.7% CV 1265.00 0.41 132.29 48.4% 

sdH 114.75 0.62 79.52 27.8% sdH 1365.98 0.41 128.62 47.1% 

rumple 131.76 0.58 83.77 29.3% rumple 1473.62 0.39 130.34 47.7% 
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Table 5.7. LiDAR-AGB Linear Mixed Effects Model performance statistics at 1-ha and 0.16-ha plot sizes using two LCMs as predictive variables. 

The table is sorted in ascending order based on the column “AIC” (Akaike information criterion) when the respective LiDAR Canopy Metrics 

(LCM) are used in Eq. (10. R2 and RMSEs (in Mg ha-1 and in %) are computed on back-transformed predictions. 

Plot Size (1-ha) Plot Size (0.16-ha) 

LCMs AIC R2 
RMSE  

[Mg ha-1] 

RMSE  

[%] 
LCMs AIC R2 

RMSE  

[Mg ha-1] 

RMSE  

[%] 

RH50 , RH90 -192.69 0.89 43.75 15.3% meanH , CCF2 114.03 0.71 88.00 32.2% 

RH50 , RH80 -191.69 0.88 43.84 15.3% RH40 , meanH 131.70 0.71 88.09 32.2% 

RH50 , 

QMCH_chm -188.18 0.88 43.87 15.3% RH98 , QMCH_chm 134.13 0.71 87.66 32.1% 

RH50 , RH70 -188.15 0.88 44.18 15.4% meanH , CCF10 136.58 0.71 88.07 32.2% 

RH50 , meanH -186.09 0.89 43.67 15.3% RH50 , meanH 137.09 0.71 88.22 32.3% 

RH40 , RH80 -185.00 0.88 43.96 15.4% 

meanH , 

QMCH_chm 139.23 0.71 88.29 32.3% 

RH40 , RH50 -183.00 0.88 44.67 15.6% RH70 , meanH 139.36 0.71 88.44 32.4% 

RH50 , RH60 -182.72 0.88 44.37 15.5% RH60 , meanH 139.42 0.71 88.36 32.3% 

RH40 , RH90 -182.32 0.88 44.15 15.4% meanH , CCF5 141.40 0.71 88.14 32.3% 

RH40 , RH70 -181.96 0.88 44.26 15.5% RH90 , meanH 147.02 0.71 88.54 32.4% 
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Table 5.8. Model coefficients along with standard errors (in brackets) for site-wise level models at 1-ha and 0.16-ha resolution. For Cameroon sites 

listed from 7-11 in column “Sno”, a single regional model is employed. Sigma is the model residual standard error in log-transformed units. R2 

and RMSEs (in Mg ha-1 and in %) are computed on back-transformed predictions. 

Sno Site 

Plot Size (1-ha) Plot Size (0.16-ha) 

a  

(se) 

b  

(se) 
sigma R2 

RMSE 

[Mg ha-1] 

RMSE 

[%] 

a  

(se) 

b  

(se) 
sigma R2 

RMSE 

[Mg ha-1] 

RMSE 

[%] 

1 Betul 
2.043  

(0.191) 

1.247  

(0.087) 
0.095 0.87 12.04 9.9 

2.605  

(0.107) 

0.988  

(0.049) 
0.162 0.65 21.08 17.3 

2 Achanakmar 
2.046  

(0.219) 

1.173  

(0.080) 
0.113 0.94 23.51 11.7 

2.058  

(0.175) 

1.165  

(0.064) 
0.185 0.84 36.58 18.3 

3 Yellapur 
0.500      

(0.478) 

1.691 

(0.158) 
0.111 0.90 31.07 11.0 

0.684  

(0.380) 

1.632  

(0.126) 
0.188 0.74 66.65 23.1 

4 Uppangala 
0.969  

(0.442) 

1.523  

(0.134) 
0.192 0.86 82.16 18.9 

1.087  

(0.335) 

1.464  

(0.100) 
0.328 0.66 145.85 32.6 

5 Khaoyai 
1.934 

(0.445) 

1.236  

(0.144) 
0.109 0.72 32.27 9.9 

1.360       

(0.189) 

1.411  

(0.061) 
0.219 0.74 74.08 23.1 

6 Nachtigal 
2.009 

(1.004) 

1.037 

(0.314) 
0.233 0.55 43.21 18.6 

1.902 

(0.081) 

1.083 

(0.029) 
0.284 0.82 48.28 27.9 

7 Mbalmayo 

1.721 

(0.517) 

1.253 

(0.155) 
0.135 0.74 52.62 14.1 

1.230  

(0.396) 

1.39 

(0.119) 
0.282 0.59 108.54 29.1 

8 Atout 

9 Kompia 

10 Somalomo 

11 Bouamir 

12 Mabounié 
2.471 

(0.447) 

1.015 

(0.136) 
0.100 0.86 32.26 9.4 

2.159  

(0.498) 

1.098  

(0.152) 
0.265 0.55 94.23 28.0 

13 Rabi 
1.267  

(0.671) 

1.397  

(0.213) 
0.123 0.65 38.78 13.1 

1.386  

(0.407) 

1.344  

(0.130) 
0.312 0.43 99.63 33.8 
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5.2.5 Mapping forest AGB and prediction uncertainty 

Forest AGB and prediction uncertainty were mapped over the extent of airborne 

LiDAR data at each site using a Monte Carlo approach similar to that used to 

compute plot-level AGBREF. More specifically, we used the 1000 plot-level AGB 

predictions generated at the first modelling level (i.e., from tree to plot) to build 

1000 LiDAR-based models per site (or at “regional” level for Cameroonian sites 

with less than 10 ha of cumulated forest inventory area). At the second modelling 

level (i.e., from plot to landscape), pixel AGB predictions derived from LiDAR-

based models suffer from additional uncertainty associated to the LiDAR-based 

models themselves.  

To propagate this additional uncertainty, we mimicked the procedure used 

in BIOMASS to propagate the uncertainty associated to the tree-level AGB 

allometric model (see Appendix S1 of Réjou-Méchain et al., (2017) for codes and 

details), which entailed using a Markov chain Monte Carlo algorithm to infer the 

uncertainty on Lidar-based models’ parameters (i.e., models’ coefficients and 

associated RSE). The Markov chain outputted 1000 sets of model parameters per 

model. For each of the 1000 LiDAR-based model at each site, we then (1) 

randomly selected a set of parameters among the 1000 available sets, (2) used the 

model coefficient selected in (1) to predict pixels AGB and (3) added to all pixels 

an error term randomly drawn from a normal distribution N(0, RSEi) where RSEi 

is the model RSE selected in (1). This procedure led to 1000 predictions of pixels 

AGB embedding the prediction uncertainty from both the first and second 

modelling levels. Finally, reference AGB maps and associated spatial uncertainty 

maps were generated as the mean and standard deviation of the 1000 pixel AGB 

predictions, respectively. Hereafter, we refer to pixels mean AGB prediction as 

AGBPRED.  

5.3 Results 

5.3.1 LiDAR-AGB models and Site-Level AGB Maps 

Using LiDAR data, we aimed to predict above-ground biomass (AGB) with 

minimal local bias for diverse forest sites. Out of the tested model across 15 

canopy height metrics, a single, parsimonious model (involving meanH as the 

predictor variable) across all sites was found to perform better facilitating 

comparisons and future applications in EO data validation. Additionally, we 

kept the number of predictors low to avoid overfitting. The coefficients and 

calibration statistics of LiDAR-based AGB mapping models at site-level are 

provided in Table 5.8, while Figure 5.3 shows scatterplots of ‘reference’ against 

predicted AGB values. 
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Figure 5.3. LiDAR-AGB models of Asian and African sites at 1-ha and 0.16-ha 

resolutions. (7-11)* refers to the regional model established over moist dense forests of 

Cameroon. 

Through detailed analysis, we identified mean top canopy height as the 

most powerful predictor of AGB at both 1-ha and 0.16-ha resolutions, 

outperforming combinations of other LiDAR metrics (Figure 5.3). Similar to our 

tree height-diameter modeling, LiDAR-based AGB models were trained either at 

the site level (for larger areas) or regionally (for smaller areas). Notably, 

incorporating site information in the regional model had minimal impact on 

predictions, suggesting a consistent model performance across regions. 
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Figure 5.4. Reference AGB maps of Asian and African sites at 1-ha spatial resolution 
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Finally, the models are used to generate reference AGB maps for the LiDAR 

sites along with uncertainty estimates. Reference AGB maps at 1-ha resolution 

are shown in Figure 5.4 and the density distributions of 1-ha AGB maps are 

represented in Figure 5.5-A along with uncertainty levels in Figure 5.5-B 

expressed as a coefficient of variation (CV, in % of mean AGB) (see Figure 5.6 and 

Figure 5.7 for AGB maps and respective density distributions at 0.16-ha 

resolution). Figure 5.5-B shows that the mean uncertainty across sites is 15.4%, 

with site-level mean uncertainty ranging from 10.8 to 31%. It can be observed that 

Nachtigal and Uppangala sites have larger mean uncertainties than other sites, 

with 31% and 20.1%, respectively. This can be explained by larger LiDAR-AGB 

model uncertainties at these sites and mapping resolution. 

 

Figure 5.5. Density distributions of (A) mean pixel AGB and (B) AGB uncertainty, 

expressed as a coefficient of variation (CV, in %), at 1-ha resolution across sites. 

For each site, AGB and uncertainty maps are distributed as a single GeoTiff 

file at the two spatial resolutions (1- and 0.16-ha) through Dataverse (Rodda et 

al., 2024). Each file comprises three individual layers. The two first layers named 

meanAGB and sdAGB correspond to the mean and standard deviation of AGB 

predictions over the 1000 Monte Carlo simulations, respectively. The file 

projection system is Universal Transverse Mercator. The third layer named Nbin 

corresponds to the bin number each map pixel is associated with in the binning 

approach proposed by McRoberts et al., (2022) to allow users reconstituting a 

matrix of pairwise population unit covariances estimates (See Section 5.3.2 for 

more details). 
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Figure 5.6. Reference AGB maps of Asian and African sites at 1-ha spatial resolution 
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Figure 5.7. Density distributions of (A) mean pixel AGB and (B) AGB uncertainty, 

expressed as a coefficient of variation (CV, in %), at 0.16-ha resolution across sites. 

5.3.2 Additional Error Metrics for AGB maps 

LiDAR-based AGB maps produced in the present study are intended to support 

calibration and validation efforts of spaceborne data. To maximise their 

usefulness, we provide additional information that users may require – 

depending on their study’s objective and methodological choices – to facilitate 

their integration with spaceborne data and/or develop comprehensive 

uncertainty propagation schemes up to the final, spaceborne-derived AGB map. 

A first challenge users may face relates to the computation of the 

uncertainty associated with the mean AGB of arbitrary subregions of LiDAR 

AGB maps. Such subregions could for instance correspond to the footprints of 

spaceborne data unit pixels. Estimating the total mean squared error associated 

with a map (sub) population mean requires access to the matrix of pairwise 

population unit covariances, which is rarely communicated by map makers to 

users because of its large size. Yet, McRoberts et al., (2022) recently showed that 

pairwise population unit covariances could largely contribute to total mean 

squared error, and proposed an averaging and binning approach to drastically 

reduce the matrix size, thus facilitating its publication along with AGB maps. 

While we refer interested readers to McRoberts et al., (2022) for methodological 

details, we provided in Supplementary data all information recommended by the 

authors to allow map users to comply with IPCC good practice guidelines for 

greenhouse gas inventories (Rodda et al., 2024). We note that for each pixel of the 
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LiDAR-based AGB maps provided in this study, a bin number is available in the 

third map layer.     

Another challenge lies in the propagation of uncertainties in multi-level 

hierarchical modelling, which is a likely use-case of the LiDAR-based maps we 

produced. These maps were generated by applying two hierarchically nested 

models: a tree allometric model linking field measurements to tree AGB, and a 

mapping model linking plot AGB to LiDAR data. LiDAR-based AGB maps users 

may employ a three-steps hierarchical modelling approach and add as a third 

step a model linking high resolution AGB predictions from the LiDAR-based 

maps to the coarser resolution of spaceborne data. An example of such an 

approach is presented in detail in Saarela et al., (2023) and referred to as “three-

phase hierarchical model-based inference”. The uncertainty assessment in such a 

nested modelling approach requires information at the two first modelling steps 

that goes beyond the results of the Monte Carlo simulation we used to produce 

pixel-level uncertainty estimates. While we refer interested readers to Saarela et 

al., (2023) for methodological details, we provide in Supplementary data all 

information allowing users to assess uncertainty as described in Saarela et al., 

(2023). This information notably includes the variance-covariance matrix of 

model parameters for each sampling site as well as statistics on parameters (DBH, 

AGB, pixels’ height from CHM, etc.,) used at various levels in the chain of 

hierarchical models. 

5.4 Discussion 

This study offers valuable LiDAR-based forest above-ground biomass (AGB) 

maps for the remote sensing community, particularly those focused on carbon 

stock assessment. These maps are expected to be highly useful for calibrating and 

validating next-generation biomass mapping models based on upcoming 

spaceborne missions like NASA's GEDI, NASA-ISRO's NISAR, and ESA's 

BIOMASS. Additionally, they can improve the accuracy of existing AGB maps, 

especially in data-poor regions with unreliable estimates. 

Beyond immediate applications, the study identifies the potential of "super-

sites" across the tropics. These super-sites combine extensive forest inventory 

data (ideally with multiple censuses) over large areas (≥ 10 ha) with airborne 

LiDAR data. Such data, collected through long-term, multi-organizational 

efforts, is crucial for monitoring the impacts of global changes on forest 

ecosystems. 

In addition to the per pixel estimates of uncertainty accompanying AGB 

maps, we hereafter provide (i) an assessment of mapping model predictive 

performances using a spatial model cross-validation technique (Ploton et al., 

2020), to provide additional insights into the reliability of AGB predictions on 

each map and (ii) an assessment of mapping models extrapolation at each 
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sampling site, which may be useful to help users for filtering-out pixels where 

extrapolation occurred and only retaining the highest quality AGB predictions 

for spaceborne products calibration/validation. 

5.4.1 LiDAR-AGB Model Spatial Cross-Validation 

Model calibration statistics in Table 5.8 likely overestimate model predictive 

performance on pixels that are not used for model training, that is, on most maps’ 

pixels. We performed a cross-validation (CV) of each model to provide more 

reliable insights into model predictive performance. Field plots at each site are 

iteratively split into training and test data and model CV statistics are built on 

the set of test data predictions. Regarding CV design, we selected a buffered 

leave-one-out cross-validation (LOO-CV; Parmentier et al., 2011) where a spatial 

buffer around test data is used to exclude from model training dataset 

observations located at the neighbourhood of test data, thus avoiding inflation in 

CV statistics due to spatial autocorrelation in forest AGB (Ploton et al., 2020).  

Table 5.9. Error statistics of modified LOO-CV procedure at site-level for 1-ha and 0.16-

ha plots. 

Sno Site 

100m 40m 

R2 

LOOCV -

RMSE 

[Mg ha-1] 

LOOCV -

RMSE 

[%] 

R2 

LOOCV -

RMSE 

[Mg ha-1] 

LOOCV -

RMSE 

[%] 

1 Betul 0.76 12.85 10.5 0.55 21.47 17.6 

2 Achanakmar 0.90 27.05 13.5 0.81 39.00 19.5 

3 Yellapur 0.85 36.27 12.9 0.62 74.21 25.8 

4 Uppangala 0.64 100.44 23.2 0.37 171.68 38.4 

5 Khaoyai 0.65 37.40 11.5 0.62 75.05 23.4 

6 Nachtigal 0.22 60.49 26.1 0.81 49.85 28.8 

7 Mbalmayo 

0.66 56.36 15.1 0.46 110.39 29.6 

8 Atout 

9 Kompia 

10 Somalomo 

11 Bouamir 

12 Mabounié 0.79 37.47 11.0 0.46 96.32 28.7 

13 Rabi 0.54 46.11 15.5 0.39 101.74 34.5 

As a compromise between the diversity in terms of number and spatial 

arrangement of field data across sites (e.g. multiple individual 1-ha plots vs. 

single large plot), the consistency of the CV approach across sites, as well as our 

expectation for a relatively weak spatial autocorrelation in forest AGB at the high 

resolution of the maps (< 100 m2) (Réjou-Méchain et al., 2014), we selected a LOO-

CV with a 100 m buffer radius for all sites and mapping resolutions (i.e. 100 x 100 
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m and 40 x 40 m). This CV design notably implies that (i) when a test observation 

came from a large field plot (i.e. > 1-ha, e.g. the 25-ha plot at Rabi), subplots at its 

direct neighbourhood were not used for model training (i.e., all subplots 

intersecting a 100 m circular buffer around the center of a test subplot were 

excluded from the training set, regardless of the mapping resolution), and (ii) at 

the 40 x 40 m mapping resolution, when a test observation came from a 1-ha field 

plot, the remaining three subplots of that 1-ha plot were not used for model 

training. The results of the buffered LOO-CV are presented in Table 5.9. They 

show that the predictive performances of mapping models developed in this 

study are comparable to those found in the literature (i.e. 15-20 % on average for 

the tropical forest biome (Zolkos et al., 2013) with relative RMSEs ranging from 

10.6 to 20.1 % (mean across sites: 14.1 %) at 1-ha and 17.7 to 33.7 % (mean across 

sites: 25.7 %) at 0.16-ha. 

5.4.2 Model Extrapolation in the predictor Space 

Uncertainty maps, AGB maps, and model CV results provide insights into the 

reliability of AGB predictions within the calibration domain of mapping models. 

It is however likely that the entire gradient of forest structure sampled by LiDAR 

data was not fully sampled in the model’s training set, thus leading to situations 

of predictive extrapolation where prediction uncertainty is unknown. To 

investigate this issue, we compared the range of vegetation height (i.e., 

meanTCH) sampled by the training set of each mapping model to the full range 

found in the LiDAR data, restricting the analysis to pixels considered as 

vegetated, i.e., with meanTCH ≥ 2 m. We found that the proportion of pixels 

affected by predictive extrapolation strongly varied across sites and at the two 

mapping resolutions. Generally, the upper range of meanTCH (and thus of 

AGBPRED) found at a landscape scale in the LiDAR data were sampled in the 

training set (Figure 5.8 A-B), which probably is a reflection of the “majestic forest 

bias” (Malhi et al., 2002) – that is, the tendency for researchers to preferentially 

establish sample plots where forest stands appear the less disturbed (e.g. tallest 

canopy height, the highest abundance of large trees, etc.). However, a varying 

and often substantial proportion of maps on the lower end of the meanTCH 

gradient was outside the model's calibration domain. For instance, in the 

Nachtigal site predictive extrapolation occurred on about 83% of the vegetated 

pixels on the 1-ha AGB map. This can be explained by the nature of this site, a 

forest-savanna mosaic, where the meanTCH of all herbaceous and shrubby 

savannas is lower than the height of the smallest 1-ha forest stand (ie., 16.4 m) 

found in model training set (Figure 5.8A).  However, this proportion dropped to 

0% at the 0.16-ha mapping resolution thanks to the inclusion into the model 

training set of 18 additional 0.16-ha plots established in savannas-dominated 

areas (Figure 5.8B, Table 5.3).   
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Figure 5.8. Proportion (in %) of map pixels outside and inside models calibration domains 

at 1-ha (panel A) and 0.16-ha (panel B) mapping resolutions. The proportions are 

computed with respect to the total number of map pixels with CHM > 2 m at the exception 

of the Natchigal site where a 0.4 m threshold is used so as to account for the nature of the 

site i.e., a forest-savanna mosaic. The proportion of map pixels within model calibration 

domains is represented in red. Map pixels below and above the range of model calibration 

domains are represented in blue and green, respectively. 
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5.5 Summary 

Existing satellite-based AGB maps are unreliable due to high uncertainties. 

Improving these maps is crucial for understanding the global carbon cycle and 

combating climate change. This chapter presents a novel method to address this 

challenge. We combine high-resolution airborne LiDAR data, which captures the 

3D structure of the forest canopy, with high quality ground-based AGB estimates 

from established field plots. This approach also incorporates Monte Carlo 

simulations to generate uncertainty maps alongside each AGB map, promoting 

transparency and aiding in the calibration of ongoing or upcoming spaceborne 

missions (viz., NASA”s GEDI, NASA-ISRO’s NISAR and ESA’s BIOMASS 

missions).  

We applied this method at 13 strategically chosen sites across South Asia 

and Central Africa, focusing on regions with limited data for calibrating satellite 

missions, particularly in Asia (Duncanson et al., 2022) and are marked by notable 

uncertainties in AGB estimates (Rodda et al., 2023). Establishing a long-term 

network of such reference sites across the tropics remains a challenge, but 

airborne LiDAR data is a valuable tool, especially for capturing the dynamics of 

rapidly changing landscapes. 

The resulting high-quality LiDAR-derived AGB maps are a significant 

contribution to the remote sensing community studying forest carbon. These 

maps offer two key benefits. First, they can be used to calibrate and validate next-

generation biomass mapping models from upcoming spaceborne missions, 

leading to more accurate large-scale AGB estimates (eg. Avitabile et al., 2016; 

Mitchard et al., 2014b). Second, they can improve the accuracy of existing AGB 

maps, especially in data-poor regions with unreliable estimates. Our study sites 

are located in areas with known data scarcity and significant uncertainties in 

existing AGB estimates.  Therefore, these new maps provide a valuable resource 

for researchers reevaluating existing maps or developing new models. 

These openly available AGB reference maps, with resolutions of 100m and 

40m, cover individual airborne LiDAR footprints ranging from 100 to 40,000 

hectares.  This chapter highlights the importance of establishing a long-term 

network of reference sites across the tropics.  Such a network would be crucial 

for improved monitoring of forest AGB and the calibration of future satellite 

missions, ultimately leading to a more comprehensive understanding of the role 

of tropical forests in the global carbon cycle. 
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Chapter 6   

 

Calibration and Validation of Existing EO-Based AGB 

products  

Airborne LiDAR (ALS) and terrestrial forest inventories have established 

themselves as robust methods for estimating above-ground biomass density 

(AGBD or AGB used interchangeably in this chapter) at local scales. However, 

their spatial and temporal coverage limitations necessitate alternative 

approaches for regional and global biomass assessments. Space-based LiDAR 

missions like Global Ecosystem Dynamics Investigation (GEDI) offer promising 

solutions, providing sample-based vertical vegetation structure data but 

requiring validation due to their novelty and limited geographic coverage 

(Dubayah et al., 2020). The current chapter uses the data from the new-era 

spaceborne LiDAR systems ICESat-2 and GEDI and validates the canopy height 

metrics and subsequently the above-ground biomass density (AGBD) product 

(L4A) from GEDI over one site – tropical deciduous forests of Betul, Madhya 

Pradesh. Building on the reference LiDAR-derived AGB maps developed in 

Chapter 5 , the chapter further explores the possibility of recalibrating biomass 

mapping models for one specific plant functional type. This was developed using 

data from five additional sites across South Asia, aiming to improve the accuracy 

of GEDI's biomass estimates. Overall, the research demonstrates the value of 

reference LiDAR data in calibrating satellite-based mapping missions for more 

reliable large-scale biomass assessments. 

6.1 Introduction 

Light Detection and Ranging (LiDAR) systems have enabled the retrieval of 

three-dimensional (3D) forest canopy structure information to measure canopy 

height, monitor forest degradation or restoration stages, estimate above-ground 

biomass density (AGBD), and model other key ecosystem variables such as 

primary productivity and biodiversity at local to regional scales (Coops et al., 

2021). The airborne LiDAR systems (ALS), LiDAR systems mounted on aircraft 

or drones, provide spatially continuous and accurate measurements of forest 

canopy structure of an area of interest but are often limited in terms of spatial 

and temporal coverage due to high costs (Wulder et al., 2012). On the other hand, 
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space-based LiDAR systems can capture information on vertical vegetation 

structure as samples and, when combined with wall-to-wall data from optical or 

radar sensors, allow large-area estimation of 3D forest structure parameters in 

both space and time (Potapov et al., 2021; Silva et al., 2021).  

The two new space-based LiDAR missions (a) Ice, Cloud and land Elevation 

Satellite – ICESat-2 (Neumann et al., 2019) and (b) Global Ecosystem Dynamics 

Investigation (GEDI) (Dubayah et al., 2020) are providing information on 

elevation and canopy height metrics since 2018 and 2019 respectively. The 

ICESat-2, or ATLAS, is a photon counting LiDAR that fires 532 nm (green) lasers 

and collects information from overlapping circular laser footprints (of diameter 

14-17m) at every 0.7m in the along-track direction (Neuenschwander and Pitts 

2019). ICESat-2 offers wide spatial coverage (88°N–88°S latitude) but with 

reduced sampling densities over tropical and temperate forests. In contrast, 

GEDI operating on the International Space Station offers specific coverage (viz., 

between 51.6° N and 51.6° S) emphasizing measurements of vertical 3D structure 

from temperate and tropical forests. GEDI is a full waveform recording LiDAR 

that uses laser beam at 1064 nm to illuminate a circular footprint of ~25m 

diameter on the earth’s surface at every 60m interval in the along track direction 

and stores the reflected continuous full waveform by recording the amount of 

laser energy reflected by plant material at different heights from the ground 

(Dubayah et al., 2020).While a direct comparison of parameters from ICESat-2 

and GEDI would be inappropriate due to the differences in laser altimetry 

techniques (photon-counting vs. full-waveform), both systems offer unique 

advantages in the retrieval of forest canopy height, a key parameter for the 

estimation of AGBD and carbon balance studies (Duncanson et al., 2020; Narine 

et al., 2020). However, validating parameters retrieved from these novel sensors 

under different conditions (viz., geographical, forest type, canopy conditions, 

etc.) is critical to the ongoing global research. Further, the space-borne LiDAR 

measurements are sample-based and are used as input reference data in 

combination with remote sensing image datasets using statistical or machine 

learning models to generate wall-to-wall estimates of canopy height or forest 

AGBD (Ghosh et al., 2022; Lefsky, 2010; Musthafa and Singh, 2022; Nandy et al., 

2021; Simard et al., 2011). Hence, a consistent validation of these space-borne 

LiDAR measurements are also critical to generate/validate such canopy height or 

AGBD maps at large spatial scales.  

The accuracy of the terrain and canopy heights from the space-borne LiDAR 

systems are generally assessed using similar measurements from ALS data as a 

reference. Studies have reported accuracies of ICESat-2 for terrain height 

retrieval with RMSE of 0.73 – 1.89 m in various forest types, namely boreal forests 

of Finland (Neuenschwander and Magruder 2019), forests of interior Alaska 

(Wang et al., 2019), and forests of South Carolina (USA) (Xing et al., 2020). The 

accuracy of GEDI in terrain height retrievals was observed to be lower than 
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ICESat-2 with RMSE of 1.67 – 4.48 m in temperate (Adam et al., 2020) and 

Mediterranean forests (Dorado-Roda et al., 2021). Similar results of ICESat-2 

(RMSE = 2.24 m) outperforming GEDI (RMSE =  4.03 m) in terrain height 

retrievals were observed by Liu et al. (2021), when evaluating ATLAS and GEDI 

metrics over 40 different Land cover sites in and around the USA. It was also 

observed that over these sites, GEDI is better performing than ICESat-2 in canopy 

height retrievals with RMSE of 3.56 m and 5.02 m respectively. The errors in 

terrain and canopy height retrievals are found to be strongly related to laser 

intensity, slope, canopy cover and vegetation height. The strong (or power) 

beams in both GEDI and ICESat-2 seem to offer better accuracy than weak (or 

coverage) beams in height retrievals (Liu et al. 2021; Neuenschwander et al. 2020). 

Nevertheless, most of the studies mentioned above are conducted mostly in 

boreal, temperate, and sub-tropical forests, with very few samples in tropical 

savannas and forests. A recent study using ICESat-2 ATLAS for height retrievals 

in tropical Mesoamerican forests reported large RMSE of 10.58 m and 13.35m in 

terrain height and canopy height respectively (Fernandez-Diaz et al., 2022). 

Hence, the need to evaluate the performance of GEDI and ICESat-2 in various 

forest types in different latitudinal bands for broader usage. 

While the spaceborne LiDAR mission GEDI offers above-ground biomass 

density (AGBD) estimates through its L4A data products, these are derived from 

models using relative height metrics in L2A data (Duncanson et al., 2022). These 

models, although globally calibrated across plant functional types, lack 

comprehensive reference data, leading to uncertainties in regional and national 

biomass estimates. Therefore, validating GEDI's AGBD products is crucial for 

understanding and improving their accuracy. 

This study addresses this need by performing a systematic accuracy 

assessment of GEDI and ICESat-2 data products in tropical dry deciduous forests 

of Central India. We compared the accuracy of terrain and canopy height 

retrievals from both satellites (ATL08 for ICESat-2 and L2A for GEDI) against 

reference airborne LiDAR data. Additionally, we validated GEDI's derived 

AGBD estimates (L4A) using a reference biomass map generated from airborne 

LiDAR data and field biomass plots. Next, the chapter explores a possibility to 

demonstrate re-calibration of GEDI AGBD estimates for one plant functional type 

of South Asia using the reference LiDAR-AGB maps generated in Chapter 5 .  

6.2 Materials and Methods 

6.2.1 Aerial LiDAR Sample Sites 

The study utilizes the Aerial LIDAR data captured over tropical forests of Asia 

as described in Chapter 5  (Figure 6.1). More specifically, the study sites include 

– Betul, Achanakmar, Uppangala, Yellapur and Khaoyai over tropical Asian 
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region. These sites cover wide range of plant functional types (PFTs), which are 

key parameter for generating GEDI L4A (AGBD) product from relative height 

metrics generated from GEDI L2A products. The detailed descriptions of study 

area characteristics, inventory data, LiDAR data processing and generation of 

AGB maps are given in Section 5.2.  

 

Figure 6.1. Reference LiDAR-AGB Sites over Tropical Asia 

6.2.2 Space-borne LIDAR Products 

The ICESat-2 ATL08 product (Version 5 released November 2021; 

Neuenschwander et al., 2021) provides information about terrain height, canopy 

height, canopy cover, and other parameters at a fixed step length of 100m along 

the ground track direction. The terrain and canopy height estimates are based on 

the distribution of signal photons and their subsequent classification as either 

noise, ground, canopy or top-of-canopy photons. The parameters from the 

ATL08 product used in the current study are h_te_best_fit (terrain height best 

fit), h_canopy (indicates 98th canopy height percentile), night_flag (information 

about night or day), gt (ground track beam information), and sc_orient (when 

combined with parameter “gt” distinguishes strong beam and weak beam). 

These metrics from ATL08 product refer to the ground segment 100 x 14 m 

polygon.   

The GEDI Level-2A (L2A; version 2 released April 2021; Dubayah et al., 

2021) data product provides information on geolocation, ground elevation (or 

elev_lowestmode), canopy height, and relative height (RH) metrics from the 

received waveform at footprint-level (Dubayah et al., 2020). The RH metrics (viz., 

rh0, rh1, rh2, ….., rh98, rh99, rh100) indicate the height above the ground at each 

energy quartile in the received waveform (Dubayah et al., 2020). The GEDI Level-

4A (L4A; version 2.1 released March 2022; Dubayah et al., 2022) is footprint-level 

above-ground biomass density (AGBD, Mg ha-1) product derived through 

parametric linear models that relate GEDI L2A waveform RH metrics to AGBD. 

The models are generated by combined stratification of plant functional type and 

world regions and applying natural logarithm or square root transformation on 
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the response and predictor variables to stabilize the prediction interval and 

residual variance (Duncanson et al., 2022). Though the models are generated and 

validated in more than 27 countries across six continents, the important regions 

such as continental Asia and Africa are still under-represented (Duncanson et al., 

2022).  In this study, in addition to the RH metrics and elev_lowestmode (from 

L2A) and AGBD values (from L4A), elevation_auxillary information of each 

GEDI shot such as beam_flag (to differentiate power and coverage beam), date 

and time (to differentiate day or night), beam sensitivity (defined as the 

maximum canopy cover through which GEDI waveform can detect ground with 

90% probability) and quality_flag are used for further analysis. Each GEDI shot 

refers to a ground footprint of 25m. 

Table 6.1. List of GEDI passes over Betul, Madhya Pradesh (till August 2022). The days 

with greater than 90% of the shots effected due to quality issues are not used. 

Sno Date Remark N_total 
N_L2A 

[QF = 1] 

N_L4A 

[QF = 1] 

1 2019.06.22 Leaf-on; cloudy; not used 1625 20 0 

2 2019.10.19 Leaf-on; cloudy; not used 362 0 0 

3 2019.11.09 Leaf-on 998 970 238 

4 2020.01.09 Leaf-on 30 30 27 

5 2020.04.14 Leaf-off; cloudy; not used 1581 157 - 

6 2020.04.20 Leaf-off 316 265 - 

7 2020.04.30 Leaf-off 1553 548 - 

8 2020.07.28 Leaf-on; cloudy; not used 14 0 0 

9 2020.09.29 Leaf-on 1002 534 303 

10 2020.10.06 Leaf-on 280 130 55 

11 2020.10.19 Leaf-on 1549 1354 1006 

12 2021.03.25 Leaf-off 300 276 - 

13 2021.04.02 Leaf-off 34 18 - 

14 2021.04.13 Leaf-off 1084 492 - 

15 2021.08.14 Leaf-on; cloudy; not used 1620 31 0 

16 2021.10.02 Leaf-on 24 6 3 

17 2021.10.13 Leaf-on 35 35 35 

18 2022.03.14 Leaf-off 318 192 - 

The detailed evaluations of ICESat-2 and GEDI products were initially 

carried out over tropical dry deciduous forests of Betul, Madhya Pradesh. All 

available ICESat-2 (Version 5), GEDI L2A (Version 2), and L4A (Version 2.1) 

products over Betul, Madhya Pradesh were queried from availability till August 

2022 are downloaded from https://search.earthdata.nasa.gov/ website in hdf5 
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format and are processed in R software environment (Version 4.1.3). Over the 

study area, 6 passes of ATLAS and 18 passes of GEDI were downloaded. Out of 

the 6 passes of ATLAS, 3 passes were acquired during the leaf-on season and 3 

passes were during the leaf-off season. Of the 18 GEDI passes, 11 passes were 

during the leaf-on season, 7 passes were during the leaf-off season. The 

individual observations were filtered using quality flags (cloud_flag_atm <=1 for 

ATLAS and quality_flag = 1 for GEDI). Also, the passes which are heavily 

affected by quality issues (i.e. >90% of the shots in the pass are not passing the 

quality flag) are ignored for this study. The remaining observations are further 

filtered spatially using a forest mask over the study area. Finally, 777 ATLAS 

ATL08 observations (181 during the leaf-on season and 596 during the leaf-off 

season) and 4414 GEDI L2A shots (2830 during the leaf-on season and 1584 

during the leaf-off season) were evaluated for terrain and canopy height in the 

current study. The GEDI L4A AGB product was also similarly filtered and is only 

evaluated for the leaf-on season since the L4A algorithm is valid only during the 

leaf-on stage (Duncanson et al., 2022). Finally, a total filtered 1557 GEDI L4A 

observations were evaluated against the ALS reference AGB map.  

Table 6.2. List of ATLAS passes over Betul, Madhya Pradesh (till August 2022). 

Sno Date Remark N_Total_Shots 
N_ATL03  

[Cloud Flag <= 1] 

1 2018.12.13 leaf-on 131 91 

2 2020.03.11 leaf-off 347 347 

3 2020.09.09 leaf-on 31 31 

4 2021.03.09 leaf-off 272 272 

5 2021.04.07 leaf-off 106 106 

6 2021.12.07 leaf-on 78 65 

The total and filtered observations used in this study are listed in Table 6.1 

and Table 6.2. Considering the geolocation errors of GEDI (viz., 8 – 10m; Dubayah 

et al. 2021) and ICESat-2 (viz., 2 – 3m; Neuenschwander et al. 2021), the GEDI 

metrics are evaluated against the reference ALS metrics extracted using 8m 

buffer around the GEDI footprint, and the ATLAS metrics are evaluated against 

reference ALS metrics extracted using 2m buffer around the original ATLAS 100 

x 14m ground segments.  

6.2.3 Evaluation of Canopy Height & AGB Products 

For every ATLAS or GEDI footprint that was found to be of good quality, the 

metrics of terrain height, canopy height and AGB (or AGBD) estimates were 

compared against the respective reference DTM, CHM and LiDAR-AGB maps. 
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For instance, the RH98 metric from GEDI or h_canopy from ATLAS are evaluated 

against the 98th quantile of the CHM raster cells within the extent of the 

respective buffered sensor footprints. Similarly, the ground elevation values 

(viz., elev_lowestmode from GEDI or h_te_best_fit) are evaluated against the 

mean of the DTM raster cells within the extent of the respective buffered sensor 

footprints. The GEDI-AGBD estimate over the footprint was evaluated against 

the area-weighted average of the LiDAR-AGB raster cells within the footprint. 

 

Figure 6.2. Flowchart describing the methodology used in this study. 

The uncertainty of each of the metric from space-borne LiDARs was 

expressed in terms of root mean square error (RMSE), relative RMSE (rRMSE), 

Bias, relative Bias (rBias), mean absolute error (MAE), and pearson’s correlation 

coefficient (r) described by the below equations (Equations (11 – (16). 

 
𝐵𝑖𝑎𝑠 =  
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𝑟𝐵𝑖𝑎𝑠 (%) =  

𝐵𝑖𝑎𝑠

�̅�
 ×  100 

(14) 

 
𝑟𝑅𝑀𝑆𝐸 (%) =  

𝑅𝑀𝑆𝐸

�̅�
 ×  100 

(15) 
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(16) 

Where xi is the reference ALS metric (viz., CHM Height percentile or 

AGBD), yi is the GEDI or ATLAS derived height metric or AGBD metric, �̅� is the 

mean value of the reference ALS metric, �̅� is the mean value of the GEDI or 

ATLAS metric and n is the number of samples used for the evaluation. 

6.2.4 Re-calibration of GEDI AGBD Products 

Over the 05 tropical forest sites in tropical South Asia with LiDAR-AGB reference 

maps, a total of ~60,000 GEDI shots were available. The data from these shots are 

downloaded, filtered and compiled for investigating accuracy of above-ground 

biomass density (AGBD) estimates derived from the spaceborne LiDAR mission 

GEDI in diverse forest ecosystems across South Asia. Five representative sites 

encompassed the three major plant functional types (PFTs) found in the region - 

Dry Broadleaf (DBT), Evergreen Broadleaf (EBT), and Grasses Shrubs and 

Woodlands (GSW). 

To facilitate the comparison, all available GEDI AGBD estimates at the 

footprint level within the study areas were compiled. Subsequently, data 

processing steps were implemented as follows: 

 GEDI Footprint Selection: All GEDI shots intersecting with the reference 

AGBD maps (generated from airborne LiDAR data) were meticulously 

identified and extracted. 

 Quality Control: Stringent filtering based on GEDI's quality flags ensured 

inclusion of only reliable AGBD estimates in the analysis. 

 Reference Data Extraction: Corresponding reference AGB values were 

extracted from the LiDAR reference map for each selected GEDI shot, 

enabling a point-to-point comparison. 

 Multi-Resolution Analysis: The comparison was conducted at three 

spatial resolutions - 100m, 500m, and 1000m grids - to capture potential 

scale-dependent variations in accuracy. 

 Bias Correction: To address systematic biases between GEDI and LiDAR 

AGBD estimates, a first-order bias correction model was employed for 

EBT plant functional type. 
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6.3 Results  

6.3.1 Terrain and Canopy Height Accuracy 

The terrain height derived from ATL08 (ATLAS) and L2A (GEDI) is validated 

against the mean reference ALS-DTM value for the corresponding buffered 

ground footprint of GEDI and ATLAS. The analysis is carried out independently 

for leaf-on and leaf-off periods to understand the influence of canopy cover on 

terrain height retrieval (Figure 6.3). The scatterplot (Figure 6.3) suggests that the 

ATLAS outperforms GEDI in detecting ground surface during leaf-on and leaf-

off periods. Further, the shots acquired during the night for both sensors 

appeared close to that of the reference DTM. For GEDI, during leaf-off periods, 

the daytime shots appear to be more distributed with significant uncertainties.  

 

Figure 6.3. (A) & (C) The scatterplot between reference DTM value from the Aerial 

LiDAR (ALS) and GEDI and ICESat-2 (or ATLAS) respectively during leaf-on season. 

(B) & (D) The scatterplot between reference DTM value from the Aerial LiDAR (ALS) 

and GEDI and ICESat-2 (or ATLAS) respectively during leaf-off season. The daytime 

shots are shown in hollow circles and night time shots are shown in filled circles.
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Table 6.3. Error estimates of Terrain height retrievals from ATL03 (ATLAS) and L2A (GEDI) for different scenarios according to beam intensity, 

data acquisition time and canopy condition. 

Sensor 
Canopy 

Condition 

Beam 

Flag 
Day/Night Parameter N 

MAE  

[m] 

RMSE 

[m] 

BIAS 

[m] 
R 

RMSE 

[%] 

GEDI 

Leaf-on 

Power Day elev_lowest_mode 931 2.0 5.6 -0.8 0.99 1.3% 

GEDI Coverage Day elev_lowest_mode 473 3.7 7.4 -0.7 0.99 1.7% 

GEDI Power Night elev_lowest_mode 867 1.7 2.8 -0.2 1.00 0.7% 

GEDI Coverage Night elev_lowest_mode 559 2.1 3.8 0.4 1.00 0.9% 

ATLAS Strong Day h_te_best_fit 167 6.7 11.1 3.6 0.97 2.6% 

ATLAS Weak Day h_te_best_fit 14 7.7 8.7 7.7 1.00 2.0% 

ATLAS Strong Night h_te_best_fit No data available 

ATLAS Weak Night h_te_best_fit No data available 

GEDI 

Leaf-off 

Power Day elev_lowest_mode 738 23.2 39.2 -9.8 0.61 9.6% 

GEDI Coverage Day elev_lowest_mode 266 17.6 28.7 0.1 0.74 6.8% 

GEDI Power Night elev_lowest_mode 155 1.8 2.7 0.3 1.00 0.6% 

GEDI Coverage Night elev_lowest_mode 425 2.0 3.4 -1.4 1.00 0.8% 

ATLAS Strong Day h_te_best_fit 183 3.3 4.6 3.1 1.00 1.1% 

ATLAS Weak Day h_te_best_fit 148 6.2 7.6 6.2 0.99 1.8% 

ATLAS Strong Night h_te_best_fit 265 1.7 3.2 1.4 1.00 0.8% 

ATLAS Weak Night h_te_best_fit No data available 
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Table 6.4. Error estimates of Canopy height retrievals from ATL03 (ATLAS) and L2A (GEDI) for different scenarios according to beam intensity, 

data acquisition time and canopy condition. 

Sensor 
Canopy 

Condition 
Beam Flag Day/Night Parameter N 

MAE 

[m] 

RMSE 

[m] 

BIAS 

[m] 
R 

RMSE 

(%) 

GEDI Leaf-on Power Day rh98 931 2.3 3.3 0.6 0.68 18% 

GEDI Coverage Day rh98 473 3.0 4.3 -0.9 0.47 22% 

GEDI Power Night rh98 867 2.7 3.9 1.1 0.63 20% 

GEDI Coverage Night rh98 559 2.6 3.9 -0.2 0.54 20% 

ATLAS Strong Day h_canopy 166 9.8 12.5 -9.6 0.22 65% 

ATLAS Weak Day h_canopy 14 11.3 12.4 -10.1 0.68 61% 

ATLAS Strong Night h_canopy No data available 

ATLAS Weak Night h_canopy No data available 

GEDI Leaf-off Power Day rh98 738 7.1 8.7 -6.5 0.25 46% 

GEDI Coverage Day rh98 266 10.2 11.6 -9.7 0.02 62% 

GEDI Power Night rh98 155 6.3 7.6 -5.8 0.68 39% 

GEDI Coverage Night rh98 425 7.3 8.7 -7.0 0.52 47% 

ATLAS Strong Day h_canopy 178 4.2 5.6 -0.6 0.51 28% 

ATLAS Weak Day h_canopy 145 6.1 7.5 -4.9 0.48 38% 

ATLAS Strong Night h_canopy 245 2.4 3.5 -0.4 0.63 18% 

ATLAS Weak Night h_canopy No data available 
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Table 6.3 presents the uncertainty analysis of GEDI and ATLAS terrain 

height against different beam strengths and acquisition time. For GEDI night-

time shots, during both leaf-on and leaf-off periods, the terrain height RMSE was 

found to be low and in a similar range (2.7m – 3.8m; Table 6.3). Though a high 

RMSE was observed for day-time acquisition during leaf-on periods (5.6m – 

7.4m; Table 6.3), RMSE recorded for day-time leaf-off periods was unreasonably 

high (28.7m – 39.2m; Table 6.3).  

 

Figure 6.4. (A) & (C) The density scatterplot between reference 98th percentile of canopy 

height model (CHM p98) and the 98th height percentile values from GEDI and ICESat-

2 (or ATLAS) respectively during leaf-on season. (B) & (D) The density scatterplot 

between reference 98th percentile of canopy height model (CHM p98) and the 98th height 

percentile values from GEDI and ICESat-2 (or ATLAS) respectively during leaf-off 

season. The reference 98th percentile is computed over the respective ground segments of 

the spaceborne LiDAR systems. 

This unreasonable RMSE during leaf-off was mostly due to a single 

acquisition (2021-04-13) during the early morning hours (0730 hours IST). The 
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early morning atmospheric conditions due to the presence of aerosols could 

possibly attenuate the GEDI waveform signal through scattering (Fayad et al., 

2021). The mean aerosol optical depth over the study area, derived from MODIS 

MCD19A2 product (Lyapustin et al. 2018), for the date (2021-04-13) was observed 

to be ~0.8, indicating high aerosol content. Nevertheless, a more detailed analysis 

about the presence of aerosol particles on GEDI signal attenuation could not be 

carried out due to limited GEDI observations. Similar observations were made 

over parts of France, Tunisia, and French Guiana that the high aerosol optical 

depth (>0.8) affected the viability of >50% of the GEDI shots (Fayad et al., 2021). 

For ATLAS, due to the fewer observations over the study site in leaf-on periods, 

nighttime data is not captured. However, the night-time data captured during 

leaf-off periods was observed to be better at detecting terrain height (RMSE = 

3.2m) compared to day time accuracy ranging between 4.6m – 11.1m across 

different scenarios (Table 6.3). Overall, the terrain height retrievals for both 

sensors was observed to be more accurate during the night time acquisitions and 

even more consistent with strong beams, in line with the reported studies (Adam 

et al., 2020; Liu et al., 2021).  

Figure 6.4, shows the density scatter plot between rh98 (GEDI) and 

h_canopy (ATLAS) validated against the CHM-p98 during leaf-on and leaf-off 

periods. It was observed that the GEDI rh98 metric was strongly linked to the 

CHM-p98 metric during the leaf-on period and rather weak during the leaf-off 

period. In contrast, ATLAS was observed to detect the canopy height reasonably 

well even during the leaf-off periods (Figure 6.4). The Table 6.4 describes a 

detailed analysis of rh98 and h_canopy under different beam strengths and 

acquisition times. The RMSE varied minimally between 3.3m – 4.3 m for GEDI 

beams during the leaf-on period considering beam strength and acquisition time. 

Also, the mean residuals (or bias) were found to be in the order of ±1m indicating 

high reliability of GEDI shots for delineation of canopy height during leaf-on 

seasons. However, significant under-estimation (bias range -5.83 to -9.73m) with 

high RMSE (7.6m – 11.6m) was observed in canopy height delineation from GEDI 

shots acquired during the leaf-off season. During the leaf-off season due to the 

very little or no leaf availability over the study area, detecting the top of the trees 

against the background noise could be difficult and thus leading to errors in 

height recovery (Dubayah et al., 2020).  

Though night-time ATLAS acquisitions are limited to a leaf-off season, the 

strong night beams could delineate canopy height with RMSE of 3.53m and a 

mean bias of -0.4 m, similar to the GEDI shots in the leaf-on season. The day-time 

ATLAS acquisitions for canopy height retrieval were largely inaccurate with high 

RMSE (>5m) regardless of beam strength and leaf condition. For these day-time 

acquisitions, bias of 3.1m – 7.7m was also observed in terrain height retrieval, 

indicating the inability of ATLAS to either reach or identify ground points due 

to background solar noise and subsequently leading to potential bias in the 
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canopy height estimation (Table 6.4). Similar observations of the reliability of the 

ATLAS system in low canopy conditions were observed in the USA (Wang et al., 

2019). In summary, though GEDI outperforms ATLAS in canopy height 

delineation, strong night beams of ATLAS could add significant information to 

the integrated canopy height measurements over tropical forests.  

6.3.2 GEDI L4A AGBD Accuracy 

The GEDI footprint-level AGBD (L4A) is derived from the RH metrics of L2A 

products using calibration equations based on the stratification involving five 

plant function types and seven geographic regions across the globe (Duncanson 

et al., 2022). The GEDI AGBD estimates were strongly mismatched against the 

reference AGBD estimates with an RMSE of ~46% (N = 1557; Figure 6.5). Since 

the AGBD (L4A) over the study area was calculated from L2A RH metrics using 

two models (Table 6.5), viz., DBT_SAs (Deciduous Broadleaf Trees - South Asia) 

and GSW_SAs (Grasses, Shrubs and Woodlands – South Asia), we performed an 

independent model level error analysis. Nevertheless, performance of both 

models over the study area was found to be inaccurate with high RMSE of 33.8% 

for the DBT_SAs model and 64.0% for the GSW_SAs model (Figure 6.5). Further, 

the AGBD values of DBT_SAs model were underestimated (Bias = -11.7%; N = 

1022) compared to a significant over-estimation for the shots using GSW_SAs 

model (Bias = 42.9%; N = 535). The high RMSE and substantial biases could be 

attributed to the lack of ground reference datasets over South Asia. More 

specifically, zero waveforms were used to calibrate GEDI-AGBD models for the 

DBT and GSW plant functional types over the South Asian region (Duncanson et 

al., 2022).  

Table 6.5. Error estimates of AGBD (GEDI L4A) with the reference ALS AGBD map. 

The variables (xvar1 and xvar2) indicates the square transformation of the GEDI L2A 

relative height metrics rh50 and rh98 respectively.  xvar1 = √(100+rh50) and  xvar2 = 

√(100+rh98). 

GEDI 

Model  
Equation N 

RMSE  

[Mg 

ha-1] 

MAE 

[Mg 

ha-1] 

BIAS 

[Mg 

ha-1] 

RMSE  

[%] 

BIAS  

[%] 

DBT_SAs 

AGBD = 1.113*(-104.966 

+ 6.802*xvar1 + 

3.955*xvar2) 

1022 38.2 30.7 -13.2 33.8% -11.7% 

GSW_SAs 
AGBD = 1.118*(-124.832 

+ 12.426*xvar2) 
535 64.0 45.5 40.1 68.4% 42.9% 

DBT_SAs 

+  

GSW_SAs 

Respective models for 

respective shots. 
1557 48.6 35.9 -5.1 45.8% -4.8% 
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Table 6.6. Error estimates of AGBD (GEDI L4A) estimates with DBT_SAs model for 

different scenarios according to beam intensity, data acquisition time and beam 

sensitivity (Beamsen) 

Category N Beamsen 

MAE 

[Mg 

ha-1] 

RMSE 

[Mg 

ha-1] 

BIAS 

[Mg 

ha-1] 

R 

 

Mean 

Reference 

AGBD 

[Mg ha-1] 

RMSE 

[%] 

All Shots 1022 96.9% 30.7 38.2 -13.2 0.61 112.9 34% 

Power-Night 157 97.2% 34.7 44.3 -2.9 0.52 118.6 37% 

Power-Day 544 97.2% 30.0 37.1 -17.9 0.65 109.4 34% 

Coverage-Night 154 96.3% 28.0 34.4 -4.0 0.51 121.1 34% 

Coverage-Day 169 96.2% 31.8 38.5 -15.9 0.61 111.5 39% 

 

 

Figure 6.5. Scatterplot of GEDI L4A AGBD estimates versus the reference ALS AGBD 

estimates over the study area. The plot distinguishes between the two different GEDI L4A 

models used over the study area 

To assess the impact of the beam energy (power vs. coverage) and 

acquisition time (day vs. night), we have only used the GEDI-AGBD estimates 

from the DBT_SAs model due to the high uncertainty of the GSW_SAs model 

over the study area (Table 6.6). It was observed that RMSE varied minimally (34% 

- 39%; Table 6.6) across these scenarios due to similar beam sensitivity. Though 
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the AGBD was underestimated in four scenarios, the GEDI shots acquired during 

nights are observed to be with lower bias when compared to day time GEDI 

shots. In addition, the correlation between GEDI-AGBD and ALS-AGBD was 

observed to be marginally higher for power-beams than the coverage beams.  

6.3.3 Re-calibration of GEDI AGBD Product 

Following the establishment of a robust comparison framework, a 

comprehensive accuracy assessment of GEDI's above-ground biomass (AGB) 

estimates was undertaken across all five South Asian forest sites. This assessment 

revealed a consistent and concerning trend: a statistically significant bias was 

observed across all sites, irrespective of the plant functional type (PFT). To 

address this systematic error, the investigation focused on the Evergreen 

Broadleaf (EBT) PFT, which exhibited the most pronounced bias. 

A first-order bias correction model was subsequently developed and 

evaluated specifically for GEDI-AGBD estimates in South Asian EBT forests 

(Figure 6.6). To ensure the generalizability and robustness of this corrective 

model, a rigorous "Leave-One-Site-Out" cross-validation approach was 

employed. This technique iteratively constructs and validates the model on four 

out of the five EBT sites. The remaining site is then used for validation, allowing 

for the model coefficients to be refined for that specific region. By repeating this 

process for each site, five unique correction models were effectively created, each 

tailored to address biases within distinct regions of the EBT biome. 

 

Figure 6.6. Impact of Bias Correction on GEDI AGBD Accuracy at 100m Grid 

Resolution. (A) Before and (B) After correction. 

Furthermore, the investigation explored the potential impact of spatial 

resolution on the efficacy of the bias correction model. The model was evaluated 

at multiple resolutions (100m, 500m, and 1000m) as illustrated in Figure 6.7. To 

guarantee reliable calibration at each resolution, minimum thresholds were 
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established for the number of qualifying GEDI shots within each grid cell: 3 for 

100m, 25 for 500m, and 50 for 1000m. 

Table 6.7. Site-level comparison between LiDAR-AGB and GEDI AGB Estimates at 

100m resolution before and after correction. Individual sites indicates estimates during 

Leave-One-Site-Out Validation. 

  After Correction Before Correction 

Sites N RMSE R2 RMSE R2 

All Sites 1449 85.8 0.42 114 0.42 

Achanakmar 

(test) 

46 72.7 0.25 96.2 0.25 

Yellapur (test) 1097 85.2 0.42 110 0.42 

Uppangala 

(test) 

19 116 0.63 177 0.63 

Khaoyai (test) 287 87.8 0.28 126 0.28 

The results yielded promising insights. The model demonstrably reduced 

bias, as evidenced by the model output (Figure 6.7). However, at the 100m 

resolution, a residual degree of data dispersion persisted, suggesting limitations 

in capturing fine-scale variability of biomass. Interestingly, the Root Mean Square 

Error (RMSE) exhibited a trend of improvement with increasing grid resolution. 

This underscores the potential advantages of employing coarser scales to 

mitigate inherent uncertainties associated with GEDI data. At the 1km grid 

resolution, the overall RMSE decreased to approximately 20%, signifying a 

substantial improvement. 

 

Figure 6.7. Scatterplots Illustrating GEDI AGBD Accuracy Improvement with 

Increasing Grid Resolution after Bias Correction for EBT plant function type. 

These findings offer valuable and generalizable knowledge. While current 

data limitations restrict analysis of other biomes, the success achieved with EBT 
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forests suggests broader potential applicability of this approach. The LiDAR 

reference biomass maps employed within this study convincingly demonstrate 

their utility as calibration tools for Earth Observation (EO) missions. This paves 

the way for the development of more accurate, large-scale assessments of forest 

biomass across diverse regions. 

6.4 Discussion 

The advent of space-borne LiDAR systems, GEDI and ATLAS, presents a unique 

opportunity to analyze 3D vegetation structure globally. Though both systems 

are widely different in sensor technologies, primary science goals and intended 

geographical coverage, the results suggest they can complement each other in 

given circumstances. Since the study site can be characterized largely as open 

forests with considerable canopy gaps, the ground detection under favorable (i.e. 

cloud-free) night-time conditions was not found to be problematic in both leaf-

on and leaf-off conditions for strong beams of both the sensors.  

 

Figure 6.8. GEDI canopy height retrieval errors during leaf-on period across various 

beam strengths and acquisition types. MBS indicates the mean beam sensitivity of all the 

shots in the associated category 

The errors in canopy height retrievals from GEDI during leaf-on season 

acquisition and beam types were observed to be in similar, contrasting to the 

results over forests in and around USA, where the strong beams of GEDI were 

found to be more accurate in detecting canopy tops than weak beams (Liu et al., 

2021). This could be attributed to the minimal variability in mean beam 

sensitivity (94% – 97%) of the GEDI shots in varying beam strength and 
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acquisition time conditions (Figure 6.8). Considering canopy openings over the 

study site, both laser types (power and coverage beam) of GEDI are capable of 

penetrating canopies with high accuracy and thus yield comparable RMSE and 

bias errors. Similar results were shown by a study over tropical dense forests of 

French Guiana, where the GEDI shots with high-beam sensitivity (≥ 98%) tend 

were found to have greater penetration and can detect ground and canopy top 

accurately irrespective of the laser type (Fayad et al., 2022).  

The RMSE in canopy height retrievals over this tropical forest site during 

the ideal acquisition conditions (night-time and high power beams) was found 

to be 3.9m for GEDI during leaf-on season and 3.5m for ATLAS during leaf-off 

season. The errors obtained in this study are higher than the reported RMSE of 

1.1m for canopy height retrievals using ICESat-2 ATLAS over sub-tropical forests 

of India in northwestern Himalayas (Nandy et al., 2021). However, the number 

of sample sites used for validation are very few (N = 6) and the sample sites are 

of 32m x 32m in shape which are very different from the footprint of ATLAS 

products at 100m x 14m. A better approach is employed by Musthafa et al. (2023) 

to use field plots of 32m x 32m to validate GEDI and ICESat-2 products by using 

interpolation of the footprint-level canopy height retrievals. The study reports an 

RMSE in the range 2.62m – 3.99m for GEDI and 5.08 – 5.71m for ICESat-2 over 

tropical and sub-tropical forests of India (Musthafa et al., 2023). Though these 

studies have used field-measured canopy heights for validation of space-borne 

LiDAR metrics, the tree heights measured from ground are often error-prone 

depending up on the visibility of the tree-top in dense canopy systems (Réjou-

Méchain et al., 2019). Hence for an accurate reference measurement of tree height 

to validate space-borne LiDAR metrics and LiDAR data from airborne platforms 

(both aircrafts/drones) is chosen as the ground reference across various studies 

to assess the uncertainty of these space-borne canopy height retrievals (Dorado-

Roda et al. 2021; Neuenschwander and Magruder 2019).  

Nevertheless, the time-difference between reference ALS data and the 

space-borne LiDAR acquisitions play a crucial role in such evaluations in 

different tree species. Though it is ideal to have both acquisitions in the similar 

time frame, it is often not possible considering the costs and planning involved 

during Aerial LiDAR missions. On the other hand, evaluation of space-borne 

LiDAR missions through field plots acquiring canopy height measurements over 

large areas is extremely difficult, expensive and time-consuming. Hence, though 

slightly apart ALS serves as the best alternative of the reference canopy height 

and was used by several studies to validate space-borne forest canopy height 

retrievals with time-differences up to 1 – 10 years between the acquisitions 

(Adam et al., 2020; Lahssini et al., 2022; Sothe et al., 2022). However, this 

assumption may be invalid in fast growing tree plantations (viz., Eucalyptus or 

Prunus avium etc.) or areas with very young trees (Musthafa et al., 2023). In the 

current study, although there is a notable difference between ALS acquisition and 
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Space-borne LiDAR acquisitions (~5 years), considering the natural forest system 

in the study area, the increments in forest canopy height over an area are 

assumed to be minimal although other forest canopy structures may change. 

Further, we have ensured no major land-cover changes over the forests which 

impact forest heights drastically are observed using temporal Landsat-8 images.  

The accuracy of canopy height and terrain height retrievals from GEDI 

during day-time was observed to be better in terms of bias and RMSE when 

compared to ATLAS retrievals in both leaf-off and leaf-on periods (Table 6.3 and 

Table 6.4). This could be largely attributed to the difference in wavelengths of 

ATLAS (532 nm) and GEDI (1064 nm), the day time observations of ATLAS are 

more susceptible to scattering during the day and hence could lead to such 

potential uncertainties. During the leaf-on period irrespective of time of 

acquisition, GEDI was able to successfully retrieve canopy and terrain heights 

(Table 6.3 and Table 6.4). The full waveform retrieved from the GEDI was able to 

successfully notify the ground and canopy structures so as to enable accurate 

ground detection owing to the high canopy penetration of GEDI signal. In 

comparison, the photon-counting technology of ATLAS would be tested over the 

dense canopies due to lack of penetration. But, this could not be evaluated over 

the current study site due to lack of data during leaf-on season when the canopy 

cover at the study site is maximum. However, the underestimation of canopy 

height retrieval from ATLAS was observed by Liu et al. (2021) with increasing 

canopy cover and canopy heights. Consecutively, considering low canopy cover 

during leaf-off season, the performance of ATLAS was similar to GEDI during 

leaf-on season. However, during leaf-off season GEDI was not able to 

differentiate ground and canopy structure efficiently leading to large 

underestimations.  

 

Figure 6.9. Influence of terrain slope on the canopy height residuals as retrieved from (A) 

GEDI during leaf-on season and (B) ICESat-2 (ATLAS) during leaf-off season. 
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The GEDI-AGBD estimates over the study area were found to be largely 

underestimated and biased (with RMSE of 46%) owing to the fact that the 

parametric models used to generate AGBD estimates from RH metrics for the 

South Asian region are not calibrated locally and use models calibrated over 

other plant functional types and regions. For example, over the study area, the 

DBT_SAs model is calibrated over the Evergreen Broadleaf Trees in Africa and 

the GSW_SAs model is calibrated using data from all over the globe. In this 

regard, the use of the GEDI-AGBD product over Indian (and South Asian region) 

is still notional and needs significant improvement and understanding. 

The topographic slope is a crucial factor affecting signal processing and 

influencing the outputs derived from the space-borne LIDARs (Dorado-Roda et 

al., 2021; Xing et al., 2020). In the study area, the RMSE error was observed to be 

low for the flat areas (slopes < 10°) when compared to steep slopes (> 30°) for the 

canopy heights derived from both GEDI and ICESat-2. Since the GEDI AGBD 

was also derived from the relative height metrics from the GEDI L2A data, the 

terrain slope strongly affected the AGBD accuracy. The steeper slopes were 

observed to be strongly overestimating both canopy height and AGBD during 

leaf-on season. During leaf-off season, variability in slope least effected the 

retrieval of GEDI based canopy heights. Similar observations of steeper slopes 

(>30°) affecting the accuracy of ICESat-2 and GEDI in predicting terrain and 

canopy height are reported by Liu et al. (2021) and Wang et al. (2019). For GEDI, 

the best rh98 predictions were made for flat areas during the leaf-on season with 

an RMSE of 2.95m and a mean bias of -0.18 m (Figure 6.9). Similarly, for ATLAS, 

the h_canopy predictions over flat areas yielded the lowest RMSE of 4.85m (bias 

= 0.38 m) during the leaf-off season (Figure 6.9). 

6.5 Summary 

This study evaluated the performance of two spaceborne altimeters, GEDI 

and ICESat-2, in retrieving terrain and canopy heights in tropical dry deciduous 

forests of India. The goal was to understand how well these satellites performed 

under varying leaf cover conditions in comparison to the reference data from 

airborne LiDAR during both leaf-on and leaf-off seasons. During the leaf-on 

season, GEDI accurately measured canopy heights under various acquisition 

conditions. However, its performance suffered during the leaf-off season. GEDI 

struggled to differentiate between ground and canopy, leading to underestimates 

of canopy height. In contrast, ICESat-2 performed better for leaf-off canopy 

height retrieval, particularly using strong nighttime beams. This is likely because 

the laser beams could penetrate more effectively through the sparse canopy 

during this time. Overall, GEDI seems better suited for canopy height retrieval 

during leaf-on seasons due to its superior ability to penetrate through leaves. 

However, further evaluation across diverse forest types is necessary to solidify 

this conclusion. 
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While assessing GEDI's effectiveness for above-ground biomass density 

(AGBD) estimation, the study also highlighted challenges associated with GEDI 

AGBD estimates. These estimates exhibited significant discrepancies when 

compared to reference data specifically in South Asia. This underlines the need 

for more calibration sites and robust models, particularly for South Asia.  

To address GEDI's AGBD estimation limitations, we compared its estimates 

with reference maps derived from airborne LiDAR data and field plots across 

diverse South Asian forests. The study examined GEDI's accuracy across various 

locations and forest types, it’s potential for comprehensive AGBD mapping when 

combined with airborne LiDAR data, and the uncertainties associated with GEDI 

measurements. This analysis aimed to identify areas for improvement and 

ultimately enable more reliable use of GEDI data for robust AGBD estimation. 

A key finding of the research is a novel bias correction method specifically 

designed for GEDI AGBD estimates in South Asian Evergreen Broadleaf forests. 

This method leverages leave-one-site-out cross-validation for robustness and 

considers the unique characteristics of these forests. The correction model 

demonstrates improved accuracy with increasing spatial resolution, suggesting 

promise for regional-scale biomass mapping using GEDI data. However, 

challenges remain at finer resolutions. Further research is warranted to explore 

the applicability of this methodology to other biomes and larger areas. The initial 

findings are promising, indicating that GEDI data, combined with robust 

correction models and high-quality reference data, has the potential to deliver 

reliable and efficient regional biomass mapping, ultimately contributing to 

improved carbon monitoring and forest management practices. 

The research emphasizes the importance of generating high-quality 

reference datasets with well-understood uncertainties for improved GEDI AGBD 

estimates. Overall, this research provides valuable insights for utilizing GEDI 

and ICESat-2 measurements under various conditions to obtain accurate canopy 

heights. These findings can inform the development of improved GEDI models 

that translate into more reliable above-ground biomass estimates at regional and 

national scales. 
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Chapter 7   

 

Conclusions and Future Scope 

 

7.1 Conclusions 

This thesis comprehensively investigated and addressed critical aspects of 

improving spatial Above-Ground Biomass (AGB) estimations for tropical forest 

ecosystems using Earth Observation (EO) data. The research focused on 

integrating Light Detection and Ranging (LiDAR) technology within a 

hierarchical framework to enhance accuracy, reliability, and uncertainty 

quantification. The key achievements of this thesis are as below. 

 Defined an optimal field plot size for generating high-quality plot-level 

AGB data. This finding provides valuable guidance for future forest 

assessments, ensuring reliable data suitable for upscaling to remote 

sensing applications. 

 Established a novel workflow utilizing Terrestrial LiDAR (TLS) for non-

destructive tree allometry. This approach reduces uncertainties in plot-

level AGB estimates, improving accuracy and efficiency compared to 

traditional methods. 

 Generated comprehensive reference AGB maps using Airborne LiDAR 

data across diverse tropical forest sites. These open-access maps serve as 

a valuable resource for the remote sensing community, providing ground-

truth data for calibrating and validating large-scale biomass mapping 

models. 

 Developed detailed uncertainty estimates for reference LiDAR AGB maps, 

facilitating the implementation of a hierarchical modeling approach for 

regional AGB mapping as recommended by the IPCC. This approach 

ensures reliable regional AGB maps with accurate error representations. 

 Demonstrated the applicability of the developed methods by creating a 

correction model for Indian forests that improves the accuracy of NASA's 
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GEDI spaceborne LiDAR mission. This showcases the real-world impact 

of the research, contributing to more accurate global biomass assessments. 

Traditional methods for spatial AGB estimates exhibited significant 

discrepancies across India. These discrepancies were traced back to limitations in 

ground data collection. Plot size limitations resulted in insufficient sampling of 

tree size variations, leading to underestimates of total biomass. Additionally, the 

accuracy of allometric models used to convert field measurements to biomass 

estimates was found to be a crucial factor. Existing models may not adequately 

capture the specific growth patterns and biomass allocation of tropical tree 

species.  

This research not only provided a standardized protocol for field data 

collection but also explored the development of TLS-derived tree volume 

equations, offering a non-destructive alternative to traditional methods. TLS 

technology allows for the creation of highly detailed 3D tree models, enabling 

accurate volume estimations without the need for destructive sampling. 

Additionally, a methodology for generating reference LiDAR-AGB maps 

applicable across diverse tropical forest ecosystems was established. This 

methodology considers variations in forest structure and species composition, 

ensuring the generalizability of the approach. 

Integrating high-resolution Aerial LiDAR data offered substantial 

improvements in AGB estimations. The detailed 3D structural information 

captured by LiDAR facilitated the development of more accurate reference 

LiDAR-AGB maps. These maps consider the spatial distribution of vegetation 

within a forest stand, providing a more comprehensive picture of biomass 

compared to traditional plot-based approaches. The reference maps serve as 

valuable calibration and validation datasets for EO missions like GEDI, 

promoting more reliable biomass assessments from space.  

The thesis emphasized the importance of a hierarchical modeling approach 

that incorporates error propagation throughout the estimation process. This 

approach, recommended by the IPCC, strengthens the estimation process across 

all stages. It allows for the quantification of uncertainties associated with ground 

measurements, plot size selection, allometric model choice, and the upscaling 

process using EO data. By accounting for these uncertainties, the final regional 

AGB estimates become more robust and defensible.   

This thesis contributes significantly to advancing the accuracy and 

reliability of EO-based spatial AGB estimates for tropical forests. The open-access 

reference LiDAR-AGB maps and established methodologies pave the way for 

improved monitoring of biomass change dynamics and carbon stocks. These 

resources can be utilized by researchers, policymakers, and environmental 

agencies to develop more effective strategies for forest conservation and carbon 

sequestration efforts. The findings highlight the crucial role of LiDAR 
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technology, not just in generating high-quality reference data but also in 

calibrating and validating upcoming EO missions dedicated to biomass 

assessments. This research lays the groundwork for more robust and defensible 

biomass estimates at regional and global scales, enabling a more comprehensive 

understanding of forest carbon pools and their role in the global carbon cycle. 

7.2 Future Research Directions 

Further refinement of allometric models, particularly for temperate Indian 

forests, is necessary to enhance regional AGB estimations. The development of 

ecosystem-specific models that account for variations in tree species composition, 

growth patterns, and wood density would improve the accuracy of biomass 

estimates across diverse forest types. Additionally, exploring the potential of 

machine learning techniques for allometric model development holds promise 

for further advancements in this area. 

Expanding the network of reference LiDAR-AGB maps across a broader 

range of tropical forest types would strengthen the calibration and validation of 

EO data. A wider geographical scope would improve the generalizability of the 

findings and enhance the applicability of the established methodologies. This 

could involve collaborating with research institutions and forestry agencies in 

other tropical regions to establish additional reference sites. 

Investigating the integration of additional remote sensing data sources, 

such as optical and radar imagery, with the established LiDAR-based approach 

could offer further improvements in spatial AGB estimations. By leveraging the 

complementary strengths of different sensors, a more comprehensive 

understanding of forest structure and biomass could be achieved. For example, 

optical imagery can provide information on leaf area index and vegetation 

health, while radar imagery can penetrate through the forest canopy to capture 

information on underlying structural elements. 

In conclusion, this thesis successfully demonstrated the effectiveness of 

LiDAR technology within a hierarchical framework for enhancing spatial AGB 

assessments in tropical forests. The developed methodologies and open-access 

data resources hold significant promise for improving the accuracy and 

reliability of EO-based biomass monitoring efforts. This research contributes to a 

more comprehensive understanding of global carbon dynamics, which is crucial 

for informing effective climate change mitigation strategies and ensuring the 

sustainable management of our vital forest ecosystems.  
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