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ABSTRACT 

 

Within the context of precision agriculture, site-specific crop management has been 

emerging as the globally relevant, environmentally sustainable and economically beneficial 

agronomic paradigm. In pursuing this, field-sensitive optimal agronomic practices related to 

crop monitoring, management, and intervention procedures are undertaken by acquiring 

spatially contextual information on inter and intra-field variability of crops’ condition and 

growth. Field-level data on the crop type, growth status and potential trajectories of crops’ 

traits form core information capsules in the decision-making process for arriving at 

responsive implementation strategies. Optical remote sensing data, both multispectral and 

hyperspectral, have been widely used for crop classification and biophysical characterization 

at various scales and spatial extents. However, the limited levels of diversity in the spectral 

characteristics and lack of structural features in optical remote sensing data constrain 

discrimination and biophysical characterization of crops with reasonably good accuracy and 

spatial scale.  

LiDAR remote sensing is an evolving approach that offers distinct structural features 

of objects. Understanding the potential of LiDAR data (generally called point cloud) for 

discrimination and biophysical characterization of crops is vital for assessing its relevance 

in precision agriculture. Terrestrial laser scanner (TLS) offers the possibility of acquiring 

LiDAR point cloud at the plant scale in an agricultural field. With an overarching aim of 

estimating biophysical parameters (plant height, crown area, biomass), discriminating crops 

at plant level and predictive modelling of crop growth, the objectives of this research are (1) 

multi-temporal estimation of biophysical parameters of crops at different levels of nitrogen 

using TLS point cloud, (2) to develop a deep learning (DL) based methodology for multi-

crop point cloud classification of crops, (3) examining the potential of fusing TLS point 
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 cloud with high-resolution multispectral satellite data for crop discrimination at different N 

levels, and (4) to develop a DL based temporal framework for temporal prediction of crop 

structural parameters. 

We have chosen three important vegetable crops that are consumed on a regular basis 

in India. The crops are considered with different height profile and potential horizontal 

spread due to lodging. Remote sensing based discrimination of crops with reference to 

nutrient level requires crops exhibiting differential growth profiles. We designed an 

experimental set-up for growing three different vegetable crops (tomato, eggplant, and 

cabbage) at different levels of nitrogen on the experimental station of the University of 

Agricultural Sciences, Bengaluru, India. TLS point clouds are acquired through the growing 

season. In addition, high-resolution multispectral satellite imagery from the WorldView-III 

is also acquired at a critical growth stage. The datasets are processed and analyzed using a 

host of statistical, conventional machine learning, and deep learning methods. The modelling 

frameworks involve estimating crown area, biomass, object-based crop classification using 

only LiDAR point cloud, the fusion of LiDAR point cloud and multispectral satellite 

imagery for crop classification sensitive to different nitrogen levels, and temporal prediction 

of plant height and crown area. The results are validated with reference ground truth 

measurements acquired throughout the crop growing season. Results suggest that TLS offers 

plant/patch level biophysical characterization of crops using LiDAR point cloud with 90% 

accuracy both by magnitude and direction. On the potential of LiDAR point cloud for crop 

discrimination, there are two possibilities observed. Point clouds analyzed with the deep 

machine learning method (CropPointNet) offers relatively high accuracy when the 

classification is not specific to the N level. The performance of the crop discrimination with 

explicit sensitivity to N level is reasonably good when the LiDAR point cloud and 

multispectral imagery are fused. The results from the deep learning model developed  
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(CropTemporalNet) for predicting the values of plant height and crown area based on the 

past growth stage(s) are promising. The predictions match well with the estimations from 

the TLS LiDAR point cloud. 

Overall, the observations suggest the potential of LiDAR point cloud a general data 

source for precision crop discrimination and biophysical characterization. However, field 

conditions and environmental factors and the methods used for analyses sustainably affect 

the quality of retrievals. Further studies are recommended for evaluating the generalization 

potential across farmer’s field, models, crops and geographic regions. 
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CHAPTER 1 

 INTRODUCTION 

 

 

1.1 Precision agriculture and advances in remote sensing 
 

With the beginning of the green revolution, farming practices in many developed and 

developing countries witnessed an increased use of chemical fertilizers resulting in adverse 

environmental conditions such as reduced soil fertility, soil erosion and environmental 

pollution. Thus a paradigm shift towards a sustainable and environmentally friendly farming 

practice turns out to be necessary. Site-specific agriculture, also known as precision agriculture, 

is an innovative approach to farm management that can encourage sustainable agriculture to 

improve crop performance and productivity. Site-specific farming offers a multi-dimensional 

approach to better farming practices regarding environment safety, food security, increased 

throughput, profit and economic growth. 

With precision agriculture, the future farms are likely to be managed with much greater 

spatial and temporal resolution than the present. Precision agriculture needs the application of 

technologies, methods and principles to detect and manage spatial and temporal variability and 

simultaneously avoid the usage of chemical fertilizers and decrease environmental footprint 

and production rate incurred by less farm input (Figure 1.1). This mode of agricultural practice 

allows farmers to manage variability at scales within a defined farm unit (e.g. section, quarter 

section) and target specific spatial regions of the farm unit. Spatially variable crop yield can 

exist due to many factors such as soil nutrient, moisture content, topography, as well as insect 

and weed infestations that change over time. Site-specific agriculture requires spatial and 
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temporal management of crops which demand highly time and space sensitive information over 

large agricultural fields. In agriculture, plant structural and biophysical parameters such as 

height, crown area, canopy cover, and leaf area index (LAI) are important indicators for 

assessing crop status, nutrient requirements, and expected yield. Used often in combination, 

plant height and crown area are vital for estimating other crop parameters such as biomass, 

yield, stress, and nutrient status.  

Traditional methods to retrieve crop traits are often destructive, invasive, and include a 

high manual amount of labour and are time-consuming. The computation of the above-ground 

biomass requires cutting the plant at ground level from an area of the plot and then oven-dried 

and weighted (Pask et al., 2012). These in-situ based measurements are limited to the number 

of samples that are considered. Also, sampling and the consequent procedures such as drying, 

manual intervention and transportation are labour intensive. 

 

Figure 1.1: Precision farming depicting spot fertilizer application using sensors (source: 

www.google.com/images) 
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With the recent technological advancements encompassing IoT (Internet of Things) and 

wireless sensor networks in agriculture, variable rate technology (VRT) has enabled farmers to 

detect crop growth rate, soil health, and within-field crop variability. Even though these 

technologies are in their advanced stage, they are relatively expensive when the farming area 

increases to regional or national scale. The large volume of remote sensing data available from 

different platforms plays a promising role in helping the farmers implement sustainable 

farming practices for small and large areas.  

 

Remote sensing is a geospatial tool often incorporated into a management strategy for 

the whole farm operation. It plays a significant role in the agriculture sector in providing crop 

information such as crop water stress, soil mapping and monitoring, nutrient stress, crop yield, 

crop growth, different pest and weed attacks in a non-destructive and cost-effective manner 

(Figure 1.2). Remote sensing data for retrieving different crop information can be collected by 

various sensors such as spectral sensors, viz hyperspectral and multispectral, laser scanners and 

radar imaging (Figure 1.3). At the regional to national scale, multispectral remote sensing has 

traditionally been used for crop mapping, monitoring, and yield predictions (Li and Chen, 

2011). Over the last three decades, developments in imaging and sensing technologies have 

resulted in the operational launch of several sensors with higher spectral and spatial resolutions 

leading to the evolution of hyperspectral remote sensing. In contrast to multispectral imaging, 

hyperspectral imagery offers increased spectral definition with continuous and narrow-band 

spectral signals, capable of capturing information at a finer scale (Sahoo et al., 2015). Mounted 

on airborne platforms, compact hyperspectral sensors have been used for various applications 

at different altitudes (Nebiker et al., 2008; Adão et al., 2017). This approach has been 

extensively tested and applied and the accuracy and precision of various remote sensing-based 

crop information retrievals have increased continuously (Goel et al., 2003; Nidamanuri et al., 
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2007; Nidamanuri and Zbell, 2011). However, contemporary demands for technological 

developments in agricultural infrastructure, machinery, cropping practices, and nutrient 

management are increasingly directed at the field and sub-field scale. Rapid developments in 

on-demand, low-cost data acquisition platforms (e.g. UAV) and miniaturised sensors have 

fostered remote sensing using close-range measurements (Whitehead and Hugenholtz, 2014; 

Van Der Meer et al., 2017). 

 

Figure 1.2: Various applications of remote sensing in agriculture (source: Tetteh et al., 2018) 
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Figure 1.3: Example scenario of satellite-based remote sensing in agriculture applications 

(source:http://www.cleantechconcepts.com/2018/03/eye-in-the-sky-reduces-nitrogen-use-for-

precision-farming/) 

 

1.2 Structural features: 3D remote sensing 
 

Many crucial tasks in agriculture such as fertilization, pest control, and irrigation can 

benefit from the knowledge of plant geometry (Lin, 2015). The structural attributes are 

obtained from the 3D information. Plant structural parameters are affected by various 

biological processes such as growth, photosynthesis, carbon sequestration. The importance of 

precise quantification of structural crop attributes has necessitated active sensing driven 

geometrical features in precision agriculture (Figure 1.4). 

Although spectral remote sensing approaches are used to infer plant structural attributes, 

it has inherent limitations. Image is a 2D representation of the environment; therefore, when 

the 3D surface is converted to a 2D image, it results in the loss of the elevation information due 

to occlusion as the whole part of the plant is not visible. In order to mitigate this problem, 
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multi-view image capture (Klukas et al., 2014) at different angles are used to estimate leaf area 

and biomass using empirical relationships. But these methods pertain to only local application 

rather than a broader context.  

 

Figure 1.4: Canopy height model (CHM) of the orange orchard developed from the LiDAR data 

captured using a mobile laser scanner (source: Colaço et al., 2019) 

 

1.3  Stereo imaging as the source of structural features 
 

 

Multispectral stereo-imaging based remote sensing offers digital surface elevation 

modelling using the photogrammetry technique of matching stereo pairs and generation of 

orthophoto (also Structure-From-Motion, SFM) for the generation of 3D point clouds. This 

method has been used for plant phenotyping for the crops such as soya bean, rice and wheat 

(Biskup et al., 2007; Pound et al., 2014). The orthophotos are not error-free as they are limited 

in accuracy, are sensitive to environmental effects, and become computationally complex for 

big images (Li et al., 2014). Another serious limitation with stereo pair images is that they 
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cannot penetrate the canopy, hence limiting in providing height profile or local ground 

reference sensitive structural attributes. 

 

1.4 LiDAR remote sensing data for computing structural 

attributes 
 

The LiDAR technology, which operates in the near IR region of the electromagnetic 

spectrum using laser beams, can penetrate the vegetation canopy to certain levels of extent, 

enabling it to provide 3D information of the canopy. Complementing the spectral data, 3D laser 

scanning has emerged as the primary source of remote sensing data to directly estimate 

geometric attributes of land surface features (Lichti et al., 2002). Terrestrial or aerial LiDAR 

system finds applications in forestry, agriculture, urban mapping etc. (Figure 1.5). Several 

studies have detailed LiDAR applications in forest studies which include discrete return 

LiDAR, full-waveform LiDAR and fusion of LiDAR with other remote sensing data (Jones et 

al., 2010; Pirotti et al., 2010; Clark et al., 2011; Fieber et al., 2015; Nie et al., 2016; Lu et al., 

2016). Some forest attributes such as individual tree characteristics (Figure 1.6), canopy height, 

topography, vertical surface attributes are directly measurable from LiDAR data. In contrast, 

canopy area, biomass, basal volume, and leaf area index (LAI) are derived from direct 

measurements.   
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     Figure 1.5: Terrestrial laser scanner for characterisation of vegetable crops (field photographs) 

 

Figure 1.6: Individual tree identification using TLS (source: Zhang et al., 2020) 
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1.5  Fusion of multispectral and LiDAR point cloud for crop 

biophysical characterization 
 

 Despite having high spatial and spectral resolution, spectral features from optical 

remote sensing data are limited in providing quantifiable features ‘within the field’ scale with 

explicit reference to crop nitrogen (N) status. In a practical scenario, during the crop growth 

phase, the effects of differential N treatments on crops are observable in terms of differences 

in crop structural parameters such as height, crown area. The existence of inherent spectral 

similarities in crops and other vegetation types in the reflectance domain is present even in 

hyperspectral data. Complementary to the spectral features of multispectral imagery, the 

LiDAR point cloud offers geometrical features of objects. Precise crop discrimination and 

biophysical characterization can be achieved from the data level fusion of multispectral and 

LiDAR data.  

1.6  Methods for processing 3D point cloud 
 

Among the various approaches available for the analysis of various types of remote 

sensing data, supervised learning-based classification is the most comprehensive and broad-

based method. Identification and discrimination of crops can be perceived as a classification 

problem. Given the availability of objective training data, multiple crops discrimination in the 

LiDAR point cloud can be approached as the supervised classification problem. While 

classifying point clouds, considerable time is devoted to engineering a reliable set of features 

which are then fed into a classifier of choice. Generally, such features are usually derived using 

the knowledge of local neighbourhood relationships. In the case of 3D point cloud data, 

different geometrical features such as normal, elevation etc., will be taken into account. While 

these features capture local information, the process is usually time-consuming and requires 

the application at multiple scales combined with contextual methods to describe the diversity 
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of objects within a scene adequately. Learning the features of these surfaces will help to retrieve 

the parameters essential for grouping similar objects successfully. In order to scale the semantic 

classification task to meet the demands of emerging data volumes – potentially at sub-meter 

resolution and global in coverage – an efficient, streamlined, and robust model that directly 

operates on 3D point clouds is needed. 

Deep learning (DL) neural network has been evolving as a general method for predicting 

and labelling various types of data and applications. While the most contemporary deep 

learning models are amenable to ingest a rasterized point cloud directly, the unstructured nature 

of the 3D point cloud of natural landscapes limits the direct application of the DL architectures 

for classification or segmentation in a 3D perspective. Experiments on the adaptation, 

modification and improvement of sophisticated DL architectures for the classification of point 

clouds of crops are vital for enhancing the understanding and, potentially, developing 

generalizable models and methods. 

 

1.7  Temporal prediction of plant parameters 
 

The composition and quantity of nutrients to be supplied for a crop is directly related to 

the crop growth stage. An important scenario relevant in this regard is the ability of farmers to 

have the ex-ante prediction of their field crops. This capability helps farmers prepare for the 

crop growth trajectories and optimize the accumulation and application of interventional 

resources. Various plant and field level parameters such as nitrogen accumulation, potential 

crop yield, disease occurrence are key variables explaining the expected crop productivity from 

crop growth perspectives. Building automated systems for predicting plant parameters by 
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combining advanced remote sensing data and intelligent methods is gaining attention in 

agriculture practices.  

Few studies have attempted this arena to analyse time-series UAV-based multispectral 

imagery using a host of machine learning algorithms to predict plant height, leaf nitrogen 

content, and potential yield (Marcial-Pablo et al., 2019; Zhou et al., 2017). However, these 

studies have relied upon spectral indices based correlation of plant parameters for obtaining 

reference data for building up the prediction models. Prediction of broad-based plant 

parameters such as plant height and the crown area forms a crucial knowledge base in the 

system for ex-ante assessment of crop growth trajectories. Because of its explicit nature of 

sensing, the TLS point cloud offers the possibility to compute reference plant attributes for 

further use by machine learning methods. Due to their vast potential for adaptation and 

generalizability across sensing mechanisms and parameter selection, DL methods seem the 

appropriate computational-methodological frameworks for evaluating the possibility of using 

TLS point cloud for developing a prediction system for ex-ante estimation of plant structural 

parameters. 

Considering the utility of high-resolution TLS point cloud and the potential for model 

integration with multispectral imagery for crop discrimination, biophysical parameters 

estimation and the possibility for plant-level information retrieval, this thesis has attempted to 

address the following questions. 

 What is the potential of TLS point clouds to discriminate crops and estimate biophysical 

parameters as a function of N level? 

 How will the adaption of deep learning techniques to directly ingest the 3D LiDAR data 

for object-based plant level classification work? 
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 What is the potential to integrate 3D point cloud crop data with high-resolution multi-

spectral imagery for crop discrimination at patch level with sensitivity to nitrogen level? 

 Given the availability of crop structural parameters at one growth stage, what is the 

potential of the DL methods for predicting crop structural variables at a different growth 

stage? 

 

1.8 Problem statement 
 

 

Variability in plant growth, soil nutrition and expected yield exists within field. 

Depending upon the type of crop grown, the impact of variability can be seen at plant or patch 

level. Hence the within-crop diversity should be addressed at the plant or patch level for better 

crop throughput. For this purpose, the remote sensing data obtained should identify the crop at 

the patch or plant level. High-resolution optical remote sensing data is a partial solution for 

this, but at the same time, the need for structural features for crop modelling is equally essential. 

Thus utilizing LiDAR to capture crop geometry is critical for crop modelling. We have 

considered three essential vegetable crops consumed by the people daily: cabbage, eggplant, 

and tomato. The prospect of remote sensing based crop monitoring for these vegetable crops 

has not yet been explored from the 3D perspective. A distinctive feature of these crops is their 

height concerning the ground surface, which is in the order of a few centimetres compared to 

cereal crops. This further complicates crop characterization and extraction of the crop traits 

such as canopy height and crown area. To automate the semantic classification task for meeting 

the growing volume of LiDAR point cloud, an efficient model is to be developed that functions 

directly on the LiDAR point cloud. The amenability of deep learning architectures for direct 

ingestion of LiDAR point cloud for semantic classification is still in its infancy. Development 

of a deep learning technique that can effectively be adapted to process 3D data from a terrestrial 
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laser scanner for horticulture crops at a multi-temporal scale has largely been an unexplored 

arena. Also, the change in classification accuracy when satellite-borne multispectral data is 

integrated with the LiDAR data for horticulture crops is also studied in this thesis. Using 3D 

LiDAR data, the crop structural parameter prediction is not yet investigated. These are some 

vital tasks involved in crop monitoring which helps in site-specific farming. At the same time, 

the irregular and unstructured nature of the 3D LiDAR is quite challenging to be considered 

from the deep learning perspective. Thus, how the LiDAR data (Figure 1.7) is amenable to all 

these goals is investigated in this research. 

 

Figure 1.7: Problem statement 
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1.9 Research Objectives 
 

The overall aim of this is to explore LiDAR point cloud for crop parameters estimation, 

prediction and discrimination of crops at plant/patch level. This has been expressed in the form 

of the following four specific objectives. 

 Multi-temporal estimation of biophysical parameters of agricultural crops at different 

levels of nitrogen using TLS point cloud 

 To develop a deep learning-based methodology for multi-crop point cloud classification 

of agricultural crops 

 Examining the potential of integration of TLS point cloud with high-resolution 

multispectral satellite data for crop discrimination at different N levels 

 To develop a DL based temporal framework to predict crop structural parameters 

 

1.10 Organisation of the thesis 
 

This thesis is organized into six chapters. Chapter 1 introduces the subject, describing 

the relevance of the topic and the scientific issues addressed in this thesis, including listing the 

thesis's objectives. Chapter 2 presents the relevant literature organized by the nature of 

objectives and the sub-tasks involved in each of the objectives. Considering the facts that (i) 

remote sensing is not new and that it has become part of the standard tools and technologies 

for agriculture, and LiDAR remote sensing has been explored reasonably well across different 

disciplines in vegetation research, a basic textual introduction of the LiDAR remote sensing is 

undesirable. Hence, to preserve the study's focus and make the thesis report sharp, conscious 

efforts have been made to avoid basic level descriptions and elaborations. 
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Chapter 3 details the study site, the various types of remote sensing datasets acquired, 

and the in-situ measurements. Chapter 3 further describes pre-processing and detailed 

methodological approaches and the validation methods adapted for each objective. In Chapter 

4, results and their interpretations are presented. A comprehensive discussion of the results and 

observations are presented in Chapter 5. Chapter 6 contains summary of the results, major 

observations and conclusions drawn. Finally, though not meeting the definition of a regular 

chapter, we present the major contributions and scope for future research in the form of a micro 

chapter, Chapter 7. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

Prelude: In this chapter, a review of literature pertaining to the various objectives are 

presented concisely. For ease of readability, the chapter's content is organized into four 

sections relating to the objectives of the work. The first section presents relevant literature on 

the estimation of biophysical parameters of various crops at various levels of nitrogen (N) 

fertilizer. This section also contains an overview of the methods used for generating a canopy 

height model at different crop growth stages and the various geometrical parameters that are 

used for the estimation of biomass. The second section describes the methods of crop 

discrimination based on the deep learning technique. Traditional machine learning techniques 

for crop discrimination as well as deep learning techniques utilised in the computer vision 

tasks are also reviewed in this section. The third section is related to the object-level 

classification of crops sensitive to N levels based on the integration of high-resolution 

multispectral satellite imagery and TLS point cloud. The final section describes the evolving 

method of advance prediction of plant parameters using DL approaches.  

 

2.1 Multi-temporal estimation of biophysical parameters of 

agricultural crops at plant level using TLS point cloud 
 

In the agriculture context, plant structural and biophysical parameters such as height, 

crown area, biomass, and leaf area index (LAI) are important indicators for assessing crop 

status, nutrient requirements, and expected yield. Used in combination, plant height and crown 
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area are vital for estimating other crop parameters such as biomass, yield, stress, and nutrient 

status, which are not directly measurable. The 3D structure of plants helps understand the plant 

functions and structure. That is why it is important to obtain 3D information about crops. This 

information also helps in understanding plant stress and stress responses. Recent studies 

indicate that crop height can be directly estimated from terrestrial laser scanner (TLS) point 

clouds (Ehlert et al., 2009; Jimenez-Berni et al., 2018). However, compared to the estimation 

of tree height in a forest environment, plant height estimation in an agricultural context is 

complicated because of the lower ratios of plant and soil surface variance and the magnitude 

of the crop height versus the accuracy thresholds TLS point clouds.  

A few studies have attempted using TLS point clouds to estimate plant height and growth 

patterns in agriculture (Lumme et al., 2008; Hosoi and Omasa, 2009; Hoffmeister et al., 2013; 

Kjaer and Ottosen, 2015). Friedli et al. (2016) used high-density TLS point clouds for the 

classification of barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum 

aestivum L.) and estimated temporal increases in canopy height. Tilly et al. (2014) generated a 

digital crop surface model (CSM) for paddy rice (Oryza sativa L.) to track plant height over 

time as a means to predict fresh biomass. In a related study, Tilly et al. (2015) combined 

spectral vegetation indices with the TLS height measurements for the estimation of barley 

biomass. Based on the voxel-based canopy profiling method, Hosoi and Omasa (2006) 

measured wheat canopy's vertical plant area density profiles at different growth stages using 

portable scanning LiDAR. With the LiDAR-derived plant area density, the area of each type 

of organ (stem, leaves and ears) was compared with the actual dry weight of each organ type.  

Luo et al. (2021) have estimated crop heights of maize and soybean using two 

approaches: CHM based estimation and LiDAR variables using UAV based LiDAR system. 

The LiDAR variables were obtained by calculating the difference between the DEM elevation 

model and elevation from the laser point. The study showed that LiDAR variable based height 
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estimation gave better result when set side by side to CHM based method. Moreover, the 

combined height estimation model of maize and soybean is more accurate in comparison to 

individual estimate models. 

Friedli et al. (2016) have used TLS point cloud to track the increase in canopy height of 

a few crop species under field conditions. They have estimated canopy height at various growth 

stages for wheat, maize and soya bean crops. In addition, they have also evaluated three 

different types of point cloud filtering approaches considering different statistical quartiles of 

point cloud by choosing data distribution over a specified area of interest. Using height 

estimates at different statistical quartiles, they have derived biomass estimates suggests a strong 

correlation between the point cloud and biomass with a coefficient of determination of 0.8. 

Forming the part of the first line of studies using the TLS point cloud for agriculture, Tilly et 

al. (2014) have developed a crop surface model visualizing the height of rice crop during the 

single crop growth stage of maturity. The CSM generated for multi-temporal dates was further 

analysed to infer the rice crop's growth profiles. Study of vegetative growth in fruits using 

LiDAR such as strawberry has been carried out by Saha et al. (2022) where plant geometrical 

parameters such as number of points per plant, height and area and volume where extracted 

from LiDAR scanner based on time of flight measuring principle. The obtained measurements 

were correlated with LAI, which exhibited a linear relationship with the LiDAR derived 

parameters. At the same time the work has reported uncertainty in measurements where the 

canopy was dense. 

There have also been efforts to estimate the dry biomass of crops using the TLS point 

cloud. A dry weight estimate is an indicator of the growth condition of the crops. The capability 

of TLS for biomass estimation is explored in the studies conducted on the wheat crop (Jimenez-

Berni et al., 2018), sagebrush (Olsoy et al., 2014), and barley (Tilly et al., 2015). Walter et al. 

(2019) have carried out biomass and crop height estimation of wheat fields across different 
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environments using TLS and analysed the efficiency to extend its application within a breeding 

program. Jin et al. (2020) evaluated different regression models and derived plant traits of 

maize crops using TLS based LiDAR data and examined the suitability among these for 

biomass estimation. The estimation was carried out at four different levels, such as individual 

plot, plant, leaf group and individual leaf and stem levels. Their study concluded that simple 

regression technique is the suggested method for biomass estimation using TLS derived plant 

traits and height related variables gave robust biomass prediction. However, the estimates of 

dry biomass correlate very poorly with the reference biomass values suggesting that wet 

biomass is the representative of crop growth and a stable parameter for estimation using TLS 

point cloud.  

 

2.2 Crop classification using 3D point cloud- deep learning 

approach  
 

Identification of crop type and delineation of field boundaries broadly referred to as crop 

discrimination is the first task of technology application in agriculture. Thanks to the vertical 

geometrical feature retention capability of the LiDAR point cloud, it is possible to identify 

crops based on the geometrical distribution and assign labels for each crop. However, this 

discrimination can be done at two different levels: (1) Discrimination w/o any reference to 

management factors such as nutrients and (2) Crop discrimination with specific reference to 

management factors. Crop discrimination is generally achieved through the supervised 

classification of the point cloud. Semantic labelling and classification is the general framework 

for the analysis of LiDAR point cloud for crop discrimination. The classification methods used 

for point cloud traditionally utilises the custom-made feature extraction methods in which (Guo 

et al., 2014; Niemeyer et al., 2014; Hackel et al., 2016; Zhongyang et al., 2018), the class 
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labelling procedure is usually achieved by supervised or unsupervised learning approach. The 

supervised methods often used are machine learning-based involving the training of different 

classifiers with extensive training data. Weiss et al. (2011) carried out plant species 

classification with a 3D laser scanner using agriculture robots for the application of crop 

scouting. In a machine learning framework, 83 features are extracted from the 3D point cloud 

and are fed to different state-of-the-art classifiers to compare the classification accuracy across 

the classifiers. 

Based on the nature of ingestion, machine learning approaches for point cloud labelling 

can be grouped into direct and indirect methods. The direct methods operate on the point cloud 

without changing the 3D structure of the data. The state-of-the-art in classification is the deep 

learning-based methods. In the case of 2D images in computer vision, the deep learning model 

convolution neural network has reached new heights in terms of performance. Deep learning 

neural network has been evolving as a general method for the prediction and labelling of 

various types of data and applications. The Convolutional Neural Network (CNN) based deep 

learning model has recently been successfully used for semantic segmentation of 2D imagery 

(Liu et al., 2019; Varfolomeev, Yakimchuk, and Safonov 2019). Deep learning techniques can 

directly operate on point clouds and avoid the need for an analyst-level conversion of 3D point 

clouds into an ordered representation such as an image or a volume. A view-based method is 

one of the indirect methods in deep learning, which can be applied for the conditioning and 

processing of 3D imagery and point cloud. Su et al. (2015) proposed a multi-view based CNN 

for 3D shape identification which was acquired by placing cameras at different view angles 

around an object. These approaches of transforming the original 3D data to a 2D Euclidian 

space suffers from the loss of the information contained in the third dimension. Huang et al. 

(2016) devised a volumetric approach, where an occupancy voxel grid was generated on the 

LiDAR point cloud. For training, each voxel was labelled according to the label of the centre 
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point of the voxel grid, and the rest of the points were given the labels obtained from the 

prediction using CNN on these voxels. Tchapmi et al. (2017) proposed a voxel-based 3D Fully 

Convolutional Neural Networks (3D-FCNN) named “SegCloud” along with trilinear 

interpolation and fully connected Conditional Random Fields (FC-CRF) to perform point level 

semantic segmentation. Compared to the image-based method, voxelization offers better 

results but at the cost of overhead incurred during the data conversion, which might affect the 

invariance of data (Qi et al., 2017). While the deep convolutional neural network (DCNN) 

model is amenable to ingest a rasterized point cloud as input directly, the unstructured nature 

of the 3D point cloud of natural landscapes limits the direct application of DCNN for 

classification or segmentation in a 3D perspective. When it comes to the point clouds of the 

natural landscape, the unstructured and non-uniform nature of the point cloud poses a challenge 

for the direct application of DCNN (deep convolutional neural network) for classification or 

segmentation procedures. 

A significant development that makes the possibility of applying point cloud directly into 

deep CNN framework is presented by Qi et al. (2017).  The CNN model, popularly known as 

PointNet, is a unified architecture amenable for the exploitation of 3D features in a semantic 

classification framework. The distinct advantage of PointNet architecture is the usage of shared 

Multi-layer perceptron (MLP) which converts the input to a set of features in space for each 

point. The critical element of the architecture is the use of max-pooling layer that acts as a 

symmetric function capable of handling the permutation invariance. A joint alignment network, 

T-net designed for classification, gives a canonical representation of the input similar to the 

spatial transformer network introduced in 2D images (Jaderberg et al., 2015). In the case of 

semantic segmentation, in addition to the generation of global features from the max-pooling 

layer, the shared MLP is used to produce per-point features. However, PointNet architecture 

fails to capture the local information of its immediate neighbourhood. Similarly, Yousefhussien 
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et al. (2018) proposed a fully-convolutional network for semantic segmentation of areal 3D 

point cloud. Further, they have integrated aerial multi-spectral imagery with the point cloud at 

point level. The spectral information from the IR-R-G imagery was added to the 3D point cloud 

using bilinear interpolation. Similar to the PointNet, the global features were obtained through 

max-pooling and are combined with the local per-point features to generate per class scores. 

For semantic segmentation, in addition to the generation of global features from the max-

pooling layer, the shared MLP is used to produce per-point features. The wide popularity of 

CNN in computer vision, especially for 2D images, relies on interaction with the local 

neighbourhood pixels in the defined kernel filter and extracts information as features, giving 

more meaning to the image. This helps in identifying objects with some similar and varied 

properties. These properties can be distinguished through the details extracted hierarchically 

from the image. This same concept of hierarchical feature learning has been extended to point 

clouds by Li et al. (2018) and named the deep learning network as Pointnet++, which is an 

extension of PointNet.  

Improvements of extending the architecture of PointNet to processing point clouds of 

individual buildings have also been reported (Soilán et al., 2019). Semantic segmentation of 

LiDAR point cloud of vegetable crops in 3D perspective is a challenging task due to the 

complex object-background interactions and thresholds of height differences required for 

normalization and filtering of LiDAR point cloud. There are no studies that assess CNN-based 

deep learning approaches' potential for semantic segmentation of crops.  
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2.3 Discrimination and biophysical parameter estimation with 

reference to nutrient level: combining high-resolution 

multispectral imagery and LiDAR point cloud  
 

Crop discrimination at the plant/patch level requires micro-level information; the spectral 

information available from multispectral imagery alone is insufficient to differentiate different 

plants with an almost similar spectral response. Also, the same crops can exhibit variability in 

their reflectance across different fields. Spectral and spatial variance within a field limits the 

use of spectral imagery independently for crop discrimination. In such cases, the similar 

spectral responses of crops could be discerned with the structural parameters obtained from 

LiDAR point cloud ranging from plant to patch level.  

Spectral tracking of the distinct phenological features at different growth phases has been 

the general method employed for crop discrimination using multispectral imagery. Doing away 

the necessity of using multi-date datasets for crop discrimination using multispectral imagery, 

single date hyperspectral data acquired from in-situ spectral measurements, airborne and space 

borne hyperspectral imaging sensors have been demonstrated for multiple crops discrimination 

(Nidamanuri et al., 2007, 2011). Depending upon the crop types and spatial resolutions, 

accuracies of 60 to 90% have been reported.  

The current suite of remote sensing satellites provides high-resolution data at spatial 

resolutions amenable to discriminate crop patches and estimate biophysical (e.g. biomass) at 

the field scale. Most of the current generation remote sensing satellites such as GeoEye-1, 

WorldView-2, WorldView-3, WorldView-4 offer multispectral data at spatial resolution from 

1m to 5m indicating the potential to capture within-field variability. Several studies have 

applied high-resolution remote sensing data for crop discrimination and biophysical 
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characterization (Camps-Valls et al., 2010; Claverie et al., 2012, Shwetank et al., 2012; 

Thenkabail et al., 2013; Battude et al., 2016; Thenkabail et al., 2016).  

Even with the increased spatial-spectral resolution in the current scenario, crop 

characterisation and biophysical parameter estimation at different N applications at patch level 

in a field are not yet attempted. As the crop grows and matures, the N nutrient's significant 

effect is observed mainly through its structural developments such as height and crown area. 

The delicate greenness and vigour sensitive spectral features of the multispectral data of crops 

with different N treatments at the ground or airborne level lose sensitivity in the multispectral 

data or at the satellite level. The discernible features for crops discrimination and biophysical 

characterization at different N levels are mainly from crops’ structural-geometrical attributes. 

The optical remote sensing (both multispectral and hyperspectral) data have serious limitations 

in proving crop structural attributes such as height, crown area. The state-of-the-art studies in 

the literature are limited to crop discrimination and biophysical characterization under 

laboratory conditions or at a large area level (Mutanga and Skidmore, 2004; Mariotto et al., 

2013; McNairn et al., 2014; Khan et al., 2016; Skakun et al., 2017). Therefore, remote 

technologies for sub-field or patch level crop discriminations or biophysical characterization 

are crucial for site-specific within-field level predictions of crop growth.  

Complementary to the spectral features of multispectral imagery, the LiDAR point 

cloud offers geometrical features of objects and has the potential to provide information on 

canopy structural parameters such as crop height, canopy area, etc., at a finer spatial scale, 

potentially with explicit reference to nutrient status such as N level. Precise crop discrimination 

and biophysical characterization can be achieved by combining multispectral and LiDAR point 

clouds. Therefore, it is a potential approach for simultaneous crop discrimination and 

biophysical characterization tasks with specific re6ference to N levels. However, due to crop 

plants' low heights and complex background soil interactions, geometrical characterization of 
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crops requires very high-density LiDAR point cloud and scans from multiple facets. The 

geometry of data acquisition, the influence of prevailing weather and environmental factors 

and the point density required for modelling the generally small and shorter crop plants pose 

greater challenges. Terrestrial laser scanner (TLS) offers the possibility to acquire LiDAR point 

cloud at high density retaining the plant level structural features of crops. High-resolution 

multispectral imagery, preferably better than 1m, provides the patch level spectral features 

useful for crop discrimination. Therefore, a fusion of data from TLS and the high-resolution 

multispectral sensor is a viable strategy for high-resolution crop discrimination and biophysical 

characterization for crops and to integrate the data and model from ground level to satellite 

level. 

 

2.4 Methods of integration 
 

Assimilation of vertical and spectral aspects of the data from multi-sensor for crop 

discrimination at varied nutrient contents has not yet been reported in the literature. Integration 

of multi-sensor data provides a consistent and accurate baseline dataset for recognising and 

characterising land surface objects. Integration can be performed at three different levels: (1) 

pixel level, (2) feature level, and (3) decision level.  Here the LiDAR and WorldView-III sensor 

data have been integrated at pixel level, and feature level. Fusion has been carried out using 

handcrafted features derived from both the datasets and applied to machine learning 

techniques; where as a pixel-level approach was followed for crop classification using deep 

learning methodology.  
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2.5 Temporal based prediction of plant-level crop structural 

parameter 
 

Availability of ex-ante information related to crop dynamics helps to achieve a better 

quality and throughput, which is beneficial for farmers. Advanced remote sensing techniques 

coupled with precision agriculture practices provide temporal crop information at the farm 

level for better crop management. One of the necessary tasks in precision agriculture is to 

automate the assessment of growth and discrimination of the different crops to take a suitable 

decision for a better profit and yield at the individual plant level. It is important to understand 

the plant phenology to gain a better yield. The 2D image-centered time-series-based crop 

phenotyping has been advancing faster due to the technological developments of the sensors 

and their associated processing. However, these assessments are carried out mainly for a single 

plant/species or large scale.  

Focusing on individual plant growth patterns and knowing ex-ante information about crops 

is vital for precise farming practices. Determining the plant growth response to various input 

parameters such as nutrient application and water uptake require information in hand to make 

appropriate decisions. Therefore, to understand the plant growth trajectory, the availability of 

prior knowledge regarding plant traits is necessary.  

Traditional machine learning and statistical model-based methods have demonstrated their 

ability to predict the yield and biomass and learn the complex pattern of plant growth 

temporally. Numerous tools and techniques exist for building plant growth models. These 

models produce 2D/3D plant simulations. Moreover, predicting the growth of crops helps to 

examine the growth pattern in future. However, these approaches have considered single crops 

for forecasting over a large area based on spectral indices and other quantitative parameters. 

Predicting geometrical crop growth parameters such as height and crown area of the crops 
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holds the potential to evaluate the crop throughput. Recent advances in computer vision have 

triggered the progression of applying deep-learning methods to measure crop traits effectively.  

Over the past years, remote sensing data has been utilized for crop estimation and yield 

(Huang et al., 2019). Many studies have used remote sensing data coupled with smart 

technologies in agriculture paving the way to effectively manage the crops and monitor their 

growth pattern over time based on temporal information. Still, satellite-based crop growth 

analysis is limited in terms of low spatio-temporal resolution and weather effects (Becker-

Reshef et al., 2010). Due to this, accurate yield estimation, growth monitoring, and 

prediction/forecasting are challenging tasks for individual field or plant levels. Therefore, a 

better remote sensing technique should capture the phenological traits of the crops based on 

spatio-temporal analysis throughout its growing period. 

Understanding the plant's health and growth in various environmental conditions needs 

beforehand agronomic inputs to compare and take necessary actions (Großkinsky et al., 2015). 

Therefore, the availability of plant growth statistics at a particular time is vital (Chawade et al., 

2019). In addition to that, the precise agronomic parameters on a temporal scale produced from 

the individual plant across the field assist in providing more information associated with crops. 

Crop yield prediction using various machine learning techniques from UAVs and space-borne 

based imagery have been able to produce results more accurately than statistical-based models 

(Khaki et al., 2020). Singh et al. (2020) assimilated crop phenology using monthly NDVI time 

series derived from Sentinel and Landsat data for some croplands in Russia. Their study area 

covered cash crops such as sunflower, sugar beets, wheat, maize, onion etc. With the NDVI 

profile, they have to tracked the status of the crop’s different growth stages. Using the UAV, 

Nevavuroi et al. (2020) collected RGB and weather data collected from nine crop fields in 

Finland. This study examined the feasibility of time series based spatio-temporal crop yield 

prediction using different spatio-temporal deep learning architectures such as CNN-LSTM, 
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ConvLSTM, 3D-CNN. The temporal RGB images were evaluated with the models, among 

which 3D-CNN architecture outperformed the other two architectures with a coefficient of 

determination (R2) 0.962. By the RMSE percentile, CNN-LSTM was able to generalize more 

to the unseen data. Lin et al. (2020) proposed a deep learning architecture, DeepCropNet 

(DCN), for a county-level corn yield estimation in the USA from 1981 to 2016. The DCN 

model has been applied to establish a relationship between different meteorological factors that 

affect the crops with the corn yield. DCN achieved a better RMSE compared to LASSO and 

Random Forest algorithms. For capturing the temporal features, an attention-based LSTM is 

designed, and for spatial features, multi-task learning layers were developed. Ienco et al. (2019) 

performed crop type mapping for multi-temporal and multi-sensor-based data viz Sentinel-1 

and Sentinel-2 for the area of Nebraska, US. In their work, an object-based RNN Land cover 

classification was performed to account for the data from the two different sensors. A growth 

prediction model employed by Chang et al. (2021) has used XGBoost for multiple reduced 

time steps forecasting the growth prediction of Arabidopsis with a limited number of crops 

using the extracted projected area obtained from segmentation of plants.  

Most of the studies cited and other works broadly related to this topic have considered the 

prediction of yield or crop growth stages for a limited number of plants or a large extent, for a 

single crop. Therefore, an appropriate approach for forecasting crop growth for different crops 

at a field scale with different crops needs to be addressed.  

 

2.6 Chapter closing remarks 
 

The literature review presented in this chapter pertains to the general nature of the work 

that has been formulated in the form of different objectives stated in section 1.9. Since the 
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LiDAR technology has matured through the past two decades, we have presented the literature 

survey selecting the studies that are primarily relevant to the scope of the research work of the 

thesis. This chapter has also addressed the application of deep learning for LiDAR point cloud 

processing using various direct and indirect methods. The studies reviewed have shown how 

the LiDAR point cloud can be used via deep learning for various segmentation and 

classification tasks. Further, the integration of LiDAR point cloud and multispectral imagery 

for crop identification and its impact on accuracy has been explored. Also, a temporal based 

crop structural parameter predicted for its different growth stages is also deliberated.   

Vegetable crops cultivation includes irrigation, applying the right amount of fertilizers, 

protecting from disease and pest infestation, and requiring intense soil care. The literature 

survey indicated that the past studies have not evaluated the possibility of temporal estimation 

of biophysical parameters of vegetable crops such as tomato, cabbage, and eggplant. Further, 

the potential of the TLS point cloud to discriminate plant biophysical parameters as a function 

of various levels of N application has not been studied. Additionally, these crops exhibit 

different complexities of growth patterns and profiles, canopy shape and directions of temporal 

biomass accumulation. Finally, it has been observed that the temporal prediction of structural 

based biophysical parameters is not yet tried for crops. 
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CHAPTER 3 

 MATERIALS AND METHODS 

 

Prelude 

This chapter provides information on the study area and the experimental setup designed for 

conducting the research. It contains a brief narrative of the geographical location, data 

capture mode, and data acquisition procedures and the different data and sensors used in the 

study. Further, the chapter describes the methods used to achieve the objectives. The various 

steps followed to realize each objective are discussed in detail in the subsequent sections. This 

includes the detailed methodology adapted for each objective and the pre-processing steps 

before further data processing.  

 

3.1 Study area 

 

As part of a larger perspective work aimed at studying the effects of rural-urban 

transformation on soil productivity, nutrient cycling, and ecosystem services, a drip-irrigated 

factorial field experiment was established in 2017 (January – May). To this end, agricultural 

plots were set up at the University of Agriculture Sciences (UAS), Bengaluru, India (Figure 

3.1) with the coordinates 12°58’20.79’’N, 77°34’50.31’’E.  The climate of Bengaluru is mild, 

with a mean temperature of 29.2°C with annual precipitation of 873 mm.  
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3.2 Data used 
 

The data used for this research has been collected from multiple sources that include 3D LiDAR 

point cloud, satellite imagery, and in-situ geometrical and biophysical measurements of the 

crops. Data acquired using the sensors and the sampling dates are shown in Table 3.1.  

Table 3.1: Data acquisition dates and type of remote sensors 

Data  Sensor Date of acquisition 

Optical satellite 

imagery 

WorldView – III   19 May 2017 

Terrestrial laser 

scanner 

Faro FocusS 350 18 May 2017, 4 May 2017, 

22 May 2017, 14 June 2017 

 

Table 3:2: Properties of TLS and WorldView - III sensors used for the experiment 

Properties Specifications 

TLS sensor 

Wavelength 1550 nm 

Positional accuracy 2 mm for every 10 m 

Coverage Horizontal: 360 

  Vertical: 300 

Camera  165 megapixel RGB inbuilt camera 

Scanning speed 976  pts/s 

WorldView - III sensor 

Number of bands considered 4 

Bands R, G, B, NIR 

Panchromatic spatial resolution 0.31 m 

VNIR spatial resolution 1.24 m 

Temporal resolution Less than a day 
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3.3 Experimental design 
 

The crop cycle was planned to mimic a typical crop rotation of southern India with its 

two distinct crop seasons Kharif (June to October) and Rabi (January to May). The results of 

this study pertain to the summer (Rabi) season. The cultivars used correspond to those typically 

used by local farmers in the Bengaluru area. The experiment field consisted of 12 main plots 

of 12m × 18m size, each of which was further subdivided into three subplots yielding thus a 

total of 36 subplots of area 6m × 12m with four replications. Sub-plots were randomly assigned 

to three levels of mineral (N) fertilizer. Corresponding to the ‘medium’ N level referred to in 

this work, 46 kg N ha-1as urea for tomato, 60 kg N ha-1 for cabbage, and 50 kg N ha-1for 

eggplant. ‘High N’ referred to 50% more and ‘low N’ to 50%. Apart from the N fertilizer, a 

blanket application of phosphorus (P) and potassium (K) at the rate of 17.5 kg P ha-1and 19.9, 

41.5, and 16.6 kg K ha-1for tomato, cabbage, and eggplant was blanket-applied at sowing. To 

reduce potential leaching of nutrients due to heavy rainfall, the N fertilizer was applied in two 

instalments. The rate of N fertilizer for different treatment levels was calculated on a per-row 

basis. During the monsoon season, some surface N transport may have occurred in some of the 

plots due to intensive rainfall events during early crop stages, but this did not happen during 

the Rabi season. For acquiring reference biophysical measurements (e.g. biomass), each sub-

plot was divided into two parts: one was used for destructive sampling (S-plot; Figure 3.1) and 

the other for non-destructive sampling (H-plot; Figure 3.1).  
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Figure 3.1: (A) Location of Bengaluru in India and (B) layout of the experimental setup. Sub-plots 

marked S and H indicate sub-plots used for destructive and non-destructive sampling, respectively. 

 

3.4 In-situ measurements 
 

For the sampling and measurement of crops, plant height was determined with a ruler 

to the nearest 0.01m. Average crop height was calculated from heights of 30 plants in each sub-

sub-plot marked S and H. Total fresh biomass was measured by random harvesting and on-site 

weighing of three plants in each S sub-sub-plot. All the plant-level biomass measurements were 

averaged for each field and expressed in t ha-1. Destructive yield measurements were taken at 

five sampling dates during the season. Crop area measurements were obtained from digital 
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reconstruction of plants from the periodic digital photographs acquired by adapting the 

methodology proposed by Phattaralerphong and Sinoquet (2005). A further extension of 

introducing guided image rectification and segmentation to yield individual results plant crown 

areas. At discrete locations, distance measurements of plant crowns in the N-S and E-W 

directions were also taken. The images of the various modes of data acquisition is shown in 

Figure 3.2. 

 

 

Figure 3.2: Different data acquisitions in the experimental plot GKVK, Bengaluru 

 

3.4.1 WorldView – III satellite imagery 
 

With the increased availability of high-resolution optical satellite imagery, detailed 

mapping of topographic features of the earth’s surface has become easier. The WorldView – 

III satellite is operated by Digital Globe at an altitude 617 km of in the sun-synchronous orbit. 

The sensor provides high spatial resolution imagery in panchromatic band (450 – 800 nm) with 

a spatial resolution of 0.31m (at nadir) and multispectral imagery in eight spectral bands at 

spatial resolution 1.24m (at nadir). The mmultispectral satellite imagery used in this work was 
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acquired on 19 May 2017 in both multispectral and panchromatic modes. The spatial resolution 

of the imagery in multispectral and panchromatic mode is 1.24 m and 0.5 m, respectively, as 

supplied by the imaging agency as per government regulation. However, for data integration 

component of the work, we used multispectral imagery in four spectral bands (R, G, B, NIR) 

only. A false colour composite (FCC) of the satellite imagery is shown in Figure 3.3.  

 

Figure 3.3: WorldView-III imagery of the experimental plot in the false colour composite. 

 

3.4.2 TLS point cloud acquisition 
 

Compared to the woody trees, the acquisition of laser measurements for vegetable crops 

is complicated because the vegetable plants are generally shorter, and the presence of soil 

ridges complicates the height contrast. To mitigate these problems and reduce the impact of 
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wind, the experimental plots were scanned from multiple view angles and positions (Figure 

3.5). 

Concurrent to the dates of biophysical sampling measurements, TLS measurements 

were acquired for three different sampling dates (4 May, 22 May, and 4 June of 2017) using a 

3D terrestrial laser scanner (FARO 350S, FARO Technologies Inc., USA).  The data capture 

on 18/04/2017 was acquired using a different TLS instrument (Riegl sensor) due to the non-

availability of the sensor; however, the scan density and the associated scan parameters were 

similar to other dates. For tomato, the TLS measurements were not acquired on 4 June 2017 as 

the crop was harvested by then. The TLS operates in the near-infrared region (at 1550nm) and 

has a maximum range of 350m. The data capturing involving the TLS scanner requires the 

scanner to be placed at multiple scan positions in order to cover the entire agricultural field. 

The TLS was placed at 16 positions around the experimental field. DGPS (Differential-GPS) 

was used to improve the positioning information of the target. Further, for precise registration 

of data from multiple scans, four checkerboard target boards were used. For each scan, four 

targets (checkerboard) were placed at a distance not more than 15m according to the selected 

scan resolution. This ensured minimal error during scan co-registration. The data was collected 

during March - June 2017 in the experimental agricultural plots containing three vegetable 

crops- tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.) and cabbage 

(Brassica oleracea L.)  using FARO FocusS 350 terrestrial laser scanner. The data were 

collected at four different periods representing the various growth stages of the crop. 
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3.4.3 LiDAR point cloud description 
 

The acquired LiDAR point cloud was in the .laz format. The dataset contains geo-

referenced LiDAR point cloud data in .laz (ASPRS compressed LiDAR storage format) 

collected from the experimental agricultural plots. Along with the range information from the 

sensor (X, Y, Z), spectral information (R, G, B) was also captured using the in-build camera 

(Figure 3.4). The same procedure was repeated for all the subsequent scan dates and laser scans 

pertaining to each scan date. Each data file was geo-referenced to World Geodetic System 

(WGS)-84 datum with UTM projection.  

 

Figure 3.4: Shows the images captured from the inbuilt RGB camera of the TLS and the target used. 
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3.4.3.1 Parameters for LiDAR data collection 

 

A minimum of 20-25% overlap was maintained between successive scans for proper 

registration. Checker board targets were placed around the scanning area to ensure precise co-

registration of the scans. Spectral measurements using the integrated camera were also captured 

along with the range information. Inbuilt GPS was enabled to capture the data in the world 

coordinate system. The height of the tripod was adjusted to 1.5 - 2m depending on the growth 

stage of the crops, and the scan duration was set to 10 minutes with a scan density of 6.1mm 

in 10m to ensure highly dense point cloud data. Figure 3.6 shows a sample visualization of a 

fully co-registered LiDAR point cloud acquired on 22/05/17. 

 

 

Figure 3.5: Visualization of the point cloud from TLS measurements in the experimental plots. These 

point clouds were acquired from different positions to capture the crop canopy structure from 

different perspectives. 
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Figure 3.6: The co-registered geo-referenced 3D LiDAR point cloud data captured on 04/05/17. 

 

3.5 Methodologies 
 

Broadly expressing the various methods and algorithms adapted and developed in this 

study, an overall view of the methodological process flow is shown in Figure 3.7. Detailed 

processing steps which were undertaken to realize each objective are presented in the following 

subsections in the order of the objectives of the work described. Some processes such as 

filtering and basic processing of LiDAR data, co-registration of satellite imagery are common 

for more than one objective. 
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Figure 3.7: Top-level methodological process flow developed for the thesis. 

 

 

3.5.1 Methodology for realizing Objective 1 (multi-temporal estimation of 

biophysical parameters of agricultural crops at different levels of nitrogen 

using TLS point cloud) 
 

The methodology developed for realizing this objective consists of tasks such as 

filtering, crop height modelling, and crown area estimation culminating with the estimation of 

biomass as a function of different levels of N using a machine learning-based approach. A 

Detailed methodological process flow is presented in Figure 3.8. 
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Figure 3.8: Outline of the methodological process flow from point cloud acquisition until estimation of the biophysical 

parameters of the factorial vegetable experiment at GKVK Campus, Bengaluru, India. 

 

3.5.1.1 Pre-processing of 3D LiDAR point cloud  
 

The acquired sets of point clouds were subjected to preliminary processing such as 

change of data format into a generic data format such as ASCII text format and integration of 

the ancillary high-resolution gray scale optical imagery obtained simultaneously with the point 

cloud acquisition. Since the work involved temporal series of the point cloud, numerous 
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different scans demand accurate registration from a single sampling date and multi-date 

integration perspective. We performed the registration of sets of point clouds by slightly 

modifying the semi-automatic method suggested by He et al. (2017). The soft nature of 

vegetable plant material and unpredictable occurrence of winds over the plants cause the scans 

of point clouds to lack sturdy geometric corners. Therefore, the registration procedure was 

modified to generate tie points for matching points based on the manual-guided sphere fit 

algorithm, and the 2D intensity imagery acquired. Local neighbourhood threshold algorithm 

based on the grid cell dimension of 3 x 3 x 3 was applied on the registered point cloud to 

remove outliers. 

 

3.5.1.2 Computation of crop height model (CHM) 
 

The co-registered, noise removed point cloud was further processed to compute a plant 

level crop height model (CHM). To this end, we first extracted the point cloud pertaining to 

only the crops by spatial and vertical filtering of the total point cloud into a ground and non-

ground point cloud (Figure 3.9). We adapted the grid simplification based progressive 

triangular irregular network (TIN) densification (PTD) method proposed by Axelsson (2000). 

In this algorithm, the first step was to divide the dataset into a number of tiles and search for 

the lowest points in each tile. These lowest points were considered as the initial ground points. 

Then, for the reference surface construction, a triangular irregular network (TIN) was built. In 

each triangle of the TIN, one of the unclassified points was added to the set of ground points 

following two criteria: the point’s distance to the TIN facet and the angle between the TIN 

facet and the line connecting the point with the closest vertex of the facet must not exceed given 

thresholds. All the classified ground points were appended to the TIN, and the next iteration 

started. The triangulation was carried out progressively till all the points were classified as 
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either ground or non-ground. However, the point cloud filtered for further modelling in this 

process contains elevation in the global reference coordinate system with elevation referenced 

to mean sea level. In order to enable the possibility of plant level and temporal crop traits 

estimation, the elevation attribute of the point cloud was normalized to reflect plot surface level 

referencing. This was approached by generating a TIN model of the ground point cloud filtered 

and subtracting from the filtered point cloud of the plants. After normalization, only the non-

ground point cloud was considered for computing the raster canopy height model (CHM). This 

was calculated by rasterization of the elevation normalized non-ground point cloud. For the 

rasterization process, an n x n area of the data points was gridded on one raster, where the n (n 

= 0.02 was used for the experiment) represents the step size used for gridding (Khosravipour 

et al., 2014).  

 

3.5.2 Modelling of the crown area 
 

The estimation of the plant-level crown area involved two distinct steps: (1) the 

identification of plant crown top, and (2) the segregation and delineation of plant crown area 

(Figure 3.8). The crown tops were identified using the variable window filter (VWF) method 

proposed by Popescu and Wynne (2004). The VWF is an adaptive filtering technique that finds 

the local maximum within the window size of variable length, which is used to delineate 

individual vegetation crowns. This method was used in a forestry environment for tree top 

identification using point cloud. We applied this algorithm because of its ability to handle 

within-tree crown elevation and uneven morphology of the crown. We expanded the 

application of VWF to identify potential crop plant crown top adaptive change in the window 

radius. Corresponding to each height value of the CHM, the window size was computed to find 

the local maxima within that window. The size of the window changed depending on the height 
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value of the cell on which it was centred. If the pixel under consideration was the highest value, 

then it was identified as the crop crown top. We devised a simple linear equation (Equation. 

3.1), 

                                                     a*b+c                                                                (3.1)                

where a represents the radius of the window, b and c are the fractional values, to serve as the 

function that defines the dynamic window size considering the cell value from CHM and return 

the radius of the search window. Based on the heuristics, we estimated the values of b and c as 

0.2 and 0.3, respectively. After the computation of the radius and the window size, the 

minimum crop height was also included as a segmentation input. 

Image segmentation approaches can be applied on the processed point cloud with the 

crown top identified for delineation of the plant crown. The watershed segmentation (Vincent 

and Soille, 1991) algorithm can be used to segment crowns from a canopy height model. The 

watershed segmentation algorithm has been widely used in topographical analysis and in 

various image processing techniques. Given the morphological similarity between an inverted 

canopy and a terrain model, this method has the potential to detect plant crowns. The over-

segmentation of the raster point cloud is typical of the watershed segmentation algorithm, 

making it complicated to retrieve plant crowns. Especially in the case of fully grown eggplant 

and tomato crops, small branches and other spurious crown tops of individual plants were 

considered as different segments. A modified form of this algorithm, known as marker-

controlled watershed segmentation (Beucher, 1993), was used to circumvent this problem, 

considering the crown tops as markers. This segmentation algorithm assumes that the input 

raster image is based on a topographic model. The marker-controlled watershed segmentation 

algorithm takes a height value, which will be lower than that assigned to VWF. For the VWF, 

minimum height defines the lowest possible crown top, but for segmentation it defines the 
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height above ground of the fringes of the lowest crop top. The point locations detected using 

the VWF algorithm were used as the sources for segmentation yielding crown outlines as 

polygons. When compared to raster crown map, polygons need more disk space and take more 

time to process. Furthermore, segments without an associated crown top were removed (Figure 

3.10). The area plants’ crowns thus obtained were validated with in situ measurements. 

 

Figure 3.9: Visualization of spatial filtering of TLS point cloud for segregating point cloud of crop 

plants 

 

                             (a)                                                                       (b) 

Figure 3.10: (a) Crown top identification, (b) crown delineation for a subplot with tomato crop for 4 

May 2017 in a factorial vegetable experiment at GKVK campus, Bengaluru, India. 
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3.5.2.1 Estimation of biomass  

 

Most studies that reported retrieving crop plant traits from TLS derived height have 

used simple regression techniques with linear or exponential functions. Bendig et al. (2014) 

and Moeckel et al. (2018) have predicted crop biomass using crop height derived from 3D point 

clouds retrieved from UAV based stereoscopic RGB imagery. Plant height is frequently used 

as an estimator for biomass; however, the relationship is no longer linear for dense mature crop 

stands. Introducing crown area in the prediction models, in principle, has the potential to 

substantially enhance the precision and accuracy of estimations of biophysical parameters such 

as biomass for vegetable crops. The prediction of biomass with two independent variables (i.e. 

crown area, and plant height), which exhibit complex linear and non-linear relationships, 

respectively, can be best handled with non-linear regression approaches. For this, we used a 

support vector machine (SVM) for predicting biomass. SVM is one of the most popular 

statistical machine learning-based algorithms for pattern classification (Vapnik, 1998). SVM 

is a nonparametric classifier, insensitive to data dimensionality, and has the inherent ability to 

handle nonlinear and complex data relationships. Extending the functional applications with 

minor modifications of the architecture to handle real numbers, SVM has also been used for 

regression problems (Shim and Chang, 2011) and is typically called support vector regression 

(SVR). The quality of regression by SVR depends upon setting proper tuning parameters, the 

loss function ε, and the error penalty factor C and the kernel function. Following heuristics and 

cross-validation procedures, we estimated values for these parameters choosing polynomial 

function as the kernel function. 

3.5.2.2 Statistical analyses of estimations and validation 

 

The quantification of accuracy and relative performance of the retrievals from TLS 

point cloud vis-à-vis reference measurements is generally based on computing statistical error 
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metrics and coefficient of determination. Among several error metrics, root mean square error 

(RMSE) coupled with relative error has been widely used for assessment of the model accuracy 

of statistical predictions of biophysical variables (Whiting et al., 2006; Bellocchi et al.,2010; 

Forkuor et al., 2017). The computation, and interpretation of RMSE are easy for discrete 

random variables. However, because the RMSE is the square root of the average squared errors, 

larger errors in predictions result in disproportionately larger RMSE values. Further, because 

RMSE is a scale-dependent measure, it is not appropriate to compare estimates from different 

types of datasets. As quantitative measures of estimations and direction of deviations, we used 

two accuracy measures which are unbiased, symmetric and are easier to analyze statistically: 

(1) symmetric mean absolute percentage error (SMAPE), expressed in Equation 3.2, in 

conjunction with the coefficient of determination (R2), and the logarithmic deviation (Ld) of 

the accuracy ratio as shown in Equation 3.3. The second measure is useful for estimating the 

direction of change of deviation relative to the one-to-one line and further assessing the level 

of underestimation or overestimations of predictions made. 

Symmetric mean absolute percentage error, SMAPE =  
100%

n
∑

|yi−xi|

|yi|+|xi|
n
i=1                         (3.2) 

Logarithmic deviation,Ld =  ∑ log (
yi

xi
)n

i=1                                                                         (3.3) 

Where yi is the estimated parameter, xi is the measured parameter for the measurement pair i. 
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3.6 Methodology adopted for the realization of Objective 2                

(to develop a deep learning-based methodology for multi-

crop point cloud classification of agricultural crops) 
 

A detailed methodological process flow in the Figure 3.11. 

The methodology developed follows point cloud filtering, removal of ground points, 

outlier detection and removal and preparing the data ready to be fed into the CropPointNet 

preceded by a random sampling-based selection of points to the DNN network. An outline of 

the methodological process flow is shown in Figure 3.11. In the subsequent sections, the DNN 

architecture and the validation of the classification with the reference measurements are 

described. 

 

3.6.1 Point cloud processing and reference data generation 
 

The input for the realization of the objective is the filtered point cloud pertaining to 

three chosen crops and the associated field infrastructure. 

Based on expert analyses, six information classes were identified for the 3D 

segmentation and classification - three types of crop plants and three types of field 

infrastructure (pipes, sticks, and residual soil ridges) elements. While our aim was to classify 

the point cloud for crops only, the categories of field infrastructure were also included in the 

classification to account for the overlapping and height confusion in the laser returns of crop 

plants and field infrastructure. 
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Figure 3.11: Outline of the methodological process flow 

 

3.6.2 Segmentation classification using deep learning methods 
 

An outline of the deep learning architecture adapted for point cloud classification is 

shown in Figure 3.12. The methodological architecture has two functions: segmentation and 

classification. For the segmentation, the PointNet deep learning architecture was modified to 

enhance object representation and learning and feature derivation for handling the discrete TLS 

point cloud. The PointNet is a recent deep learning neural network model with a unified 

architecture for various applications in segmentation, object classification, scene semantic 

parsing using point cloud (Qi et al. 2017). The PointNet network learns a collection of point 

functions that selects representative points by randomly picking a set of point functions from 

and visualising their activation regions. The classification was done by the fully connected 

layers of the network by aggregating the optimal values into global descriptors for predicting 

per point labels. The PointNet has been applied for successful indoor scene segmentation, urban 

scene segmentation, using the point cloud produced from Kinect and airborne laser scanner 

(Lowphansirikul et al., 2019). In contrast, the TLS point clouds of crop plants lack regular and 

well quantifiable shape and their related geometrical attributes. Further, the plant height and 

ground surface profile changes are comparable with the minimum measurement range of the 
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laser scanner. Combined with the possibility of ground interference and the shorter plant height, 

3D segmentation of crops is a challenging task, and the inferences and methodological 

procedures from other application domains may not be directly applicable. Therefore, the 

architecture of the PointNet model for enhancing the learning of local and overall crop structure 

in the TLS point cloud was modified and named the improved model as ‘CropPointNet’ in this 

thesis. 

 

 

Figure 3.12:  The deep neural network architecture for semantic crop segmentation 

 

A k-dimensional LiDAR point cloud represented as X= {x1, x2,… xn}⊆ Rk, where k = 6 

represents the 3-dimensional coordinates of the point cloud (x,y,z) and colour intensity (RGB) 

of each point is the input for the deep CNN model. The rationale behind the exclusion of the 

normalized position coordinates, unlike the PointNet, is that in the case of 3D agricultural 

LiDAR point clouds, this mode of representation does not enhance the semantic interpretation 

of the LiDAR point cloud. The point cloud was fed into the CropPointNet model by random 

sampling of the point cloud.  

Like the image domain, where the convolution process extracts the features building up 

a denser feature map, the point cloud convolution in the CropPointNet generates a feature map 
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with more features extracted in the forward pass. The input point clouds were given to a 

convolutional neural network that produces 64-dimensional features. These features were 

further given to the convolutional layer resulting in 512-dimensional feature extraction. In each 

layer before the activation function, batch normalization (BN) was performed (as shown in 

Equation 3.4), which can work around the covariance shift to reduce the overfitting of the data 

and dispense an implicit effect regularisation. When the pointwise convolution occurs, the 

output of each mini-batch of the previous layer was scaled with a mean-centred towards the 

standard deviation. Thus, batch normalization adds standard deviation and mean as two 

trainable parameters to the layer. During training time, a batch normalization layer calculates 

the mini-batch mean (μMB) and variance (σMB
2 ). Accordingly, the layer inputs were normalized 

using the expression 

 ui̅ =
ui−μB

√σB
2 +ϵ

                            (3.4) 

where, ui̇ is the mini-batch during training. Finally, a scale and shift is applied to equation 2 to 

obtain zi, the output from the layer i, 

 zi = γui̅ + β                          (3.5) 

with the γand β learned during the training process with the other parameters in the network. 

To handle non-linearity in the network, a computationally efficient activation function -

rectified linear unit (ReLU) was used, defined as 

  f(x) = max(0, x)                (3.6) 

 

Mathematically, the CropPointNet network can be represented as: 
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 Yi= Conv (i)(Xj)∈RK 

 

                            (3.7) 

 Yi
Fi

= max (0, BN(Yi)) 
                            (3.8) 

where Conv refers to the convolutional layers, i refers to the ith layer of the network, j denotes 

the jth 3D point of the point cloud, BN refers to the batch normalization, max is the activation 

function after the convolution and Yi
Firefers to the feature map generated from the ith layer. The 

CropPointNet network was designed to learn both the point level features and the features 

obtained from the pooling layer. The max-pooling method was used to project the most 

stimulated presence of a feature. Following this, the MLP (multi-layer perceptron) maps the 

features to the next level of 512 dimensions, where the same weights are shared. This is the 

subsequent step for the extraction of global features from the point cloud. The point level 

features and the features from the max pooled layer were concatenated together to obtain rich 

contextual and denser feature representations. These concatenated features form a robust map 

for further semantic interpretation of the data. Finally, all the points in the dataset were labelled 

with a SoftMax activation layer, which varies from 1 to 6.  

3.7 Methodology adopted for implementing Objective 3 

(examining the potential of the fusion of TLS point cloud 

with high-resolution multispectral satellite data for crop 

discrimination at different N level) 
 

Exploiting the distinct features of traditional machine learning (ML) and recent 

advancements in deep ML, we carried out fusion-based crop discrimination and biophysical 

parameter estimation using two distinct approaches. The first approach is a non-parametric 

decision tree-based approach (RF) which has advantages of simple model development and 

faster implementation of requirements. The second approach is a deep ML-based approach, 
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wherein the two distinct datasets are fused based on automatic feature generation and model 

predictions. 

The methodology process flow adopted for fulfilling the two distinct perspectives of the 

goal of this study is shown in Figure 3.13. Overall, the methodology adopted consisted of 

ground filtering, canopy height modelling and crop area segmentation as discussed in the 

section 3.5.1.1, object-based classification, and biomass estimation as a function of different 

levels of N using appropriate machine learning-based approaches using the LiDAR point cloud, 

multispectral imagery and the fused dataset. In the following subsections, the various processes 

and approaches used are described in detail. 

The multispectral imagery was acquired in all the spectral bands of the sensor operating. 

The inherent radiometric and atmospheric dictions were removed using the FACT atmospheric 

correction process (Jha et al., 2021). As indicated in the methodological process flow, the 

LiDAR point cloud and multispectral imagery were fused at the feature level. To enable this, 

the spatial resolution of the multispectral imagery was enhanced to 0.5m by using the Grand-

Schmidt image fusion method (Maurer et al., 2013). The resulting high-resolution imagery was 

co-registered with the LiDAR point cloud to remove residual geometrical inconsistencies and 

pixel-point positional misalignments.  
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Figure 3.13: Methodological process flow indicating key steps from the datasets acquisition to the 

crop discrimination and biophysical characterization.  
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Figure 3.14: Visualization of the co-registered point cloud for the entire experimental setup for the 

sampling date of 22 May 2017 at GKVK Campus, Bengaluru, India. 

 

3.7.1 Crop discrimination 
 

With explicit reference to different N levels, crops were discriminated by supervised 

classification of two datasets: very high-resolution WorldView-III imagery independently and 

data generated from the fusion of LiDAR point cloud and very high-resolution WorldView-III 

imagery. Multi-modal data fusion can be achieved at various abstraction levels of data - pixel, 

feature, and decision. Compared to the raster imagery, the LiDAR point cloud is unorganized 

and is spatially discrete. The unique geometrical features of the LiDAR point cloud are best 

retained in the 3D perspective of the point cloud. A visual perspective of the co-registered, 

filtered (only non-ground points are retained) and normalized LiDAR point cloud for the entire 
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experimental set-up is shown in Figure 3.14.  We, therefore, adopted a feature fusion approach 

for fusing LiDAR point cloud and multispectral imagery. Geographically meaningful object-

based image classification is the apt technique for exploiting the rich spatial features of high-

resolution remote sensing data (Blaschke, 2010) and enhancing data-interoperability 

compliance for operational use of remote sensing data-based products in agriculture. Since the 

spatial resolution of the datasets is very high (0.5 m for imagery and plant level for LiDAR 

point cloud), we opted for object-based image classification rather than the classical pixel-level 

classification. The object-based classification has two critical tasks – image segmentation and 

supervised classification.  

Multi-resolution segmentation (MRS) (Baatz, 2000) has been one of the widely used 

approaches at the operational level in many remote sensing applications (Nidamanuri and 

Zbell, 2011). The MRS algorithm, a region-based image segmentation technique, produces 

object-level image segments by user-dependent iterative optimization of hyper-parameters – 

scale, shape, and compactness, which control the spectral variance, heterogeneity, and 

boundary adherence. Image objects are created by grouping spatially contiguous pixels until 

reaching a threshold (scale parameter) representing the image object’s upper level of spectral 

variance.  To eliminate noise and for minimizing the fractal borders, the image object’s spectral 

variance at various levels of approximation was weighted with the image object’s shape 

parameters. The quality of image segmentation varies substantially with the changing values 

of the user-dependent hyper-parameters. To ensure model convergence and avoid subjective 

segmentation, we applied a supervised method for hyper-parameter optimization and selection 

suggested by Tong et al. (2012). The test object boundaries required for evaluation were 

extracted from the ground truth map. The LiDAR point cloud and multispectral imagery were 

fused by pairing up plant height and crown area with geographically corresponding image 
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segments. This feature level fusion enables the computation of a range of crop plants’ spatial, 

spectral, and geometrical features.  

 

3.7.2 Supervised classification 
 

Fusion of the LiDAR point cloud and multispectral imagery enables the generation of 

high dimensional feature space containing linear and non-linear variables of spectral and 

geometrical relevance. The effective volume of the feature space, spatial aggregation and 

numerical range of features call for supervised classifiers with adaptive architectures. We 

applied an ensemble classification method, Random forest (RF) (Breiman, 2001), on the remote 

sensing datasets at two different levels of data aggregation: (i) at sub-plot level with explicit 

reference to different N levels, and (ii) at crop plot level without reference to the N level. About 

two-thirds of the samples (referred to as in-bag samples) were used to train the model, with the 

remaining one third (referred to as out-of-the bag samples) used for cross-validation for 

estimating the quality of the model’s performance. Each decision tree is independently 

produced without any pruning, and each node is split using a user-defined number of features 

(Mtree), selected at random. The algorithm creates trees with high variance and low bias by 

growing the forest up to a user-defined number of trees (Ntree). The final classification decision 

is taken by averaging (using the arithmetic mean) the class assignment probabilities calculated 

by all produced trees. The unlabelled data input is thus evaluated against all decision trees 

created in the ensemble, and each tree votes for class membership. The membership class with 

the maximum votes will be the one that is finally selected.  
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3.7.3 Feature importance 
 

During recent years there has been an increased interest in additional RF functions, such 

as using the variable importance (VI) to optimize feature space (Corcoran et al., 2013; 

Pedergnana et al., 2013; Belgiu et al., 2014), measuring the correlation between high 

dimensional datasets on the basis of internal proximity matrix measurements (Peerbhay et al., 

2015), or identifying outliers in the training samples by explorative analysis of sample 

proximities (Corcoran et al., 2013). The VI can be calculated internally in a number of different 

ways, such as using the Mean Decrease in Gini (MDG) or the Mean Decrease in Accuracy 

(MDA) (Breiman, 2001). The MDG measures how much a variable reduces the Gini Impurity 

metric in a particular class. At the same time, the MDA takes into account the difference 

between the OOB error resulting from a data set obtained through random permutations of the 

values of the different variables and the OOB error resulting from the original data set 

(Breiman, 2001). Most studies reported in this review used the MDA to determine the VI. 

The fused features serve as a basis for the random forest classification. Random forest 

is an ensemble decision tree-based learning method for classification, that construct numerous 

decision trees during training and takes the mode of classes while testing. The principle behind 

such an ensemble model is that a multitude of decision trees for classification can run over the 

problem of overfitting caused by a single decision tree classifier. Thus a mixed bag of 

uncorrelated trees having the same distribution without any pruning, when formed, will 

outperform an individual decision tree, where the low correlation between the trees is the key 

factor. The selection of attributes plays a pivotal role in random forests. The most considered 

attributes are the Information Gain ratio criteria and the impurity index calculation viz Gini 

Index. As a classifier, random forest devises an automatic feature selection, leading to superior 

classification performance. This serves as an indicator for feature relevance known as Gini 
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importance. This feature importance provides a relative ranking of the features. The Gini 

impurity G(n) decides the ideal split considering how efficiently it separates the samples of two 

classes for each node n in the trees of the random forest.  

Out of the total n features/samples at each node n, with Pj = nj/n, Pi is the fraction of 

features/samples from class c. The Gini impurity is calculated as: 

GI(ψ) = ∑ ∑ GIψ(T, N)N
j=1

T
i=1                            (3.9) 

Due to the optimum split caused by the Gini impurity, reduction in Gini impurity will be 

amassed over all the nodes in binary tree in the forest for all the variables/features. Considering 

that, in many cases, crops are classified without reference to the nutrient status, the potential 

LiDAR point cloud and multispectral imagery were assessed at two levels of data 

representation – fine and coarse level. At the fine level, the classification was done at the 

individual sub-plots with explicit reference to the different nutrient treatments of the crops. 

Therefore, the purpose of the classification was to know whether the LiDAR point cloud or 

multispectral imagery offers crop discrimination maintaining the sensitivity to different 

nitrogen levels of crops. At the coarse level, the purpose of classification was mainly to obtain 

the benchmark crop discrimination results from LiDAR point cloud or multispectral imagery 

without reference to the nitrogen status of the different vegetable crops considered. The results 

of the classification were validated by 5-fold cross-validation. 

 

3.7.4 Biophysical characterization 

3.7.4.1 Crown area estimation using multispectral imagery 

 

Plant crown area is a vital structural parameter that exhibits a linear relationship with 

growth and biomass accumulation across the phenological cycle. Estimating tree crown area 
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using high-resolution remote sensing data has been well documented under individual tree 

crown detection (ITC) (Wang et al., 2004; Otsu et al., 2019). Amenable to the specific context 

of the surface objects being short the height of vegetable crops, we have extended the 

application of the “valley following” method of image segmentation and ITC for crown area 

estimation for the crops considered. To match the location-sensitive spatial resolution and 

comparison with the LiDAR point cloud-based estimates, we resampled the multispectral 

imagery to 10cm resolution and applied a super-pixel based spatially continuous clustering 

algorithm for the initial candidate plant objects generation. The possibility of within-canopy 

gaps induced soil pixels in the plant-context image object was reduced by histogram 

thresholding of the spectral indices. The boundaries of plant-location sensitive crowns 

generated thus were filtered for spatial continuity and connectivity using morphological 

operators.  

 

3.7.4.2 Biomass estimation using multispectral imagery 

 

Similar to the scheme implemented for crop discrimination, biomass was estimated 

using multispectral imagery and LiDAR point cloud independently and with the fused dataset. 

The spectral attributes capturing the crop structural and biophysical features are indirect. They 

are mainly embedded in the differential reflectance features in various spectral bands across 

the optical range of the electromagnetic spectrum. Different spectral indices highlight the 

nature of the crop response in the recorded spectral radiance in the multispectral imagery. 

Therefore, we estimated biomass from multispectral imagery using various spectral indices as 

surrogate variables for biomass modelling. Based on the sensitivity to the vegetation structure 

and seven standardized and derived spectral indices, namely, enhanced vegetation index (EVI), 

soil-adjusted vegetation index (SAVI), normalized difference vegetation index (NDVI), 
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normalized difference water index (NDWI), green normalized difference vegetation index 

(GNDVI), blue normalized difference vegetation index (BNDVI), and wide dynamic range 

vegetation index (WDRVI) were computed from the multispectral imagery biomass (Adam et 

al., 2014; Ramoelo et al., 2015; Wang et al., 2017; Chlingaryan et al., 2018; Chao et al., 2019; 

Kayad et a., 2019; Guan et al. 2020). A detailed mathematical formulation of these spectral 

indices is available in Thenkabail et al. (2018). In conjunction with reference ground truth 

measurements of the biomass, the spectral indices and crown area were used as the predictor 

variables in the SVR based regressing modelling for estimating the crop biomass. The high-

density capability of the TLS used enables acquiring LIDAR point cloud retaining the 

individual plant structures in the data. However, the size of vegetable crop plants, expressed 

by canopy extent and height, is smaller than the resolution spatial resolution of most high-

resolution multispectral imagery, including the WorldView-III, distinct retention of crop plant 

structure is not functionally possible, per se. Most remote sensing studies attempting to retrieve 

canopy area and height are directed at natural vegetation such as a forest. In contrast, the 

LiDAR point cloud enables retrieval of canopy area and height as direct variables. Hence, we 

retrieved only the biomass from the multispectral imagery for further comparison with the 

estimations from the LiDAR point cloud. 

 

3.7.4.3 Biomass estimation using LiDAR point cloud and the fused dataset 

 

Plant height has a direct linear relationship with biomass for a range of standing crops 

(Franco and Kelly, 1998; Poorter et al., 2012). For many vegetable crops, also applicable in 

several other crops, plant height saturates at maturity, and the further accumulation of biomass, 

and hence responses to different N levels, is reflected mainly in the form of the lateral 

expansion of plant components characterized by crown area. The non-linear relationship 
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between N levels and biomass response can be modelled better with plant crown area. 

Considering the synchronized existence of linear and non-linear patterns of N levels, biomass 

response and plant height and crown area as predictor variables, we applied a non-parametric 

machine learning model, support vector regression (SVR) (Shim and Chang, 2011), for 

modelling the crop biomass for various levels of N. Based on the cross-validation and 

heuristics, the hyper-parameters of the SVR algorithm - loss function ε, error penalty factor C, 

and kernel function were estimated. Adapting a similar methodological framework used for 

estimating biomass from the LiDAR point cloud, the fused dataset, which contained spectral 

attributes appended to each discrete point in the point cloud, was used for biomass estimating 

through the SVR algorithm. As the dimensionality of the feature space was higher for the fused 

dataset, the divergent set of features was optimized by an iterative forward feature selection 

method to choose the most influential variables. 

The validation of the biophysical parameters follows the same procedure as described in section 

3.5.1.5. 

 

3.7.5 Deep learning-based fusion of LiDAR point cloud and WorldView – 

III imagery 
 

The filtered point cloud and the corrected WorldView-III imagery are input to the 

model. The point cloud was further rasterized and resampled to a spatial resolution of 0.5m to 

match with a spatial resolution of WorldView-III imagery (Figure 3.15).  For performing the 

classification of crops, we designed a 2D deep convolutional neural network for crop 

classification. For ingesting the fused dataset into this DL framework, the data has to be 

prepared. The classification has been performed at three different levels of N: medium, low 

and high for each crop considered. For plant level training patches, a subset of 7x7x5 was 
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extracted from the fused imagery and referred to each class for classification, thus totalling 

nine different classes. For each crop, 140 patches were extracted for each training set. To satisfy 

the training needs of deep CNN, the original training patches were used for data augmentation, 

thereby increasing the number of training data samples sufficient to cater for the learning 

training requirement of DCNN. Data augmentation in computer vision refers to increasing the 

size of the data set by creating modified image versions through various geometrical 

transformations such as shift, rotation, flip, zoom etc. Thus before augmentation, the intensity 

values of the spectral bands were normalized to meet the intensity range across different bands 

of the dataset.  

 

Figure 3.15: Overall methodology flowchart adopted for deep learning based classification of crops 

at different levels of N. 

 

Outline of the architecture of DCNN for classification is shown in Figure 3.15. the fused 

dataset represented as image patches of size nx7x7x5 was given as input to the 2D convolution 

layer. 2D convolution understands the spatial context of the input imagery and can produce 

better classification results compared to the individual–pixel level approach. There are three 

convolution layers of size as described in Figure 3.15, where each convolution layer is given 
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the activation function ReLu (Rectified Linear Unit). In contrast to the traditional way of 

applying max-pooling after each convolution layer, we performed feature aggregation after all 

the convolution layers. The layers were flattened into a single dimension as a latent 

representation and fed into the fully connected layers to produce the results of crop 

classification. 

To prevent the problem of over-fitting typical to learning algorithms, dropout with 

probability 0.5 and exponential decay based learning rate techniques were applied to generalize 

the loss function. For optimization of the loss function, an adaptive moment estimation (adam) 

optimizer was used, which has a faster convergence rate.  

 

Figure 3.16: Top-level overview of DCNN architecture designed for crop classification with specific 

reference to N levels 

 

3.8 Methodology developed for implementing Objective 4       

(to develop a DL based temporal framework to predict crop 

structural parameters) 
 

Figure 3.17 shows the overall methodology flow developed to implement this objective. 

The basic DL architecture adapted is a variant of the recurrent neural network (RNN), where a 

stacked model of LSTM (Long Short Term Memory) and GRU (Gated Recurrent Unit) 

networks are used. We named the deep learning model developed for this specific purpose as 
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‘TemporalCropNet’. Figure 3.17 depicts the TemporalCropNet architecture. Unlike the feed-

forward neural networks, recurrent neural networks use their internal state memory to process 

the data sequences. To overcome the drawbacks of RNN, such as vanishing gradient or 

exploding gradient problem, two variants of RNN such as LSTM and GRU, were developed. 

A single LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate, 

which facilitates the cell to remember values for an arbitrary amount of time. The gates control 

the flow of information in and out of the LSTM cell. 

 

Figure 3.17: Flowchart depicting the steps involved in the prediction of crop parameters. 

 

A brief description of recurrent neural network (RNN), long short term memory (LSTM), 

gated recurrent unit (GRU) is given below. 

 

3.8.1 Recurrent neural network 
 

Unlike the feed-forward neural network such as CNN that has only a finite receptive 

field, a recurrent neural network (RNN) can process sequential data using the internal state 

memory. This dynamic nature of RNN finds application in audio, speech analysis and several 

other temporal based applications. The recurrent state is achieved by connecting the time steps’ 
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output as input to the network and using the same weights to back propagate through time. 

Therefore, RNN is a neural network that uses the shared weights for each time step. At the 

same time, RNN suffers from short-term memory when the sequence length becomes larger 

and suffers from vanishing gradient problems during backpropagation. Neural network weights 

are updated using gradients while back propagating. The issue of vanishing gradient produced 

leads to minimal gradients and contributes nothing to the learning process, thus leading to 

short-term memory. LSTM (Long Short Term Memory) and GRU (Gate Recurrent Unit) are 

proposed as a solution to the short term memory problem. These variants of RNN have gates 

in the internal memory cell that can retain the data sequence and thus regulate the information 

flow. In the following sections, we briefly describe the two variations of RNN, namely LSTM 

and GRU. A top-level architecture of stacked LSTM-GRU adapted for the proposed 

‘TemporalCropNet’ as shown in Figure 3.18. 

 

Figure 3.18: Stacked LSTM-GRU architecture of TemporalCropNet 

 

3.8.2 Long Short Term Memory (LSTM) 
 

The cell state and the gates are the core structural elements of the sequential network, 

LSTM. A high-level representation of LSTM is similar to that of RNN but differ in terms of 



68 
 

the internal representation of the memory cell. The input to the sequential network is a sequence 

of vectors (x1, x2,… xn), where xt is the input at time t. The three basic units of the LSTM are 

forget gate (ft), input (yt), and output gate (pt). The forget gate determines to keep or discard 

the information from the previous time step. From the input gate, LSTM learns new 

information that enters the cell. The output gate passes the updated information in the cell from 

the present time-step to the next. Similar to RNN, LSTM also has hidden state dt, dt-1, 

representing the current and next step's hidden unit. Also, the cell state is represented by ct and 

ct-1 for the current and next time step, respectively.  The cell state and hidden states are the two 

states of LSTM. All the gates undergo the sigmoid activation function, which gives the output 

value for each state and gate ranging between 0 and 1. In addition to that, LSTM also has a 

temporary cell state C`t, where the hyperbolic tangent activation function is applied that outputs 

values between -1 and +1. In The final cell state Ct, the forget gate ft and input gate yt 

determines how much information should be kept in the current time step. The new hidden 

state ht for the next time step is determined by Ct and pt, which determines the amount of 

information the memory cell have at the output step. For all cell states and gates, in addition to 

the weight parameter, bias value is also added to each equation from (1) - (5). 

As represented in Figure 3.18, the hidden state dₜ and the cell state Ct for an LSTM cell can be 

calculated as follows: 
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Here, y, f, p is called the input, forget, and output gates, respectively. W is the recurrent 

connection at the previously hidden layer and current hidden layer, T is the weight matrix 

connecting the inputs to the current hidden layer. The GRU, known as the Gated Recurrent 

Unit, is an RNN architecture and is similar to LSTM units. The GRU comprises of the reset 

gate and the update gate instead of the input, output and forget gate of the LSTM. The reset 

gate determines how to combine the new input with the previous memory and analyses how 

much information is to be embedded with the current information. The update g ate defines 

how much of the previous memory to keep around.  

 

3.8.3 Gated Recurrent Unit (GRU) 
 

LSTM has a number of parameters which resulted in a number of operations to be 

performed. Thus, the variant of LSTM, GRU, is a simplified, compact representation of LSTM 

in terms of the parameters and operations performed. Unlike LSTM, GRU has only two gates: 

reset (st) and update (ut), instead of input, output, and forget gate of LSTM and a hidden state 

ht. The reset gate determines how to combine the new input with the previous memory, and the 

update gate defines how much of the previous memory to keep around. Also, the two gated 

combine the input xt and dt-1 (information from previous state t-1). Since GRU has lesser tensor 

operations, it is faster to train the network than LSTM. The computation of zt, dt is given in 

equations (6) - (9) expressed below: 
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In this work, we used a stacked representation of LSTM and GRU. Combining multiple 

LSTM layers leads to greater model complexity and high-level time dependency. Stacked 

LSTM provides output for each time stamp and not the single output for all time steps. Similar 

is the case of GRU. Thus, stacking the LSTM and GRU and a combined model helps improve 

the projection of information in latent dimension space, giving better prediction results. The 

crop parameters– height and crown area pertaining to different dates of data acquisition are 

given as input to the TemporalCropNet. Here the LSTM and GRU layers are stacked together 

to form a hierarchical model. This stacked model was then fed to an individual fully connected 

layer (FCN) and then combined and given to the final FCN, where the feature concatenation 

occurs, and the parameters are predicted. 

For the validation of the predicted values with the TLS measurements, SMAPE, as 

discussed in section 3.5.1.5 is used.  The training, test and validation datasets were taken as 60, 

20, 20 % of the total dataset. 

 

Chapter closing remarks 
 

Studying the changes in spatio-temporal characteristics is necessary as it plays a vital 

role in precise agricultural farming practice. The dataset used in this study contains high-

density ground-based laser measurements of three agricultural crops viz, cabbage, eggplant, 

and tomato (scientific names) captured using a Terrestrial Laser Scanner. This dataset helps to 

characterize the crops at various growth stages at varying nitrogen levels and derive the 

biophysical crop parameters. The data can also be used as a reference for understanding the 

potential of LiDAR for precision farming practices. 
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Identification, classification and estimation of biophysical parameters of the vegetable 

crops have been carried out using TLS LiDAR point cloud, WorldView–III imagery and a 

combination of both the datasets. The crown area and biomass at different N levels have been 

assessed using SVR. An improved version of PointNet based on DCNN has been proposed for 

the classification of crops by directly ingesting 3D LiDAR data to the network. Further, at 

varied N levels, a feature-based fusion of LiDAR and WorldView –III imagery using random 

forest classifier has been used to classify the crops at the patch level. A deep learning-based 

pixel-level classification approach has also been followed using DCNN for this fused dataset. 

Finally, the prediction of structural parameters of the crops using DL based method named 

TemporalCropNet has been proposed that predicts the height and crown area during the crop 

growth stage.  
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CHAPTER 4 

 RESULT AND ANALYSIS 

 

Prelude 

This chapter presents the results of all the experiments and methodologies implemented for all 

the objectives of the thesis. The results are presented in the same order to maintain the order 

of tasks in each objective. The first section presents the results of the estimation of the 

biophysical parameters at different levels of nitrogen using the LiDAR point cloud. The second 

section's content is related to objective 2, the deep CNN-based object-level classification of 

LiDAR point cloud for crop discrimination at the plant level. Results of the third objective - 

RF-based classification of the crops by the fusion of WorldView-III and LiDAR point cloud and 

further extension of the data fusion with deep learning approach has been described in the 

third section of the chapter. Finally, the fourth section presents the results of exploring the 

deep learning approaches for the temporal prediction of crop structural parameters using 

LiDAR point cloud. Further, this chapter presents the analysis of the results for ease of 

readability and organization. A detailed discussion of the results is presented as a standalone 

chapter (Chapter 5).   
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4.1  Multi-temporal estimation of biophysical parameters of 

crops at different levels of nitrogen using TLS point cloud 

(Objective 1) 
 

4.1.1 Estimation of plant height and the effect of nitrogen (N) levels 
 

The combined use of plant height and crown area estimations allowed the accurate and 

consistent biomass across growth stages and N fertilization levels. The relationship between 

measured versus estimated plant height as a function of the different levels of N fertilization is 

shown in Figure. 4.1. For high N, plant height discrimination derived from the TLS point cloud 

allowed distinguishing between tomato and eggplant. A low percentage of deviation error 

(SMAPE < 5), coupled with strong correlations (R2 ≥ 0.96 across crop species and N level), 

and a compact spread of estimations around the one-to-one line indicate that the plant height 

retrievals are accurate for all crops (Figure. 4.1). 



75 
 

 

Figure 4.1: Correlation between ground-based (measured) and TLS-based (estimated) plant height of 

tomato, cabbage, and eggplant across the growing period for low, medium, and high levels of N. The 

coefficient of determination (R2) and symmetric mean absolute percentage error (SMAPE) are given.  

 

Both the overestimation and underestimation of plant height were observed. A 

visualization of the deviation of estimated plant height with reference to the measured height 

is presented in Figure 4.2. Based on the patterns in the temporal-logarithmic deviations, plant 

height estimations based on the TLS point cloud were equally prone to positive and negative 

bias during early growth stages. However, after the height of the crops, especially for eggplant 

and tomato, exceeded 25 cm (sampling date 2), there was a decrease in the incidences of 
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underestimation and a comparable increase in the frequency of overestimations was observed. 

The data show that overestimation occurred more frequently at sampling date 2 than on date 3. 

Based on the crop-wise logarithmic deviation, the plant height of cabbage was more 

substantially overestimated compared to the other two crops.  

 

Figure 4.2: Directional variation, given as the logarithmic deviation (Ld), between measured and 

TLS-estimated plant height for eggplant, tomato, and cabbage, at four different sampling dates in a 

factorial experiment at the University of Agricultural Sciences (GKVK Campus), Bengaluru, India. 

 

The analysis of the variation of plant height (Figure 4.3) for 15 medium N plants 

sampled along a transect within a sub-plot indicates substantial within-plot variance. These 

within plot height variations were consistent for sampling dates indicating a localized N effect 

on the plant growth profile. 

 

Figure 4.3: Spatial variation of plant height for four dates within a single plot (medium N level) in a 

factorial vegetable experiment at GKVK Campus, Bengaluru, India. Sampling date 1, sampling date2, 

sampling date 3, and sampling date 4 correspond to 18 April 2017, 4 May 2017,22 May 2017, 14 

June 2017 respectively. 
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4.1.2 Estimation of plant crown area 
 

The results of crown area estimation using the TLS point cloud indicate remarkable 

consistency in the prediction accuracy for all the three crops considered (Figure 4.4). The crown 

area estimations indicate accurate retrievals for all three crops, with even the poorest performing 

treatments achieving a maximum SMAPE of 13.63 (tomato with medium N fertilization) and a 

minimum R2 of 0.81 (cabbage with cabbage medium N fertilization). 

The estimated and measured crown area samples were distributed compactly around the one-

to-one line, indicating the closeness of the predicted and measured crown area for all three crops 

(Figure 4.4). Compared to estimated plant height, the crown area estimations spread widely at 

medium N. Besides, the examination of the range of crown area estimations across N 

fertilization levels for tomato and eggplant indicated a pattern of higher N fertilization producing 

a larger crown area. As evident from the relatively low SMAPE values compared to other crops, 

crown area estimation for cabbage presents a rather complex scenario of similarity of measured 

and estimated crown area with large ranges within N fertilization treatments. For tomato, the 

range of predicted crown area indicates a progressive accumulation with increasing N. As for 

plant height estimations, the linear accumulation of crown area across growth stages and its 

estimation by a TLS point cloud are promising. 

The majority of the deviations of crown area predictions for eggplant indicate slight 

overestimations (Figure 4.5). For tomato, the deviations between measured versus estimated 

tomato crown area indicate both overestimations and underestimations throughout the growing 

season (Figure 4.5). In the absence of apparent crop-specific patterns in the deviations between 

measured and estimated crown area, as well as crop height, the setup of the TLS point cloud 

measurements and transient micro weather patterns (e.g. wind, moisture) control the direction 

of estimation deviations. 
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Figure 4.4: Correlations between ground-based (measured) and TLS-based (estimated) crown area 

for tomato, cabbage and eggplant crops across the growing season for low, medium, and high N 

fertilization levels. The coefficient of determination (R2) and symmetric mean absolute percentage 

error (SMAPE) are given.  

 

Figure 4.5: Directional variation, given as the logarithmic deviation (Ld), between measured and 

TLS-estimated crown area for eggplant, tomato, and cabbage at four different sampling dates.  
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4.1.3 Estimation of biomass 
 

Our premise was that the precise estimation of plant biomass ought to consider the 

complex relationship between canopy patterns and distributed structural parameters such as the 

crown area. As evident from Figure 4.6, there is a consistent and robust relationship between 

the predicted and measured biomass for all three crops throughout the growth period (R2 = 0.92 

for tomato, 0.96 for cabbage, and 0.98 for eggplant). The SMAPE for tomato, cabbage, and 

eggplant was 7.53, 5.46, and 3.96, respectively, indicating consistent agreement between 

predictions and the reference biomass measurements. Examination of the vertical spread and 

distribution of the biomass for the three N fertilization levels suggests the lack of unambiguous 

discrimination between biomass estimations at different N levels (Figure 4.6). 

 

Figure 4.6: Correlation between ground-based (measured) and TLS-based (estimated) biomass for 

eggplant, tomato, and cabbage for three N levels across the growing season.  

For eggplant and cabbage, the estimated and measured biomass values spread across the 

biomass range, indicating the confusion of samples across the different N levels (Figure 4.7). 

However, biomass estimations for high and medium N are discernable for tomato, especially at 

the stage of higher biomass, even though confusion prevails at lower biomass levels. Biomass 

estimations of the three crops show two distinct patterns (Figure 4.7). At the first sampling date, 

crop biomass was underestimated substantially, followed by moderate overestimation as the 

crops grew (from the second sampling date onward). 



80 
 

 

Figure 4.7: Directional variation, given as the logarithmic deviation (Ld), between measured and 

TLS-estimated biomass for tomato, cabbage, and eggplant at different sampling dates. 

The initial sampling dates occurred during the emergence and vegetative development 

of the plants. At this time, canopy cover was generally lower, and soil exposure was relatively 

high. As a result, the probability of receiving laser pulses returned from the plants is leading to 

less underestimation or overestimation. As the crops grow, the underestimation of biomass 

changes to overestimation at biomass > 6 t ha-1. The second pattern is stable and indicates a 

higher level of consistency in matching estimated and measured biomass for all three crops.  

Manual validation of the plant count using high-resolution digital pictures captured concurrently 

indicated accuracies of > 85% (Table 4.1).  

Table 4.1: Measured versus terrestrial laser scanning (TLS) based estimates of plant counts at the 

plot level on sampling date 1 in a factorial vegetable experiment at University of Agricultural 

Sciences (GKVK Campus), Bengaluru, India. 

Crop name  
Plot 

number 

Number of plants  Nitrogen 

treatment 

 

Plant 

Enumeration 

TLS 

Estimated 

Eggplant 

1 101 94 Medium  

2 102 93 Low  

3 103 90 High  

Cabbage 

10 200 186 High  

11 191 183 Medium  

12 190 185 Low  

Tomato 

22 100 86 High  

23 97 83 Medium  

24 97 91 Low  
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4.2 Deep learning-based methodology for multi-crop point 

cloud classification of agricultural crops (Objective 2) 
 

Results of the object-based point cloud classification of the vegetable crops using the 

CropPointNet deep learning architecture are presented in Figure 4.8 and the corresponding 

accuracy estimates in Tables 4.2 and 4.3. As evident from Figure 4.8, the individual plant level 

discrimination of the tomato, cabbage, and eggplant is unambiguous. The crop objects in the 

point cloud were classified with the best overall accuracy of 81.5% by the CropPointNet model. 

The PointNet and DGCNN models yielded an overall accuracy of 55% and 66.5%, respectively 

(see Table 4.2). However, the quality of discrimination varied by the crops and the model. 

Cabbage and eggplant crops were discriminated accurately by the CropPointNet and DGCNN 

models (see Fig. 4.8(a), (c)). The discrimination of tomato crop was very low by all the three 

models, despite very high inter-crop discrimination. Most of the tomato crop discriminations 

are underestimations with the apparent confusion with residual soil ridges (see Fig. 4.8(b)). 

Results from the PointNet model show a substantial misclassification wherein the cabbage crop 

was overestimated at the cost of eggplant followed by tomato. 

 

 

Figure 4.8: Semantic segmentation using (a) CropPointNet (b) Pointnet and (c) DGCNN 

 

Cabbage and eggplant crops are discriminated with the highest accuracy of 91% and 

88%, respectively (see Table 4.3). For the non-crop classes (residual soil ridges, pipe, and 
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stick), the CropPointNet model yielded relatively higher per-class accuracies (about 70%) even 

though substantially lower than the accuracy of the crops. The discrimination of non-crop 

classes by the PointNet model is negligible (see Table 4.3). Cabbage and eggplant were 

classified with a marginal difference of accuracy (3%). However, the Precision scores of 

cabbage and eggplant differed substantially (12% and 21%) from the CropPointNet model and 

PointNet model, respectively. Eggplant and cabbage were classified with Precision of 91% and 

79%, respectively. Compared to the accuracy metric, the Precision score matches closely with 

the quality of crop classifications accounting for the false positives in the cabbage.  The Recall 

and F1 Scores substantiate the matching of crop classifications with the ground truth data. 

Overall, the scores of Precision, Recall, and F1-Score are very closer to the overall and per-

class accuracies estimated from the k-fold cross-validation. Compared to the PointNet model, 

results from the CropPointNet model are much superior by magnitude and consistency of all 

the accuracy metrics across the crop and non-crop classes (see Tables 4.2 through 4.5). The 

results of the statistical z-test computed between the performance of the CropPointNet with 

PointNet and DGCNN models yielded a z-score of 6.31 and 3.81, respectively. At the 95% 

confidence interval, the computed z-scores are higher than the tabulated value of 1.96, 

confirming that the superior classification performance of the CropPointNet is not by chance. 

This observation confirms the potential impact of the point cloud sampling strategy introduced 

in the training stage of deep learning networks in the CropPointNet architecture. 
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Table 4.2: Per-class accuracy estimates (%) for crop and non-crop categories in the LiDAR point 

cloud from all three deep learning neural network models.   

Class CropPointNet PointNet DGCNN 

Tomato 65 60 61 

Eggplant 88 69 83 

Cabbage 91 72 82 

Stick 79 21 00 

Soil 72 41 81 

 Pipe 70 50 76 

 

Table 4.3: Overall accuracy (%) of the classification of point cloud for vegetable crops from all the 

three deep learning neural network models.  

 Models Overall Accuracy (%)  

CropPointNet 81.5 

PointNet 55.2 

DGCNN 66.5 

 

 

Table 4.4: Object-to-object comparison of CropPointNet model predictions and ground truth for 

accuracy estimation - Precision, Recall, and F1-score. 

 

Class Precision Recall F1 Score 

Tomato 0.79 0.85 0.81 

Eggplant 0.91 0.88 0.89 

Cabbage        0.79 0.91 0.85 

Stick 0.79 0.79 0.79 

Soil 0.71 0.76 0.73 

Pipe 0.91 0.70 0.79 
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Table 4.5: Object-to-object comparison of the reference PointNet model predictions and ground truth 

for accuracy estimation - Precision, Recall, and F1-score. 

Class Precision Recall F1-Score 

Tomato 0.69 0.60 0.64 

Eggplant 0.48 0.69 0.56 

Cabbage        0.38 0.90 0.54 

Stick 0.84 0.21 0.33 

Soil 0.95 0.41 0.57 

Pipe 0.72 0.50 0.59 

 

The discrimination of the non-crop geometrical objects (return pulses from irrigation 

pipes, support sticks, and residual soil ridges) from the crop plants in the scene is a vital 

requirement for automatic crop scene analysis. Figure 4.9 visualizes the segmentation of a sub-

plot for each crop. The crops are segmented at the plant level, exhibiting distinct separability 

with other geometrical features such as support sticks. Segmentation results from the 

CropPointNet model (Figure 4.8(a)) are unambiguous compared to the relatively confused 

discrimination of tomato plants (Figure 4.8(b, c)). 
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Figure 4.9: Visualization of the crop segmentation at a sub-pot level depicting the separation of crop 

plan9ts from the non-crop geometrical features from the models (a) CropPointNet, (b) PointNet, and 

(c) DGCNN. 

 

4.2.1 Spatial conformity of the predicted crop plant objects 
 

The statistical accuracy metrics analyses for assessing the performance of the crop 

discriminations show consistently good accuracy in the point cloud classification for crop 

discrimination at the semantic point labelling level. However, as the deep learning model 

architectures implemented in this research are object-based segmentation and classification 

approaches, in principle, it is possible to evaluate the accuracy by matching at crop plant object 

level. The level of completeness and correctness of the object-based labelled crop plants was 

assessed using a matching area-based accuracy metric, Intersection over Union (IoU) expressed 

as  

IoU =  Area of Overlap 

Area of Union
  = TP

TP+FP+FN
 ,                                               (4.1) 

 

where FN is false negative, FP is false positive, and TP is true positive for the respective 

information classes considered. The mean IoU (mIoU) was computed from the IoU values of 
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all the six classes. The IoU values of the crop and non-crop information classes are shown in 

Table 4.6. The IoU values of each information class and the mIoU exceed the threshold (Meng 

et al. 2019) IoU value, indicating the consistency of plant-to-plant level classification results.  

 

 

Table 4.6: Estimates of the per-class and mean IoU of object-oriented classification of vegetable 

crops. Values greater than 50% indicate consistent matching of predictions of crop plants with 

ground truth.  

Class  CropPointNet DGCNN PointNet 

Tomato 80.66 70.71 59.74 

Eggplant 81.58 80.42 68.07 

Cabbage        83.54 90.47 74.27 

Stick 65.88 0.00 25.65 

Soil 63.68 74.01 41.26 

Pipe 61.32 70.10 48.68 

mIoU 72.78 64.28 52.94 

 

 

 

 

  



87 
 

4.3 Examining the potential of integration of TLS point cloud 

with high-resolution multispectral satellite data for crop 

discrimination at different N levels (Objective 3) 
 

4.3.1 Crops discrimination with explicit reference to the nitrogen status 
 

The results of the classification of the vegetable crops for three different cases of data 

aggregation: LiDAR point cloud, multispectral imagery and the fused data at the fine and 

coarse level are presented in this section. The results of classification for the fine level depicting 

the discrimination of the vegetable crops with reference to nutrient level are shown in Figure 

4.10 and the corresponding statistical measures of accuracy: confusion matrix, Kappa 

coefficient and the overall accuracy obtained from the cross-validation in Figures 4.11 and 

4.12. As evident from the accuracy metrics (Figures 4.11 and 4.12) and the spatial diffusion of 

segments of two different crops visible in Figure 4.10, the quality of crop discrimination from 

the multispectral imagery is poor.  

Multiple inter-crop confusion cases led to misclassification of a crop sub-plot (e.g. 

cabbage) wrongly labelling as another crop (e.g. tomato), explaining the lowest accuracy of 

about 68% by kappa coefficient (see Figure 4.12). Compared to the results from only 

multispectral imagery, the results obtained from using only the LIDAR point cloud are 

relatively better. The overall accuracy is about 79%, indicating a 10% higher accuracy than the 

multispectral imagery results (see Figure 4.12). This improvement can be ascribed to the 

apparent reduction in the mislabelling of the whole sub-plot to partial sub-plot, indicating the 

dominance of structural features in the discrimination. The classification results from the fused 

datasets are distinct (92% accuracy) and significantly higher than the results (20% 

improvement) obtained from the multispectral imagery or the LiDAR point cloud, supporting 

the hypothesis is that spectral and structural features are vital for discriminating different crops 

with reference to nutrient level. However, a few sub-plots are wrongly labelled by nutrient 
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level, even though classifying was correct by crop type (see Figures 4.10b, 4.11a). For example, 

a sub-plot of cabbage with medium N was classified as a sub-plot of cabbage with low N. 

 

 

Figure 4.10: Classification map obtained using different sensors (a) Ground truth, (b) WorldView-III 

and LiDAR classification, (c) LiDAR classification, and (d) WorldView-III classification. 

 

Figure 4.11: Confusion matrix of three different sensor combinations for classification (a) 

WorldView-III and LiDAR, (b) LiDAR, and (c) WorldView-III.  
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Figure 4.12: Bar plot showing Kappa coefficient and overall accuracy of classification with N 

reference for the case of data WorldView-III only, WorldView-III +LiDAR combined, and LiDAR 

point cloud. 

 

4.3.2 Crops discrimination without reference to the nitrogen status 
 

The results of the classification model that was trained with reference crop patches 

extracted from different locations in the scene, without specifying the nitrogen status, are 

presented in Figures 4.13 and 4.14. As evident from Figure 4.14, the quality of crop 

discrimination with the multispectral imagery is reasonably good, with an overall accuracy of 

about 88% (see Figure 4.14). The significant performance gap (about 20%) observed between 

the multispectral imagery and the LiDAR point cloud for the case of classification with explicit 

reference to nitrogen level has reduced substantially. Indicating the continuance of the 

dominance of structural features, compared to the results from multispectral imagery, the 

classification results from using only the LiDAR point cloud are still better, even though the 

margin of accuracy difference reduced to only 5%. In both cases, a few patches of cabbage 
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were wrongly classified as tomato or eggplant. The crops are discriminated in the fused dataset 

with close to 100% accuracy. However, the margin of accuracy improvement is only 7% 

indicating that either of the spectral or geometrical features alone can differentiate the crops 

without reference to the nitrogen status of crops. 

 

 

 

 

Figure 4.13: Classification results without reference to N treatment obtained from (a) ground truth, 

(b) from the fused dataset generated from multispectral imagery and LiDAR point cloud, (c) from 

LiDAR point cloud, and (d) from multispectral imagery. 
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Figure 4.14: Overall accuracy and Kappa coefficient of classification without reference N from 

multispectral imagery (WorldView-III), fused dataset (WorldView-III +LiDAR), and LiDAR point 

cloud (LiDAR).  

 

4.3.3 Feature importance   
 

Gini index indicates the importance of spectral and structural features. The relative importance 

of different features computed from the fused dataset is shown in Figure 4.15. the variation of 

the Gini index across different features indicates the relative importance of different of different 

features.  Thus, the Gini index is the deciding factor for variable importance. 
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         (a)                                                                       (b) 

 

                                                 (c)                                                                         (d) 

Figure 4.15:(a) Feature importance without explicit reference to N (a) WorldView-III and LiDAR, (b) 

WorldView-III, (c) WorldView-III and LiDAR, and (d) WorldView-III  

 

The Figure shows the feature importance based on Gini impurity index for explicit 

reference to N and without N reference. Figures 4.15 (a) and 4.15 (c) represents the feature 

importance of combined WorldView-III and LiDAR-based classification. Figures 4.15 (b) and 

4.15 (d) represents WorldView-III based classification. The height measurements and crown 

area measurements are LiDAR-derived estimates.  The Gini impurity index is relatively for 

most of the LiDAR-based features indicating the dominance of structural attributes in the crop 

classification. 
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4.3.4 Estimation of biophysical parameters  
 

There are two types of biophysical parameters relevant to crop phenotyping. The first 

category is directly measurable tangible primary plant parameters (e.g. height, canopy area) 

and forms the primary determiners of crop physical and functional attributes. The second 

category is intangible and are not directly measurable (e.g. yield, biomass, vigour) but are 

derived based on the primary parameters. Both the category of parameters is required for 

functional descriptions of crops from the precision agriculture perspective. We, therefore, 

assessed the potential of LiDAR point cloud vis-a-vis multispectral imagery independently and 

in combination by the fusion of the datasets (Figures 4.16 – 4.18 and Tables 4.7 – 4.9).  

The crown area and plant height estimates from the LiDAR point cloud are presented 

for the date at which multispectral satellite imagery was acquired. Crown area estimated using 

the LiDAR point cloud exhibited a high degree of precision and accuracy across the different 

N treatments and the crops considered (Figure 4.16 and Table 4.9). The estimated crown area 

varies linearly, maintaining a stable one-to-one correlation with the measured values. The 

maximum error of estimation indicated by the SMAPE was about 15%. The range of crown 

area of cabbage was relatively lower, and the full range variation was not apparent, though 

statistically exhibiting a linear trend. Closely following the relationship observed with the 

crown area, the biomass estimated from the LiDAR point cloud consistently correlates with the 

measured biomass. Compared to the plant crown area, the error of estimation, quantified by 

SMAPE, is marginally lower. However, as evident from Figure 4.18, the variation of biomass 

as a function of N treatment exhibit overlapping pattern suggesting the potential diffusion of 

biomass estimations across N treatments and crops. 
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Figure 4.16: Comparison of the plant crown area estimated from LiDAR point cloud with the 

reference measurements. 
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Figure 4.17: Correlation of the plant crown estimates from multispectral imagery (WorldView-III) 

with the reference measurements. 

 

Compared to the results obtained with the LiDAR point cloud, the estimates of 

biophysical parameters from multispectral imagery show a contrasting pattern (see Figures 

4.17 and 4.19). On the one hand, the crown area estimations exhibit a moderate to lower 

correlation with the measured crown area. The ‘low’ level of N treatment indicates a relatively 

better correlation with the measured across the three crops. Plant crown area estimation for the 

N treatment ‘high’ is rather poor. The lowest and higher error of the estimate is about 22 % and 

57%, respectively. 

On the other hand, the estimates of biomass using multispectral imagery show a 

consistently higher correlation (lowest R2 is 0.91) with the measured biomass. They are 
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comparable with the estimations from the LiDAR point cloud (see Figure 4.19). However, this 

apparent strong correlation degrades to moderate levels of biomass estimations. The lowest and 

highest error of estimates is about 22% and 30%, respectively. The error is primarily the 

overestimation across the N treatments and crops. If the reference to the N treatment condition 

is relaxed, the estimation of biomass using the multispectral imagery exhibits substantially 

better results (Table 4.9), especially for the eggplant and cabbage. 

  

The plant crown area and biomass estimates obtained from the fused dataset exhibit a 

systematically higher level of correlation and accuracy (see Figures 4.16 and 4.17, and Tables 

4.7 to 4.9). Compared to the contrasting behaviour of extremely large overestimations of plant 

crown area and substantial underestimation of biomass from the multispectral imagery, the 

results of biophysical characterization using the fused dataset exhibit a consistent one-to-one 

trend across the crops and N treatments. The variation of estimates from the fused dataset for 

both the plant crown area and biomass is similar to the variation of the estimates from the 

LiDAR point cloud. Continuing the pattern observed with the LiDAR point cloud or 

multispectral imagery, the biomass estimates from the fused dataset also show considerable 

overlapping in the estimates for different N treatments. Overall, the estimation of plant crown 

and biomass from the fused dataset exhibit marginal to substantial improvements compared to 

the better estimates from the LiDAR point cloud. 
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Figure 4.18: Comparison of the plant crown estimates obtained from the fusion of multispectral 

imagery (WorldView-III) and LiDAR point cloud with the reference measurements. 
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Figure 4.19: Comparison of the biomass estimates obtained from LiDAR point cloud, multispectral 

imagery (WorldView-III) and combination dataset generated by the fusion of multispectral imagery 

and LiDAR point cloud with the reference measurements. 

Table 4.7: The overall accuracy and error (SMAPE) plant crown area estimates for different N 

treatments from the remote sensing datasets considered. The measured crown area is also included 

for ready reference.  
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Table 4.8: Summary statistics of overall accuracy, prediction error (SMAPE) of the biomass 

estimated for different N treatments from the remote sensing datasets considered. For ready 

reference, measured biomass values are also presented. Negative values of SMAPE indicate the error 

of underestimation. 

 

 

Table 4.9: Summary of the biomass estimation when there is no specific reference to N treatment. The 

estimated biomass is compared against the mean of the measured biomass. The SMAPE value in the 

negative sign indicates the error of underestimation. 

 

 

To understand the relevance of inherent variability in the field conditions, the mean and 

standard deviation of the measured biomass values are plotted for different N levels (Figure 

15). The measured biomass exhibits substantial variations across the N treatments and crops 

(Figure 15). The intra-crop biomass variation was more than the inter-crop biomass, thereby 

blurring the predictive boundaries of the non-parametric discrimination models used for fusion 

and estimation of biomass. 
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Figure 4.18: First-order statistical representation of the measured biomass across the N treatments. 

 

4.4 Potential of deep learning for fusion-based classification of 

crops at different N levels  
 

A deep convolution neural network was used for the classification of the crops with 

explicit reference to different levels of N. The idea was to evaluate if there is any discernible 

improvement in the discrimination of the crops considering the implicit nature of nutrient 

effects on the crop growth. Especially the apparent confusion that was observed with the 

classification of the crops using the RF algorithm at the object level, in which within in crop 

confusion was prevailing at the N level, was expected to be solved with the deep learning-

based approach at the pixel-level. Results of the validation of the deep CNN based 

classification of the fused dataset are shown in Figure 4.19 and Table 4.10.  
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(a)                                       (b)                                (c)  

Figure 4.19: Confusion matrix showing the deep CNN based classification of crops using data (a) 

WorldView-III, (b) LiDAR point cloud, and (c) WorldView-III + LiDAR point cloud. The nine classes 

corresponding to the labels numbered from 1 to 9 are eggplant medium, eggplant low, eggplant high, 

tomato medium, tomato low, tomato high, cabbage medium, cabbage low, cabbage high, respectively. 

 

For comparative performance, the deep CNN model has also been applied on 

WorldView-III and LiDAR point cloud independently. As evident from Table 4.10, the 

classification performance of the deep CNN compared to the RF algorithm indicates two 

distinct features. The first observation is that the overall accuracy of crop classification with 

explicit reference to N level with independent datasets WorldView-III and LiDAR point cloud 

has improved substantially. The second observation is that the overall accuracy of the 

classification of the fused dataset is higher, with an accuracy of 92%, and is only comparable 

with that of the RF-based classification. However, a remarkable observation of the 

classification of the fused dataset using deep CNN is that between crop discrimination has 

increased while exhibiting the moderate level of within crop confusion, particularly at the 

medium level of N. Cabbage at low and high N levels were identified as tomato, and there is 

an inherent confusion between tomato within its N levels. The apparent misclassification of the 

cabbage as tomato would have been due to the spectral confusion resulting from the 

WorldView-III dataset. As evident from the quality of classification is relatively poor with the 
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WorldView-III dataset across the crops, the trend is similar to that of RF-based classification. 

However, as evident from Figure 4.19b, the deep CNN exhibits a distinctly higher classification 

accuracy level with the LiDAR point cloud supporting the improvement of between-crop 

discrimination from the fused dataset.  These observations support the prominence of the 

LiDAR point cloud derived structural features in discriminating crops based on N. 

Summarizing the deep CNN-based classification performance, an improvement of 10.5% and 

7.5% is observed for the LiDAR WorldView-III datasets independently. This observation 

supports the premise that deep CNN based classification models exploit the spectral-

geometrical features of the fused dataset produced by integrating WorldView-III and LiDAR 

point cloud. 

Table 4.10: Summary of the accuracy estimates of the classification of crops at different N levels 

using deepCNN approach. For comparison accuracy estimates from the RF classifier are also 

presented. 

Classifier Data type Kappa 

Coefficient 

(%) 

Overall 

accuracy 

(%) 

DCNN WorldView-III + 

LiDAR point cloud 

91.1 92.1 

 LiDAR point cloud 83.9 85.5 

 WorldView-III 80.6 82.9 

RF WorldView-III + 

LiDAR point cloud 

92.1 93.1 

 LiDAR point cloud 79.3 76.2 

 WorldView-III 68.96 64.5 
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4.5 DL based temporal framework for predicting crop 

structural parameters (Objective 4) 
 

The plant height and crown area were predicted using three different deep learning 

models. The first two types of predictions are obtained from LSTM and GRU architectures, 

respectively. The third model we name as ‘TemporalCropNet’ is a hybrid architecture of deep 

learning framework, which was generated based on the symbiotic combination of LSTM and 

GRU models. Results are presented for each of the three models. The temporal plant height 

and crown area prediction obtained from the LSTM model is shown in Figure 4.20. As evident 

from Figure 4.20, the prediction ability of LSTM is rather stagnant and indicate no response to 

the substantial variations in the structural parameters across different ranges and dates of the 

data acquisition. However, the major limitation is not the lack of predictive response to the 

training-induced learning capability of LSTM but the magnitude of the structural parameter 

predicted. As illustrated in Figure 4.20 for plant crown area, the LSTM model does predict the 

structural parameters considering the spatial variation of the corresponding across different 

growth stages. The quantity of predicted value is only one half of the quantity of the measured 

values, further calibrated with TLS estimates, especially, the prediction of relatively lower 

values of the crown area or plant height is of non-responsive kind from the LSTM model. This 

inconsistency in prediction is further corroborated by the logarithmic deviation metric 

computed for the prediction from the LSTM model as shown in Figure 4.21.  

Figure 4.21 represented the logarithmic deviation of the height (Figure 4.21(a-c)) and 

crown area (Figure 4.21(d-e)) measurements derived from LiDAR point cloud and predicted 

using TemporalCropNet.  The direction of predicted values of the crown area or plant height 

is indicated from Ld metric is rather monotonically decreasing, showing the lack of any 

responsive learning in the model prediction. The systematically looking distribution of points 



104 
 

with a crossover of direction at midway (Figure 4.21) suggests that the predicted values are not 

in tune with the measured values of the structural parameters considered. For the predicted 

height in Figure 4.21, even though there are numerous positive and negative deviations, most 

of the predictions are prone to negative estimation. Also, the extend of the deviation (Ld) are 

mostly distributed from -0.2 to 0.2. Similarly, the log deviation depicts a considerable over and 

under estimation for tomato crop. In the case of cabbage and eggplant, the number of samples 

which have undergone both the estimations are mostly near Ld = 0, precisely between -0.1 and 

+0.1. A contrasting pattern is visible in the case of the crown area. Here, many samples are in 

the direction of overestimation and extend of deviation is also greater than the height parameter.  

 

 

 

Figure 4.20: Predicted and TLS measured height and crown area plots for LSTM model the crops: 

cabbage (a, d), eggplant (b, e), and tomato (c, f). 
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Figure 4.21: Logarithm deviation (Ld) between the measured and predicted height (a-c), and crown 

areas (d–f) for the baseline model LSTM showing the over and under estimations in the prediction. 

 

The results of the prediction of the crop structural parameters from the GRU models are 

shown in Figure 4.22. As seen from the Figure, the nature of predictions of the crop structural 

parameters for the GRU model closely follows the predictions from the LSTM model. At the 

overall level during the entire crop growth stage, the predictions are slightly dynamic in tune 

with the direction of variations of the measured values. However, the variations in the predicted 

values are limited by local gradients to the extent that most of the predictions at the lower 

values of the structural parameters are almost static. This lack of structural prediction is also 

evident in the values of Ld metric (Figure 4.23). The complementary LSTM and GRU-based 

predictions are mainly in the change in direction of predictions at different plant growth stages 

(Figures 4.24 and Figure 4.25). 
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Figure 4.22: Predicted and TLS measured height and crown area plots for GRU model the crops: 

cabbage (a, d), eggplant (b, e), and tomato (c, f). 

 

Figure 4.23: Logarithm deviation (Ld) between the measured and predicted height(a-c), and crown 

areas (d–f) for the baseline model GRU showing the over and under estimations in the prediction. 
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The results of the temporal prediction of structural parameters from the hybrid RNN 

model – TemporalCropNet are presented in Figure 4.24. The directional variation of the 

predicted values vis-à-vis to the measured values are presented in Figure 4.25. The predicted 

values of both the structural parameters considered are fairly closer to the measured values 

across the growth stages, as indicated in Figure 4.24. However, when the tomato crop is at the 

harvesting stage, the quality of prediction of the crown area is slightly lesser in precision 

compared to the measured values. The trend of the prediction across the crops is supported by 

the directional dependency of the predicted values as indicated by the Ld metric (Figure 4.25). 

The predicted crown area and plant heights are slightly overestimated at the lower range of the 

measured values. The predictions are slightly underestimated at the upper ranges of the 

measured values. The predictions match almost one-to-one when the measured values are in 

the intermediate ranges. The variations of the predictions across different crops, as indicated 

by the SMAPE, show a slightly different pattern by the magnitude of the error. Converting the 

relative values of the estimate through the absolute percentage error, the error margin of the 

predicted values is between 5 to 12%.  

Comparing the performance of the TemporalCropNet with the results from LSTM or 

GRU, it can be summarized that the prediction of crop structural parameters is viable and 

depends upon the sophistication of the deep model and the inherent ability to derive the 

complimentary nature of the two different types of architecture considered in this work. The 

correlation of predicted and the TLS point cloud-based estimation of the plant height are shown 

in Figure 4.24. As evident from Figure 4.20, The error assessment computed using SMAPE is 

0.01 (Figure 4.24(d)) for cabbage and 0.04 (Figure 4.24(f)), which exhibits a minimal error rate 

for predicting the crop height. However, for the crown area, the mean absolute error percentage 

is 0.4, 0.8 and 2 higher respectively for cabbage, eggplant and tomato. 
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Figure 4.24: Measured and predicted plot of crown area and height for cabbage, eggplant and 

tomato for proposed TemporalCropNet. 

 

Figure 4.25: Logarithm deviation (Ld) of the crown area showing the over and under estimation of the 

crops for the proposed TemporalCropNet. 

 

Interestingly, the same trend is visible for height and crown area prediction at different 

levels of N, where the error is calculated between the in-situ measurements and the LiDAR 

point cloud derived parameters. Figure 4.25 shows the logarithmic deviation of the height 
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(Figure 4.21(a-c)) and crown area (Figure 4.25(d-e)) measurements derived from LiDAR point 

cloud and predicted using TemporalCropNet. For the predicted height in Figure 4.25, even 

though there are numerous positive and negative deviations, more predictions are prone to 

negative estimation. Also, the extent of the deviation (Ld) is mostly distributed from -0.2 to 0.2. 

Similarly, the log deviation depicts a considerable over and under estimation for tomato crop. 

For cabbage and eggplant, the number of samples which have undergone both the estimations 

are mostly near Ld = 0 precisely between -0.1 and +0.1. A contrasting pattern is visible in the 

case of the crown area. Here, many samples are in the direction of overestimation and extend 

of deviation is also greater than the height parameter. Compared to Figure 4.25 of the 

TemporalCropNet, Ld values are systematically over and under estimated in all six cases, which 

shows the inefficiency of the baseline LSTM and GRU models (Figures 4.21, 4.23) in 

predicting the crown area. A similar trend is exhibited by the baseline models, LSTM and GRU, 

in predicting the height values (Figures 4.21, 4.23). Likewise, a systematic positive and 

negative deviation are observed, which extends from 0.5 to 0.3.  

Since the variation of the crown area values is negligibly small for the baseline models, 

a closer look at the measured and predicted crown area for LSTM is provided in Figure 4.26.  

In this Figure, we can actually observe a visible height variation when the predicted value is 

plotted individually, as in Figure 4.26b. But the extent of the values for the predicted crown 

area is marginal. Hence in Figure 4.20 the predicted parameters appear as a line. This shows 

that both the baseline models fail to capture the inherent temporal growth pattern of the crops. 
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Figure 4.26: Variation of crown area values using baseline LSTM method. 

 

The prediction of temporal growth parameters such as height and crown area for 

horticulture crops has not yet been addressed in the literature, especially using LiDAR point 

cloud. This is a strong motivation for carrying out such studies and understanding the crop 

dynamics, temporal growth pattern and correlation among data, subtle crop changes through 

that. Another important aspect of this study is to evaluate the temporal dependency that exists 

within a field that follows intercrop farming practices. The concept of combining LSTM-GRU 

layers is the systematic approach that is followed for CNN models where several convolutional 

and fully connected layers are connected in a sequential manner for a better structure for 

various kinds of classification tasks tends to derive non-linear temporal dependencies. We can 

embed several hidden layers for LSTM and GRU layers; in this experiment, the number of 

units of LSTM and GRU layers is set to 50.  The number of epochs used for training is 400 

epochs with a batch size of 50. A combined representative model of LSTM-GRU can learn the 

temporal dependency in the data in a much better way than the individual LSTM, GRU models. 

The baseline models failed to learn the pattern of the crop growth and the development of the 

canopy areas as the crop grow and mature.  
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CHAPTER 5 

 DISCUSSION 

 

Prelude 

In this chapter, we present a detailed discussion of the observations, key insights and the 

implications of the understanding gained. Based on the results, there are several potential new 

insights and clarifications of the thought processes forming the state-of-the-art in the relevant 

subject. The nature of the results, with specific relevance to the methods and parameters 

considered presented in the previous chapter, is elaborate in this chapter. Broadening the 

analytical observations implicitly presented in the results, this chapter elaborates on the broad 

impact of the key insights, referring to the relevant literature and potential future implications 

and connecting with the remote sensing application in precision agriculture. For ease of 

reference, content in this chapter is presented objective wise, explicitly referring to the sub-

tasks in each objective. 

 

5.1 Estimation of the biophysical parameters using TLS point 

cloud  
 

The potential of airborne LiDAR point clouds for estimating various structural and 

biophysical parameters such as tree height, canopy cover, and biomass has been successfully 

demonstrated (Khosravipour et al., 2014; Olsoy et al., 2014; Adao et al., 2017). Recent studies 

(Friedli et al., 2016; Jimenez-Berni et al., 2018) have attempted to apply the LiDAR point cloud 

to field crops such as maize, barley, paddy rice, and oat. Crop biophysical characteristics such 
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as height and biomass have been estimated with an R2 of ≥ 0.8. Studying vegetable crops with 

different temporal dynamics of height and yield characteristics and their relation to different N 

levels is vital for optimal nutrient management and agro-ecological balance. Compared to 

patch-based field crops such as barley, paddy rice, and wheat, which do not have individual 

canopy structural attributes, vegetable crops exhibit a complicated geometrical relationship 

with TLS point clouds. Generally, a shorter plant height (the observed average cabbage height 

in our study is 18 cm) and individual plant structural attributes need to be preserved in the point 

cloud. 

 

5.1.1 Estimation of plant height  
 

Our results support the potential of applying the TLS point cloud for estimating 

vegetable crop height at the plant level. At the overall growth stage level, estimated plant 

heights for the vegetable crops considered were accurate and followed the magnitude of the 

reference measurements. Our results confirm the observations made by Bendig et al. (2014), 

even though their study used barley as the test crop. On the same experimental field used in 

our study, plant height estimates of Moeckel et al. (2018) using synthetic point cloud generated 

from the UAV-based stereo RGB imagery documented the possibility of height retrievals for 

vegetable crops. Plots with high N have substantially higher plant heights compared to low N 

plots. However, analyses of the error and the direction of deviation measures (SMAPE, Ld) and 

the qualitative assessment of the spread of the plant level height, crown area, and biomass 

across the possible ranges indicate that different crops can be quantitatively described using 

TLS point cloud across growth phases. However, the specific question of matching crop 

structural attributes to different N levels could not be addressed, given the significant variation 

in crop growth at our study site.  
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5.1.2 Estimation of plant crown area  
 

Apart from plant height, the crown area is a vital plant characteristic that can be used to 

estimate other functional biophysical and structural parameters such as biomass and leaf area 

index. We have retrieved the crown area at the plant level from the multi-date TLS point cloud 

based on the innovative application of adaptive filtering and marker-controlled segmentation 

approaches. Our results indicate an unambiguous retrieval of the crown area at the plant level 

to be consistent with growth at particular sampling dates and N levels. However, plants treated 

with medium N exhibited substantial variations. Overall, the strong correlation (R2 = 0.81 to 

0.96) and the relatively low percentage deviation error (maximum SMAPE of 13.6 for crops 

treated with low, and high levels of nitrogen; Figure 4.4) consistent across sampling dates, 

indicate the potential of TLS point clouds adapted for the estimation of the crown area. A distinct 

advantage of delineating plant crowns using this methodology is the possibility of automatic 

counting plant numbers at the field level. Such automated plant counts help assess the impact of 

massive crop losses due to heavy rainfalls or severe pests. As a surrogate variable, plant counting 

coupled with the mean crown area can be directly used for predicting biomass or yield.  The 

ability to derive unambiguously individual plant crowns and counting of plants from TLS 

diminishes with advanced growth stages for vegetable crops such as tomato. This is due to the 

mixing of plant components, lodging, and uneven horizontal growth. 

 

5.1.3 Estimation of biomass and the effect of different N levels 
 

Our results show that using plant height and crown area as independent variables, 

estimation of biomass using TLS point cloud is accurate for the three different vegetable crops 

considered. However, the assessment carried out to test the discriminability of the estimations 

for different N levels yielded ambiguous results owing to the wider within plot variations of 
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crops’ growth resulting in a lack of distinct patterns in the reference measurements of plant 

height and biomass. As evident from Figures 4.6 and 4.7, the TLS point cloud processing 

methods used in this work allowed a close matching between the measured and predicted 

biomass across the entire growing season and combing different N levels for all three crops 

studied. The deviation of the estimations of plant height, crown area, and biomass is across 

sampling dates affected by the N level applied. While plant height is overestimated for tomato 

and eggplant for most of the growing period, plant height of cabbage indicates no such specific 

pattern concerning sampling date. With a further generalization of the cyclic patterns observed 

for plant height of cabbage (Figure 4.5), the temporal behaviour of crown area measurements 

follows skewed cyclic patterns for all three vegetable crops (Figure 4.5).  

Complementing the strengths of plant height and crown area, the SVR based modelling 

of biomass with the plant height and crown area as the predictor variables allowed consistent 

and accurate biomass predictions (Figures 4.6) across sampling dates and vegetable type. The 

logarithmic deviation measure shows systemic patterns in the estimated amounts of biomass by 

sampling date and indicates different amounts of biomass for different sampling dates from the 

accuracy of prediction as indicated by overestimation or underestimation. This observation 

supports that TLS estimation of crown area accounts for different plant architecture and paves 

the way for tracking the biomass accumulation in the horizontal growth direction of the crops. 

We, therefore, recommend further validation of the possibility of crown area retrievals from the 

TLS point cloud for other crops and sites. 
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5.2 Crop discrimination at plant level using deep CNN and the 

performance of the CropPointNet architecture developed  
 

Technological approaches for plant-level crop discrimination and phenotyping are vital 

for precision crop monitoring. Semantic segmentation and classification in 3D perspective are 

common processes in the application of LiDAR point cloud data for crop discrimination. We 

have implemented an improved deep learning convolutional neural network architecture, 

‘CropPointNet’, for the segmentation and classification of TLS point cloud to discriminate 

three different vegetable crops (cabbage, tomato, and eggplant). The unorganized and discrete 

point cloud of the crops in the original 3D perspective were processed for semantic 

segmentation and classification of the vegetable crops at the plant level. This was implemented 

by adapting and improving a recently reported deep learning convolutional neural network 

(CNN) architecture (PointNet) developed for the segmentation of common indoor objects with 

low-density point clouds generated in a typical computer vision application.  

The deep CNN model, “CropPointNet”, has improved training strategy for handling 

high-density point clouds such as the TLS point cloud used in this study and compact-guided 

feature mapping architecture for faster convergence and error handling ability. The 

performance of the 3D semantic object-based classification of the crops was assed rigorously 

using a host of statistical and non-parametric accuracy estimation measures both at the overall 

and per-class level. Besides, the results from the CropPointNet model were compared with that 

of two recent deep CNN models, PointNet and DGCNN. Results suggest the possibility of 

plant-level discrimination of the crops chosen with an overall accuracy of 81%. The accuracy 

of the crop discrimination by the CropPointNet model is superior and statistically significant. 

At the individual crop level, we observe that the soil and plant structure substantially influences 

the accuracy and spatial conformity of the crops. The CropPointNet and DGCNN models 
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consistently discriminated the cabbage and eggplant crops with accuracy close to 90%. As 

evident from Figures 4.8 and 4.9, a point cloud of the plots of tomato suffered a massive loss 

of point cloud in the ground filtering process. As a result, the quality of tomato crop 

classification was relatively inferior, even though the CropPointNet model performed 

relatively better compared to the PointNet and DGCNN models. Relating to the state-of-the-

art in this evolving domain of remote sensing technologies for plant-level segmentation and 

classification, we describe the significance of the results in the following sub-sections. 

There have been some works in the literature on the classification of crops using the 

LiDAR point cloud. Weiss et al. (2010) and Weiss and Biber (2011) reported laboratory 

experiments on the plant species classification in 3D LiDAR point cloud using multiple 

supervised machine learning algorithms. They reported the best overall accuracy of 98% from 

the Logistic Model Trees algorithm. In a similar study, Paulus et al. (2013, 2014) analyzed a 

3D LiDAR point cloud to classify different plant organs (leaf, stem) of grapevines and barley 

plants using a statistical surface-feature approximation of histogram using a robust estimation 

technique, RANSAC. These studies suggest the successful discrimination of plant organs with 

an accuracy of about 96%. Similar to the TLS instrument used for data acquisition used in our 

experiment, Murray et al. (2020) have quantified the plant structure of orchids. They suggest 

superior results from the TLS point cloud and are better than the results from proximal 

photogrammetry. In Jin et al. (2018), the authors applied a recurrent convolutional neural 

network (R-CNN) based deep learning model to segment the TLS point cloud of maize plants. 

The methodology employed a region growing procedure on the 2D depth imagery obtained 

from the conversion of the 3D point height into intensity before applying the R-CNN deep 

learning model for segmentation. The best estimates of Precision and Recall estimates are about 

93%.  
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Despite using different methods of classification and crop type, these studies have 

demonstrated the successful plant level segmentation and classification of crops using LiDAR 

point cloud with accuracies comparable or slightly better than our results. However, the 

principal difference and contribution of this research are the comprehensive experimental setup 

and evaluating a potential automated method for object-based crop classification. The state-of-

the-art studies, including the afore-cited, have acquired point cloud data under a controlled 

experimental design – mostly indoor or laboratory-controlled with smooth soil surfaces and 

involving only one or a few crop species or plant organs. Further expanding the state-of-the-

art, our study has been carried out on multiple crops under open natural environmental 

conditions subjected to the crop growth, soil, and surface landscape variability common to 

operational regional agricultural practices. Our results, thus, present a broader spectrum of the 

potential and challenges of applying 3D LiDAR remote sensing data for object-based crop 

classification from a realistic landscape perspective. 

 

5.2.1 Spatial filtering and crop point cloud generation  
 

Unlike the indoor scene dataset, the crops are affected by various outdoor factors such 

as terrain undulation, soil background, wind, and other agricultural infrastructure elements. 

Therefore, the data must be pre-processed before ingestion into the deep neural network for 

training. The complex tasks in pre-processing are ground filtration and a normalized surface. 

The nature of soil preparation for planting crops determines the critical separation line between 

soil and plant point cloud. For example, soil ridges and furrows in our study have created a 

continuous undulation of the soil surface, complicating the ground filtering process and 

demanding human intervention. When the rise of the soil ridges is comparable to the height of 

crops, the ground filtering process leads to the loss of point cloud of plants. We observe that 
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the filtering approach has wrongly identified about 15% of the point cloud of the crop plants 

as ground points. Additional features that reduce the quality of point cloud are the plant or 

patch level agricultural infrastructure, such as drip irrigation pipes and support sticks for 

minimizing plant lodging. This support system for tomato and lack of distinct height profile 

with crop plants has enhanced the overlap in the height of crop plants and non-crop geometrical 

features. Faithful retrieval of the point cloud of the crops in the filtering process has yielded 

only about 50% of the point cloud for tomato. The lack of distinct canopy architecture of the 

tomato crop at the fully grown stage and the reduced density point cloud of tomato crop are the 

primary reasons for the low accuracy of the crop discrimination. However, the relatively 

consistent and higher scores of the non-parametric accuracy metrics (Table 4.4) indicate two 

distinct features of the crop classification. First, the reasonably well discrimination of the crops 

indicated by the confusion matrix based on the overall accuracy is supported with a similar 

level of perception. Second, in contrast to the relatively low accuracies shown (Table 4.2), the 

quality of discrimination of the non-crop classes is also high (0.79 and better for some classes) 

and comparable to that of the crops.  

Compared to the estimate of sampling-based computation of the accuracy metrics 

(Table 4.2), estimates from the plant-to-plant matching based accuracy measures emphasize 

the number of correct predictions. The apparent differences in the accuracy estimates of crop 

and non-crop categories are due to the uncertainties in the ground filtering. The estimates of 

the IoU which quantify the crop plant-to-plant level conformity between the predicted and 

ground truth suggest relatively higher discrimination of the crops with the mean IoU (mIoU) 

scores exceeding 50% by all the three models (see Table 4.6) (72.78%, 64.28%, and 52.94% 

respectively). However, by the stability in the discrimination of both crop and non-crop 

information classes, the CropPointNet model meets the accuracy thresholds (see Table 4.6). 
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The substantial changes in the accuracy of the tomato crop suggest the need for choosing an 

appropriate discrimination model for crop classification under skeletal point density. 

 

5.2.2 Significance of the shape of crop plant canopy  
 

The deep learning models’ ability to predict crop patterns at the scale of individual plant objects 

in the 3D point cloud has also been affected by the shape of the crop canopy (see Figure. 4.8, 

4.9). While the apparent uniform spatial distribution and higher accuracy of cabbage and 

eggplant suggest fair discrimination, the relatively lower classification accuracy and the 

substantial gaps in the spatial distribution of the tomato crop indicate the models’ sensitivity to 

the crop canopy. The cabbage plant has a specific geometrical structure with a compact 

spherical mass of smooth or dense-leaved heads enfolded over each other. Due to this, all three 

models are effective in identifying the crop. In the case of tomato, due to irregular canopy shape 

and lodging at the mature growth stage, the stalk overlaps with neighbouring plants. This 

overlapping further enhances the confusion in the crops' geometrical features, leading to sub-

optimal feature learning in the discrimination model. As a result, tomato was confused partly 

with eggplant and residual soil ridges leading to lower classification accuracies by the PointNet 

and DGCNN models. However, compared to the performance of the PointNet and DGCNN 

models, the CropPointNet model indicates a relatively better accuracy for the tomato crop due 

to the reduction of false positives from the residual soil ridges.  
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5.3 Crop discrimination at plant \ patch level with explicit 

reference to N levels: fusion of LiDAR point cloud and 

multispectral satellite imagery  
 

High-resolution remote sensing has been extensively used to map and monitor crops at 

regional to national scales. In most studies, the typical mapping unit has been a crop field of 

several hectares. This perspective scale is appropriate for deriving overall estimates such as 

crop area, type and potential yield and general crop health in countries and landscapes where 

the average field size is several hectares. In most developing countries such as India, the 

average field size is less than one hectare, and the agricultural landscapes are very 

heterogeneous and are covered by a range of crops and phenological cycles. Further, the soils 

are highly variable by available nutrients. Chemical nutrients have been applied extensively 

without reference to plant availability and demands, resulting in loss of soil fertility and causing 

severe eutrophication. Forming part of the baseline dynamic data on the crops at the 

management unit of variance in the field, mapping, and biophysical quantification at the plant 

or patch level has promising applications in precision agriculture. This part of the study has 

been undertaken, evaluating the potential for plant or patch level information extraction for 

three different field vegetable crops. The hypothesis tested is ‘‘whether the synergistic fusion 

of multispectral imagery and LiDAR point cloud allows nutrient specific vegetable crop 

discrimination and biophysical quantification at the plant or patch level?”. 
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5.3.1 Crop discrimination at plant or patch level 
 

The crop discrimination has been approached by considering the object-based 

classification of the vegetable crops using the dataset generated by the pixel-level fusion of 

multispectral imagery and LiDAR point cloud and compared with the base datasets 

independently. The two levels of crop discrimination – the fine classification with reference to 

N treatment and the coarse level classification without considering N treatment indicate a new 

level of opportunity and challenge for remote sensing application for plant or patch level 

information extraction. Compared to the results obtained from LiDAR point cloud, the quality 

of crop discrimination from the multispectral imagery, with explicit reference to N treat, is 

relatively poor. The best accuracy of classification is about 68%.  

Supporting the premise that structural features are vital for crop discrimination at a fine 

level, the quality of crop discrimination from the fused dataset is very high and is consistent 

across the crops and treatments. The best accuracy of classification is about 92%, which is 

about 30% and 20% higher compared to the results from multispectral imagery and LiDAR 

point cloud, respectively. This observation indicates the possibility of patch-level crop 

classification with explicit reference to N treatment. The improved results also suggest the 

complementary of spectral and geometrical features, thereby illustrating the distinct benefits of 

fusion of multispectral imagery and LiDAR point cloud for crops mapping. 

In contrast, the classification of crops without reference to the N treatment indicates a 

fairly higher accuracy for both the multispectral imagery and LiDAR point cloud 

independently. The difference in accuracy between the classification results from the 

multispectral imagery and LiDAR point cloud is marginal (about 5%). However, the accuracy 

of classification results from the fused dataset shows substantial improvement over both the 

base datasets. 
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5.3.2 Biophysical characterization 
 

The retrieval of two biophysical parameters, plant crown area and biomass, belonging 

to two distinct categories, show two different patterns. Due to the destructive harvesting 

method used for ground measurement of biomass, the number of samples used for validation 

is limited. In contrast, as is possible without destructive harvesting, the plant crown area has 

been sampled extensively for ground measurements and used for validation. The plant height 

has not been used for comparison of the results from LiDAR point cloud and multispectral 

imagery as plant height is not retrievable from single multispectral imagery.  

The estimates of the plant crown area, a tangible structural parameter, exhibit different 

levels of correlation with measured values and vary both in magnitude and direction based on 

the data used. When LiDAR point cloud in the retrieval, the plant crown area exhibits a very 

close relationship with the measured values. The estimated values reflect the crop type and N 

treatment as observed from measured values. For the case of retrieval from the multispectral 

imagery, the quality of crown area degraded substantially, and the strength of correlation varied 

between 65 to 76% for the instances of crops with N treatments ‘low’ and ‘medium’. However, 

the correlation is rather poor for the case of N treatment ‘high’. Except for the case of cabbage 

treated with ‘low’ N, the estimated values of crown area substantial overestimations. This also 

indicates the possibility of soil background and open-canopy gaps in the tomato and eggplant, 

thereby causing some of the pixels filtered out as belonging to non-plant in the image 

processing stage. The possibility of plant lodging with further skewed spatial spread on the soil 

also reduces the effective crown area is in the purview of the satellite sensor’s instantaneous 

field of view (IFOV). Interestingly, the results from the fused dataset exhibit an unusual pattern. 

On the one hand, the estimates of crown area are consistent and better than the estimates from 

the multispectral imagery (see Table 4.7). However, on the other hand, the quality of estimation 

degraded substantially, with the error of estimation between 20 % and 28%. This contrasts with 



123 
 

the observation that the accuracy of crown area estimation from LiDAR point cloud is very 

high, and the maximum error of estimation is about 15% (see Table 4.7). The reduction in the 

accuracy of the estimation with the fused dataset indicates the substantial influence of 

confused-spectral features in modelling the crown area. This observation points out the 

possibility of destructive interference of spectral and geometrical features for several plant 

objects, thereby suggesting the caution for data fusion applicability. 

The estimates of biomass from the three different datasets exhibit a distinct trend 

compared with the crown area. The best performance observed LiDAR point cloud for the 

crown area has continued with the biomass estimation, further reducing the most probable error 

of estimation to less than 5%. Contrasting with the relatively lower performance, the accuracy 

of estimation from the fused dataset is substantially higher than the accuracy of estimation from 

the LiDAR point cloud across the crops and N. Exhibiting a somewhat similar trend, the 

accuracy of biomass estimation from the multispectral imagery also has improved 

substantially, with the error of estimation of between 10 and 30%. This observation also 

supports the premise that a combination of spectral and geometrical features is vital for plant 

biophysical description.  

However, the distinction of biomass estimates with explicit N treatment is unclear from 

all three datasets (see Figure 4.17). In addition, there are only marginal changes in the accuracy 

of biomass estimations without explicit reference to N treatments (see Table 4.9). One of the 

pertinent reasons can be ascribed to the field level crop growing conditions and the variations 

of the crop growth across different plots. The intra-crop biomass variation is more than the 

inter-crop biomass, thereby blurring the predictive boundaries of the non-parametric 

discrimination models used for fusion and estimation of biomass (Figure 4.18). In addition, 

extreme weather phenomena such as rains cause the nutrient transport from one N treatment 
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site to another, influencing the biomass accumulations and degrading the functional limits of 

crop growth profile. 
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5.4 Scope for improved crop discrimination: DL based fusion 

of multispectral data and LIDAR point cloud  
 

Deep machine learning approaches have been rapidly expanding into the application base 

of remote sensing by offering a common methodological framework for building the models 

and transfer across space and time. A range of problems related to data analyses such as 

classification, prediction, regression, clustering, and data engineering such as data fusion, 

super-resolution, multi-modal data integration has been explored. The fusion of spectral data 

(multispectral and hyperspectral) and LiDAR point cloud acquired from the ground, airborne 

and satellite platforms have been explored in the last few years. The studies have mainly 

reported on the fusion of data- spectral and LiDAR point cloud for improved classification of 

land use/land cover, buildings’ footprints generation, and the classification of forest tree 

species (e.g. Singh et al., 2012; Ahmed et al., 2015; Garcia et al., 2018; Li et al., 2020). Our 

exploration of the deep machine learning approach for the fusion of satellite-based 

multispectral imagery and the terrestrial LiDAR point cloud for the classification of vegetable 

crops with explicit reference to N levels is distinct. The challenges are: (i) objects are crop 

plants of relatively short height and lack sturdy shape and profile, and (ii) response to N levels, 

which can be further influenced by various soil and environmental factors. 

Compared to the results obtained from the RF-based traditional machine learning 

approach, the nature of the classification performance can be explained from two distinct 

perspectives: (i) discrimination performance within and between crops and (ii) crop 

discrimination sensitivity to different N levels. The accuracy of the crop discrimination, 

irrespective of the N status, is comparable with the best-case performance of the results 

obtained by data fusion using the RF algorithm. However, a significant performance 

improvement obtained from the deep CNN based data fusion is increased within-crop accuracy 
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by 10%. With reference to the discrimination sensitive to N level, the results from the deep 

CNN based fused imagery are only marginally better. 

Contrasting with the results obtained from the fused dataset, the deep CNN has exhibited 

substantially higher performance on the independent datasets of multispectral (WorldView-III) 

and LiDAR point cloud. The results are consistent across the crops with and without reference 

to the N status. Compared to the classification results from the WorldView-III, the overall 

accuracy of classification from the LiDAR point cloud is higher. This observation establishes 

the prominence of plant structural features for crop discrimination at the plant/patch level. 

Although the different versions and model architectures of the deep learning methods available 

in the recent literature offer various levels of sophistication and performance improvements, 

we can draw two stable inferences: (i) the performance of the deep machine learning method 

for the data fusion of multispectral (WorldView-III) and LiDAR point cloud is higher for crop 

discrimination, and (ii) the discrimination with explicit reference to N status is comparable to 

that of the RF algorithm.  

 

5.5 DL framework for the prediction of crop structural 

parameters  
 

Providing spatial estimates of tangible or intangible parameters of different landscape 

elements (e.g. buildings, trees, crops, soils, water bodies, etc.) has been one of the primary 

applications of remote sensing data. A host of statistical, machine learning and fast-emerging 

deep machine learning approaches have been explored extensively. The general process 

followed across different domains is to provide spatially distributed reference measurements 

at some locations in the study site covered by the remote sensing data and build a classification 

or regression model for generating spatial maps of the parameters of interest. As described in 

the literature review, estimation of the parameters related to vegetation, generally called 
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biophysical characterization, has been extensively studied during the last three decades. At the 

scale of individual vegetation elements, especially trees in the urban landscape and forest 

environment, delineation and structural characterization are increasing attempted with LiDAR 

point cloud employing deep machine learning methods (Wu et al., 2015; Aubry-Kientz et al., 

2019;  Calders et al., 2020). The successful generation of geographically extensive coverage 

maps of vegetation heights (Lang et al., 2019; Weinstein et al., 2021) and tree crown area 

canopy affirm the promising combination of deep learning models and LiDAR point cloud. 

Apart from applying to a different domain of vegetable crops, exploring the potential of the 

combination of LiDAR point cloud and deep machine learning models for estimation of plant-

level structural parameters at different growth stages is a distinct feature of research carried out 

in this thesis. Given the limitations and functional constraints of different deep machine 

learning methods, the generation of hybrid models broadly within the context of ensemble 

modelling has been considered a viable option. Broadly related to this perspective, the 

application of two different deep machine learning models – LSTM and GRU, and the hybrid 

model generated, ‘TemporalCropNet’ is aimed at expanding the horizon of the single state 

‘estimation’ of biophysical parameters to ‘prediction’ thereby enabling the predictive maps of 

crop growth profiles for advanced crop management.  

The performance of ‘predicted’ values of two important crop structural parameters – plant 

height and the crown area has been compared with the ground truth reference values measured 

throughout the crop growing season. Analyzing the results obtained from the base models 

(LSTM and GRU) and the proposed hybrid model ‘TemporalCropNet’ suggests crucial 

insights. The quality of the predictions of structural parameters from the LSTM is poor because 

the magnitude of prediction is less than one half of the actual value. Further, the LSTM model 

is non-responsive to the variation of structural parameters both at the lower and higher-level 

values. While following the general trend of the predictions from the LSTM, results from the 
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GRU suggest the existence of a stepped gradient in the predictions indicating the dominance 

of local features in the predictions of GRU. As a result, the point-on-point plot of structural 

parameters (Figures 4.20 and 4.22) of the predicted with the LiDAR point cloud-based values 

show a limited extent of the predicted values by amplitude and direction. The proposed 

‘TemporalCropNet’ has exploited the complementary functional performance of the LSTM 

and GRU, thereby offering ‘predictions’ of crop structural parameters at plant level closely 

matching with the TLS LiDAR point cloud-based values. The ‘TemporalCropNet’ is developed 

and implemented for predicting plant level height and crown area. As the model is based on an 

open architecture with the flexibility to ingest different ranges of values, the method can be 

extended to predict crops’ other biophysical parameters. 
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CHAPTER 6 

  SUMMARY AND CONCLUSION 

 

The ever-evolving remote sensing techniques and the demands for precision agriculture 

require the development of tools and contemporary techniques for information retrieval at the 

plant/ patch level. Motivated by this, the thesis has considered three crucial aspects of precision 

agriculture in remote sensing applications: (i) estimation of biophysical parameters of the crops 

at high resolution. (ii) crop discrimination at plant/patch level, and (iii) temporal prediction of 

crop structural parameters. These key aspects form the basis of the overarching aim of the 

thesis. The aim was formulated into four objectives: (1) multi-temporal estimation of 

biophysical parameters of agricultural crops at different levels of nitrogen using TLS point 

cloud. (2) to develop a deep learning-based methodology for multi-crop point cloud 

classification of agricultural crops, (3) examining the potential of integration of TLS point 

cloud with high-resolution multispectral satellite data for crop discrimination and biophysical 

characterization at different N levels, and (4) to develop a temporal framework to predict crop 

structural parameters. 

Estimating the biophysical parameters of the vegetable crops at varying N levels using 

3D TLS point cloud data at the plant level seems viable. There is a stable agreement between 

the estimated and measured parameters. Substantial variability in plant height across different 

N treatments is also evident. Estimating crown area and its combination with plant height for 

modelling biomass using SVR has given a consistent level of prediction for all N levels and all 

the crops considered. The extraction of height and crown area measurements for individual 

plants (object-oriented marker-controlled watershed segmentation) exhibit a good agreement 
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with the reference measurements. An improved 2D DCNN model “CropPointNet” capable of 

ingesting the point clouds directly to the architecture for segmentation and classification has 

been developed. The proposed CropPointNet can handle high-density point clouds.  The 

performance of the 3D semantic object-based classification of the crops was assed rigorously 

using a host of statistical and non-parametric accuracy estimation measures both at the overall 

and per-class level. Besides, the results from the CropPointNet model were compared with the 

other two deep CNN models, PointNet and DGCNN. Results suggest the possibility of plant-

level discrimination of the crops chosen with an overall accuracy of 81%. The accuracy of the 

crop discrimination by the CropPointNet model is superior and statistically significant. At the 

individual crop level, the soil and plant structure substantially influence the accuracy and 

spatial conformity of the crops. The CropPointNet and DGCNN models have consistently 

discriminated the cabbage and eggplant crops with accuracy close to 90%. 

Two approaches have been explored related to evaluating the potential of fusing LiDAR 

point cloud and multispectral imagery for crop discrimination and biophysical parameter 

estimation at different N levels. The ensemble-based method (Random Forest) is used for 

feature-based classification. The results have been compared against these two different 

datasets discretely. The classification accuracy of the fused dataset is 92% which is 20% greater 

than the individual sensors. For the pixel-level classification, a DCNN model has been 

developed. In comparison to the RF classifier, which needs handcrafted features as input to the 

model, the DL based model has better accuracy rates remarkably better accuracy rates for 

LiDAR and WorldView-III datasets. When classified using the RF algorithm, the quality of 

improvement with the fused datasets is not substantial when compared to the accuracies from 

the independent datasets. In contrast, the improvement in the accuracy of the biomass and plant 

crown area estimates using the fused dataset is substantial and consistent across the different 

cases considered. The error estimate SMAPE observed for crown area varies from 16.5% to 
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32.5% for the combined dataset and recorded negative values for the error estimation of 

biomass which indicates the error of underestimation.  

Based on the crop plants’ structural attributes at past growth stages, prediction of the 

future structural parameters of the crops at the crop patch/plant level has been attempted first 

time, to the best of our literature review. To this end, an LSTM-GRU integrated deep learning-

based model named ‘TemporalCropNet’ has been developed for prediction at the individual 

plant lev66el. The structural parameters are derived from the CHM developed from the LiDAR 

point cloud during the crops’ key phenological growth stages. The predicted values are 

compared with the actual LiDAR point cloud derived values. Compared to the baseline LSTM, 

GRU models, TemporalCropNet can predict the crop growth parameters with a very low error 

rate, especially for plant height (SAMPE = 0.02). The model can capture the temporal 

dependency for the given date of the crop growth.  

 

6.1 Conclusions 
 

    Based on the critical observations noted, the following conclusions are drawn. 

 LIDAR point cloud from TLS offers plant/patch level biophysical characterization of 

crops using LiDAR point cloud. It can be a potential terrestrial remote sensing 

technique catering to the needs of precision agriculture. 

 Compared to plant height, plant crown area is the better indicator of crop growth under 

different N levels across various growth stages. Biomass estimates obtained by 

6including the crown area and the plant height in the prediction model are accurate 

across the growing seasons and N levels.  

 The potential of TLS based LiDAR point cloud for crop discrimination at patch/plant 

level is promising. The deep learning model adopted in this thesis, ‘CropPointNet’ 
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classifies structurally different crops with an overall accuracy of 90%. This model is 

amenable for generalizing to apply on other field crops. The quality of the crop 

discrimination is relatively less when viewed from the sensitivity to different N levels.  

 Object-based classifications of the crops using LiDAR point cloud and high-resolution 

multispectral imagery independently and by fusion suggest that spectral information is 

vital for achieving stable crop discriminations with explicit reference to different N 

levels. 

 If crop discrimination without reference to N levels is the goal, then LiDAR point cloud 

alone can offer the classification performance with better accuracy. On the other hand, 

if the requirement is crop discrimination with explicit reference to N level, spectral data 

needs to be combined with the LiDAR point cloud. 

 A novel modelling exploration of the temporal LiDAR point cloud, using deep machine 

learning, suggests the in-advance prediction of plant/patch level crop structural 

parameters (plant height and crown area). The predictions of the deep machine learning 

model ‘‘TemporalCropNet’, developed based on the ensemble integration of the LSTM 

and GRU models, closely match the estimates from the TLS point cloud, especially for 

the advanced growth stages of the crops.  

 

6.2 Challenges and Limitations 
 

 Acquiring quality 3D point cloud for field crops is affected by the agriculture 

infrastructure and soil preparation. In the experimental site, we acquired several scans 

of TLS from different views for forming the LiDAR point clouds of crops. However, 

acquiring LiDAR point clouds from multiple perspectives is a challenge in a practical 
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farming landscape of extensive areal extent. The point cloud filtering and classification 

methods are sensitive to the quality of geometrical view of the plant-object formation 

in the LiDAR point clouds. 

 Irrespective of the quality of the equipment used for acquiring LiDAR point cloud 

acquisition and the nature of crops’ growth profiles, rapid changes in 

environmental/weather factors like winds cause the crop plants to deflect the pulses 

away.  

 Vegetable crops exhibit a complicated geometrical relationship with point cloud 

compared to cereal crops. Sensitivity of the estimations of vegetable crop biophysical 

characteristics, specific to N levels, may also be influenced by unpredictable events, 

such as changes in N availability due to heavy rainfall, run-off etc. 

 The learning-based classification or prediction models, including the deep learning 

models CropPointNet, CropTemporalNet developed in this thesis, are partially 

sensitive to the crops' phenological stage. With fine tuning of method based 

parameters, it is expected that the same models can be extended onto farmer’s field 

and up scaled to larger geographical locations. 

 

 

 

  



134 
 

  



135 
 

CHAPTER 7 

 MAJOR THESIS CONTRIBUTION AND DIRECTION 

OF FUTURE WORK 

 

This thesis has undertaken studies, developed methods, and algorithmic process flow on 

three important aspects of RS technology application in agriculture - estimation of some 

important functional biophysical parameters, classification of crops at plant level, and 

prediction of crop height, and crown area using statistical, ML and DL techniques. 

 Explored the potential of high-density terrestrial laser scanning for the retrieval of plant-

level crop height and crown area and further estimated crops’ biomass across the growing 

seasons and under different nitrogen treatments. 

 A Deep CNN based model named as “CropPointNet” has been developed for the plant 

level classification of LiDAR point cloud for vegetable crops. 

 Established that high-density LiDAR point cloud alone, even though very dense, will 

not be sufficient to discriminate crops with sensitivity to nitrogen levels. 

 Traditional machine learning, and deep learning methods have been explored for the 

fusion of LiDAR and WorldView-III satellite imagery for the object-based classification 

of crops, reference to N levels. 

 A crop growth stage prediction model “TemporalCropNet”, based on stacked RNN 

based deep learning architectures (GRU and LSTM), has been developed and applied 

for plant-level crop height and crown area prediction. 
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7.1 Future Scope of the Work 
 

The work accomplished in this thesis can be extended as summarised below. 

 The methods and algorithms developed in this thesis have been implemented on 

vegetable crops. For understanding the transfer characteristics of the models, studies 

are to be conducted on other row crops with and without characteristic canopy shapes. 

 The multispectral data used in this thesis is satellite imagery. For better spatial 

resolution compatibility with LiDAR point cloud, we recommend acquiring 

multispectral imagery from airborne or UAV-based platforms simultaneously with 

the LiDAR point cloud acquisition. 

 The DL based prediction model “TemporalCropNet” has the potential to serve as a 

generic framework for the prediction of crop structural parameters well before the 

establishment of crops and is a valuable tool for pre-planning agronomic management 

interventions. This model needs to be validated across different cropping systems with 

considering different crops and phenological stages. 
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