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Abstract

Compressed sensing is a well established signal acquisition method. This involves

sampling of correlated and integrated signal at reduced sampling rate. The com-

pressed sensed signals are not direct time domain representations, hence the recon-

struction of the original signal involve function minimization methods or matrix min-

imization methods. Large numbers of sparse signal reconstruction algorithms are

developed in the recent time. The availability of large numbers of reconstruction al-

gorithms create dilemma in choosing a particular method for a specific reconstruction

application. The recovery algorithms are generally compared in terms of computa-

tional complexity, computational time, probability of recovery and recovery precision.

Typically absolute Mean Squared Error (𝑀𝑆𝐸) and relative 𝑀𝑆𝐸 are used to com-

pare the recovery precision of various sparse recovery algorithms. However, these two

metric alone are not sufficient to assess all algorithms. The research work presented

in this thesis starts with a novel algorithm evaluation strategy by ranking the algo-

rithms based on the observable similarity between the original and the reconstructed

signal.

The thesis presents four consequential developments: first is the description of a

novel method for analysis and ranking of sparse recovery algorithms. Second a frame

work for improving the accuracy of sparse signal recovery algorithms using iterative

residue estimation, proximal projection and segmented thresholding and the devel-

opment of two new recovery methods using the proposed frame work. Third, the

evaluation of an IoT based computing platform for the implementation of the pro-

posed sparse reconstruction algorithms. Fourth the implementation of the proposed

algorithm in real-time networked data acquisition scenario.

The signal reconstruction from the compressed sensed data need iterative meth-

ods since the sparse measurement matrix is analytically non invertible. The iterative

thresholding and ℓ0 function minimization are of special interest as these two op-

erations provide sparse solution. However these methods need an inverse operation
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corresponding to the measurement matrix for estimating the reconstruction error.

The pseudo-inverse of the measurement matrix is used in general for this purpose. In

the second part of the work, a sparse signal recovery framework using an approximate

inverse matrix Q and iterative segment thresholding of ℓ0 and ℓ1 norm with residue

addition is presented. Two recovery algorithms are developed using this framework.

The ℓ0 based method is later developed into a basis function dictionary based network

for sparse signal recovery. The proposed framework enables the user to experiment

with different inverse matrices to achieve better sparse signal recovery efficiency and

implement the algorithm in computationally efficient way. Also, the proposed frame-

work is used in the development of a cascade computing network for sparse signal

recovery.

In the third part, the functional evaluation of an IoT based computing platform

for implementation of the proposed sparse reconstruction algorithm is presented. The

Beagleboard is used as prototyping and product development platform, however the

full computational and networking capability of its ARM processor AM3358 and

programmable real time unit are not fully utilized due to the bandwidth limitations

of the networking device used in the board. The network performance evaluation of

the board is performed experimentally and compared with the real time requirements

of a networked commanding and data acquisition system. The feasibility of using this

board for real time applications with a response latency of < 20𝑚𝑠 is studied. The

observations from the timing analysis indicate that the timing constraints need to be

implemented on the system for getting real-time performance.

The work presented in this thesis concludes by implementation of the proposed

sparse recovery algorithm on the IoT computing platform, for realization of a net-

worked system for acquisition and reconstruction of naturally sparse events. The

naturally sparse event acquired here is the surge in ground potential. A common

reason for electronic measurement anomaly is the inadvertent rise in ground poten-

tial with respect to measurement ground. The ground potential rise happens during

current leakage to the ground from lightning or from power grid and leads to catas-

trophic failure unless appropriate preventive action is taken to isolate the sensitive
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measurement systems. A networked system for compressed sensing and transmission

of the ground potential measurement values to a remote data monitoring station is

demonstrated using the proposed method and platform. The limited processing pow-

er of such devices is not sufficient enough to run high computation intensive routing

algorithms. Hence a lightweight routing algorithm for this purpose is also proposed.

The discussion on the reliability of such systems is presented for completeness. The

multipath route discovery strategy presented here reconfigures the network to an

optimal configuration with respect to energy dissipation and node distribution.

In brief, the work presented in this thesis begins with analysis of various sparse

signal reconstruction algorithms, then proposes a novel metric for ranking these al-

gorithms using the signal similarity and probability. Based on the salient features of

various sparse signal reconstruction algorithm, a framework for improving the perfor-

mance of these algorithm is presented. This framework is used in the development of

a function dictionary based computing network for sparse signal reconstruction. To

implement the proposed algorithms, an IoT based computing platform is selected and

evaluated to confirm that it meets the computational requirements. A distributed da-

ta acquisition system for measurement and reconstruction of sparse signal using the

proposed algorithm is presented. Additionally a low power data routing algorithm

for the IoT based system is also developed to support the data communication.
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𝐵𝑊 The network communication bandwidth.

𝐺𝐴 The specimen antenna gain

𝑑𝐺𝐼 The network hop distance to the data collection node.

𝑃𝑠(𝑖) The observed signal strength of the node 𝑁𝑖.

𝐹 (𝑖) The data frame size of the node 𝑁𝑖.

𝐿(𝑖) The upstream communication bandwidth of the node 𝑁𝑖.

𝑏(𝑖) The available backup power of the node 𝑁𝑖.

𝐶ℎ(𝑖) The channel number used by the node 𝑁𝑖 for communication.

ℛ(𝑘) The network route from node 𝑁𝑘 to 𝑁0

ℛ𝑁(𝑘) The 𝑁 multi-path network route from node 𝑁𝑘 to 𝑁0

𝒫(𝑡𝑘),𝒫(𝑟𝑘),𝒫(𝑖𝑘) The probability of transmission, reception and idling state.

𝐸𝑇𝑋 , 𝐸𝑅𝑋 The power dissipation during data transmission and reception.

𝑘𝐵 The Boltzmann constant

𝑅(𝑡) The reliability of node as function of time.

𝑚𝑡𝑡𝑓 The mean time to failure

𝑇0, 𝑇𝑎 The operational and testing temperature.
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Chapter 1

Introduction

The motivations for this research begins with the requirement of developing a data

acquisition method for naturally sparse signals. The primary survey of the literature

points toward the compressed sensing method as the optimal method for sparse sig-

nal acquisition. However, the survey reveals a myriad of sparse signal reconstruction

methods. Naturally, the scientific temper demands which is the best algorithm for

sparse signal recovery, if at all the sparse signal is acquired. This leads to a study

of various sparse signal reconstruction methods. But a comprehensive comparison of

all of the parse signal recovery algorithms is not possible with the current evaluation

metrics. This leads to the proposal of an empirical formula for collective evaluation

of sparse signal recovery algorithms. From this analysis, one particular method based

on iterative thresholding and proximal projection is found to be interesting. Also, the

original requirement needs a hardware platform for implementation. As soon as the

algorithm is selected, two new questions sprout up. First, the selection of a cost ef-

fective computing platform for implementing the method; and second, the possibility

of developing a computationally optimal sparse recovery method. The first query is

answered through a product survey of embedded and IoT based computing platforms

available at the current time. The TI AM3358 SOC processor based IoT platform

board was selected and evaluated independently to assess its capabilities. The quest

for a computationally optimal sparse recovery algorithm leads to the developmen-

t of a framework for algorithm development. And this results in the development
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of segmented threshold residue projection based norm minimization methods. Once

the hardware and algorithms are ready, the sparse signal acquisition and reconstruc-

tion system is developed. A resource-constrained routing algorithm is eventually

developed to use the same system for the acquisition of sparse signals from spatially

distributed nodes. The thesis presents the contributions made in various fields of

computation, optimization and networking before presenting the system developed

for the acquisition of naturally occurring sparse events.

1.1 Sparse Signals

The signal acquisition and data compression remained as two distinct processes till

the idea of compressed sensing was proposed in [1]. This process exploits the sparse

nature of the signal to sample it with fewer samples compared to the limit defined by

Nyquist Shannon sampling theorem. The process applies only for signals with sparse

nature. However if the signal is not apparently sparse, it can be made sparse through

basis transformation. The acquisition of such sparse signal is carried out through the

second transformation using a rank deficient measurement matrix. The measurements

reduction is the consequent of this transformation. This new framework for sparse

signal acquisition is used in smart sensor design, where signals are under-sampled

without losing the information content. A scenario where this becomes an effective

data acquisition technique is when communication bandwidth is limited. Different

from classical methods, where the Nyquist rate sampled signals are compressed prior

to transmission, this compressed sensing technique optimizes the acquisition process

and reduces the number samples. Signals like Synthetic Aperture Radar, where fine

resolution signal characteristics can be captured only at high sampling rate, which

may not be possible always, because of engineering or timing constraints, compressed

sensing based acquisition and recovery techniques are utilized to capture these signals

at sampling rate well below the recommended Nyquist rate [2].

The sampling theorem states that to avoid information loss and aliasing during

sampling of any signal, sample the signal at least two times faster than the signal’s
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bandwidth. In many emerging applications like magnetic resonance imaging, syn-

thetic aperture radar, abundance of data generated by the data acquisition systems

due to high Nyquist sampling rate, demands compression prior to store or transmis-

sion, to save communication bandwidth. Compressed sensing combines the sampling

and compression into a single process, and uses non-adaptive linear projections to

preserve the time domain characteristics of the signal; and the signal is later recon-

structed from these projections using optimization techniques [3]. The transformation

of compressed sensing from an algebra theory to a practical technique for sparse sig-

nal processing began with the work of Donoho, Candes, Romberg, Tao and et al [2],

[4], [6], [7], [8].

A sparse signal x ∈ R𝑁 with 𝐾 number of non zero values (𝐾 ≪ 𝑁 ) is trans-

formed into a projected space using a measurement matrix A ∈ R𝑀×𝑁 and then the

signal is acquired with lesser number of samples 𝑀 (𝑀 < 𝑁) as given in (1.1) [1].

y = Ax, x ∈ R𝑁 ,A ∈ R𝑀×𝑁 ,y ∈ R𝑀 ‖x‖0 = 𝐾 ≪ 𝑁, (1.1)

The properties of a proper measurement matrix is described in [4]. The original sparse

signal is recovered using the optimization method defined as (1.2)

x* = argmin
x

‖x‖0 , subject to y −Ax = 0 (1.2)

Considering the computational limitation, if a finite error in reconstruction is toler-

ated, the sparse recovery problem can be represented as (1.3) [5].

x* = argmin
x

‖x‖0 , subject to ‖y −Ax‖2 ≤ 𝜀 (1.3)

The direct estimation of x through minimizing the ℓ0 norm and satisfying the recon-

struction criterion is Non-Polynomial time hard (NP-hard) problem. The reconstruc-

tion is also possible if ℓ1 norm is used in place of ℓ0 norm. However all matrices of type

𝐴 ∈ R𝑀×𝑁 do not qualify as measurement matrix. The reconstruction is guaranteed

only if the measurement matrix satisfies the condition known as restricted isometric
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property as given in (1.4)

(1− 𝛿𝐾) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + 𝛿𝐾) ‖x‖22 , ∀x ∈ Σ𝐾 (1.4)

where, 𝛿𝐾 is a finite constant defined as restricted isometric constant [6] and Σ𝑋

is the set of all K-sparse vectors. This is the upper bound for the difference in ℓ2

norm of the measurement y = Ax with respect to ℓ2 norm of the original signal x.

This measurement restriction is a consequence of the null space requirement. The

null space of the selected measurement matrix A should not contain any 2𝐾 sparse

vectors, if the matrix is used to take measurements of the signal with sparsity ≤ 𝐾

(1.5). This is a necessary condition for the sparse recovery.

𝑁𝑢𝑙𝑙(A) ∩Σ2𝐾 = ∅ (1.5)

where Σ2𝐾 is set of all 2𝐾 sparse signals. The probability of signal recovery can be

estimated if the number of measurements 𝑀 satisfies (1.6), as shown in [7].

if 𝑀 ≥ 𝐶

𝛿2
𝐾

(︂
ln(

𝑁

𝐾
) + ln(

2

𝜖
)

)︂
then 𝑝(x̂ := x) = 1− 𝜖 (1.6)

where 𝑝(x̂ := x) is the probability of recovery, 𝜖 is a finite value, x̂ is the recovered

sparse signal, 𝐶 > 0 is a positive constant and 𝛿 > 𝛿𝐾 is a finite constant [7]. The

restrictions given in (1.4) and (1.5) are satisfied when columns of the measurement

matrix are selected from independent and identical distribution (i.i.d.) of random

vectors. The Bernoulli (1.7) and Gaussian (1.8) type random matrices satisfy these

properties and are used in general as measurement matrix [4].

A = {𝑎𝑗𝑖}, 𝑖 = 1 . . . 𝑁, 𝑗 = 1 . . .𝑀, 𝑎𝑗𝑖 = ±1/
√
𝑀 (1.7)

A = {𝑎𝑗𝑖}, 𝑖 = 1 . . . 𝑁, 𝑗 = 1 . . .𝑀, 𝑎𝑗𝑖 ∈ 𝒩 (0, 1/𝑀) (1.8)

Alternate way to confirm the validity of measurement matrix is described in [8]. The

minimum number of 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 of A or alternatively indicated as
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the 𝑠𝑝𝑎𝑟𝑘(A) of the measurement matrix is within the range [2𝐾,𝑀 +1]. Its value is

estimated from the statement (1.9), where 𝜇(A) is the column wise coherence defined

as (1.10) and 𝐴𝑖, 𝐴𝑗 are columns of the matrix A.

𝑠𝑝𝑎𝑟𝑘(A) ≥ 1 +
1

𝜇(A)
, 2𝐾 ≤ 𝑠𝑝𝑎𝑟𝑘(A) ≤ 𝑀 + 1 (1.9)

𝜇(A) = max
| ⟨𝐴𝑖, 𝐴𝑗⟩ |√︀

| ⟨𝐴𝑖, 𝐴𝑖⟩ ⟨𝐴𝑗, 𝐴𝑗⟩ |
, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ̸= 𝑗 (1.10)

The original sparse vector is reconstructed from the measurement vector using

the generalized approach given in (1.2). Considering the problem (1.2) the unknown

x has two parts (i) the support of the vector x, (𝑠𝑢𝑝𝑝(x) = {𝑖 : x𝑖 ̸= 0} ) and (ii)

the non-zero values over these supported locations. Two alternatives for finding the

solution of the above problem are

1. Greedy Algorithms: Here the focus is given for finding the signal support, the

non-zero values of x at the supported locations are easily determined by least

squares method. These methods build up an approximation one step at a time

by making locally optimal choices at each step.

2. Relaxation Methods: The second method do not consider the signal support

and takes the unknown x as a vector (x ∈ R𝑁). By smooth approximation

of the objective norm function ‖x‖0, solution of 𝑚𝑖𝑛 ‖x‖0 is obtained using

continuous function optimization techniques. These techniques solve a convex

optimization problem whose minimizer approximates the target vector x [3].

Recent research on compressed sensing has widened the scope of its application from

biomedical to astronomy [9], [10]. For each application domain unique recovery al-

gorithms are designed specifically to meet the requirements. The CS recovery algo-

rithms use theoretical foundation from various techniques of function optimization,

regression, iterative methods, machine learning and artificial neural networks. The

objective of developing new sparse recovery algorithms has changed from general al-

gorithm, which deals with all kind of data to application specific algorithm taking
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advantage of the inherent features of the signals under consideration. As more and

more signal restrictions are imposed for each application specific algorithm, the per-

formance comparison of these becomes increasingly difficult, just by evaluating the

results.

Large numbers of sparse signal reconstruction algorithms are developed in the

recent time. The availability of large numbers of reconstruction algorithms create

dilemma in choosing a particular method for a specific reconstruction application.

The recovery algorithms are generally compared in terms of computational complex-

ity, computational time, probability of recovery and recovery precision. Typically

absolute Mean Squared Error (𝑀𝑆𝐸) and relative 𝑀𝑆𝐸 are used to compare the

recovery precision of various sparse recovery algorithms. However, these two metric

alone may not qualify to assess all algorithms. This thesis begins with an algorith-

m evaluation strategy by ranking the algorithms based on an observable similarity

between the original and reconstructed signal.

The research work presented in this thesis has 5 major chapters. The chapter 2

presents a novel method for analysis and ranking of sparse recovery algorithms. The

chapter 3 presents a frame work for improving the accuracy of sparse signal recovery

using iterative residue estimation, proximal projection and segmented thresholding.

Also, the development of two sparse signal recovery methods based on the proposed

frame work. The chapter 4 presents the function dictionary based implementation

of the proposed sparse recovery algorithm for low profile computing platforms. The

chapter 5 presents the capability evaluation of an IoT based computing platform

for implementation of the proposed sparse reconstruction algorithm. The chapter

6 presents the implementation of the proposed algorithm for real-time distributed

data acquisition of naturally sparse signals. Also presents an energy efficient routing

method for networked data collection. The research summary and conclusion is given

in Chapter 7. The future directions for the work is given in Chapter 8, followed by

list of publications related to this thesis.
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Chapter 2

New Metric for Sparse Recovery Algorithm

Evaluation

The sparse signal recovery is of great interest in compressed sensed data recovery.

Many sparse recovery algorithms were developed in the last decade. However, selec-

tion of the appropriate recovery algorithm is an important matter of concern in many

applications. The recovery algorithms are generally compared in terms of computa-

tional complexity, computational time, probability of recovery and recovery precision.

Typically absolute Mean Squared Error (𝑀𝑆𝐸) and relative 𝑀𝑆𝐸 are used to com-

pare the recovery precision of various sparse recovery algorithms. However, these

two metric alone are not sufficient to assess all algorithms. This chapter presents

an algorithm evaluation strategy by ranking the algorithms concerning an observable

similarity between the original and the reconstructed signal. A recovery similarity

measure and an empirically defined factor for comparing the performance of sparse

recovery algorithm is proposed and described.

2.1 Introduction

Sparse estimation algorithms are extensively used for sparse discriminant analysis and

classification of high-dimensional data [11]. Any sparse recovery algorithm should

possess specific vital characteristics. Moreover, while using any recovery algorithm

for any specific application, the algorithms should satisfy the prescribed selection
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criteria. In general, the performance metrics for signal processing algorithms are giv-

en in terms of the data throughput, real-time computation latency, processor load,

and power dissipation [12]. However, considering the sparse recovery algorithms in

compressed sensing recovery perspective, the measure of interest is the ability to re-

construct the original signal perfectly. The compressed sensing is used as a signal

acquisition method when the engineering limitations do not support the conventional

Nyquist sampling rate. Also, sparse recovery algorithms are used in cases where the

measurements are taken at a reduced sampling rate, and there is a requirement to

reconstruct the original signal in its most acceptable form [13]. In these applications,

if the priority is on the signal recovery precision than the complexity or the com-

putational time of the algorithm, the mean squared error of the recovered signal is

used. However, there can be instances when 𝑀𝑆𝐸 of the recovered signal using first

algorithm is low compared to the second, but the signal appears more similar to the

original in the second case. This kind of observation is due to the averaging effect of

the 𝑀𝑆𝐸 measure. The performance analysis of every new algorithm introduced is

given in terms of the lists of error measures, like mean squared error, relative error

and 𝑆𝑁𝑅. Some of the standard metrics that are used to assess recovery algorithm

are CPU time vs. vector length, CPU time vs. sparsity of vector, and 𝑀𝑆𝐸 vs.

measurement sample number. etc [14]. In some other applications 𝑀𝑆𝐸 vs. sparsity

of vector, covariance of original and recovered signal vs. measurement sample num-

ber, covariance of original and recovered signal vs. sparsity and the phase transition

diagram K/M vs. M/N [15], where N is the length of the sampled signal, K is the

sparsity of the signal and M is the number of measurements are commonly used.

These performance evaluation graphs of the algorithms are left to the reader’s inter-

pretation. It is becoming increasingly challenging to compare the algorithms just by

interpreting the results given in graphs and tables unless the user does simulations of

the algorithm.

Here a method to rank the sparse recovery algorithm in a logical order in terms

of signal reconstruction efficiency is presented. The estimation of the performance

measure proposed here is done in two steps. In the first step, a measure of similarity
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of the recovered signal with the original signal is determined, and the second step

determines an unique value from this similarity measure. This chapter is organized

as follows, section 3.2 gives an overview of compressed sensing and sparse recovery

algorithms. The performance measure of sparse recovery algorithms is given in section

3.3. The data set and the simulation details are given in section 3.4, followed by the

chapter summary.

2.2 Sparse Signal Measurement and Recovery

Compressed Sensing: Given a sparse signal x ∈ R𝑁 with sparsity ℓ0(x) = 𝐾 << 𝑁

or a compressible signal x ∈ R𝑁 can be measured with lesser measurements 𝑀 < 𝑁

compared to Nyquist rate as given in (1.1) using a suitable measurement matrix

A ∈ R𝑀×𝑁 . The original signal can be faithfully reconstructed (1.2) from the mea-

surement y ∈ R𝑀 if the measurement matrix A satisfies the condition (1.4). Also,

the measurement matrix A should have null space property: The kernel of the matrix

A should not have any signal with 2𝐾 sparsity when the measurement is performed

for a signals with sparsity ≤ 𝐾 (2.1).

ker(A) ∩ {z ∈ R𝑁 : ‖z‖0 = 2𝐾} = ∅ (2.1)

where ker(A) over the field R is a linear subspace of R𝑁 , which always contains the

zero vector such that Az = 0, ∀z ∈ R𝑁 . The measurement matrix with column-

s selected from independent identical distribution (iid) Gaussian random vectors or

Bernoulli random vectors satisfy the above conditions (1.4) and (2.1). The sparse

signal can be recovered from the compressed measurements using the convex opti-

mization given in (2.2).

x* = 𝑎𝑟𝑔 min
x∈R𝑁

𝐽(x) s.t. ‖(y −Ax)‖ ≤ 𝜖 (2.2)

where 𝐽(x) is sparsity inducing function like ℓ0 norm and 𝜖 is the maximum error

acceptable in signal reconstruction. There are varieties of sparse signal reconstruction
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algorithms developed based on this idea. The sparse recovery algorithms can be

classified as function minimization based methods, greedy matrix minimization based

methods or Bayesian estimation based methods. The function minimization based

methods use ℓ0 or ℓ𝑝, 𝑝 ∈ [0, 1] or ℓ1 norm as sparseness inducing function and the

error estimate in ℓ2 norm constrains the solution.

As the focus of discussion is on the performance measure of sparse recovery algo-

rithms, 24 algorithms from 8 different categories are selected for analysis. The salient

features of those selected algorithms are briefly discussed here.

Set 1: Initially the greedy matrix minimization based ℓ1 solutions were used for

sparse signal recovery. The operations in these algorithms can be written as (2.3) [16],

where Ω is the index of non zero values of vector x. Ω is updated in every iteration

and a sub matrix AΩ of A is formed by selecting columns indexed by Ω.

{𝑠} = argmax
𝑗

[A†(y −Ax𝑘)]𝑗, Ω = Ω ∪ {𝑠},

x𝑘+1
𝑖 = A†

Ωy, 𝑖 ∈ Ω, x𝑘+1
𝑖 = 0, 𝑖 /∈ Ω, (2.3)

The matrix A† indicates pseudo inverse (ATA)−1AT and A†
Ω indicates pseudo inverse

of AΩ. The initial value for iteration (x0) is set as zero vector. The iteration is done

for maximum possible sparsity 𝐾. Many variations of this basic idea are developed

into different algorithms, such as few listed below.

∙ Orthogonal matching pursuit (OMP) [17].

∙ Generalized orthogonal matching pursuit (GOMP) [18].

∙ Compressive sampling matching pursuit (CoSAMP) [19].

∙ L1 regularized least square (L1LS).

∙ Your algorithm for L1 (YALL) [20].

Set 2: ℓ1 minimization with thresholding gives sparser solution. Few methods

based on this idea is listed below. For evaluation, the threshold of these algorithms

are set to 𝜏 = 10−3.
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∙ Backtracking iterative hard threshold (BIHT) [21].

∙ Fast iterative shrinkage thresholding (FISTA) [22].

Set 3: The classical Lagrangian constrained minimization based sparse recovery

methods were later used such as few listed below.

∙ Prime Augmented Lagrangian Multiplier (PALM) [23].

∙ Dual Augmented Lagrangian Multiplier (DALM) [24].

∙ Primal and Dual augmented Lagrangian.

∙ Radial basis function approximation sparse recovery algorithm (RASR) [25].

In RASR ℓ0 function is approximated using inverted Gaussian bell function and the ℓ2

norm of the reconstruction error is used as the constraint as described in algorithm-

1. For evaluation, the parameter is set as 𝜇0 = 0.05. The exit condition is set to

‖x𝑘+1 − x𝑘‖2 ≤ 10−4.

Algorithm 1
RASR: radial basis approximation sparse recovery, a Lagrangian constrained mini-
mization based method
Require: 𝐴 ∈ R𝑀×𝑁 , y, 𝛿, 𝐿,
1: Task: minx ‖x‖0 subject to ‖y −Ax‖2 = 0
2: Initialization: 𝑥0 = A†y , 𝜎0 = 2max{𝑥0}
3: for 𝑘 = 1 . . . 𝐿 do
4: 𝑥𝑖(𝑘) = 𝑥𝑖(𝑘)− 𝜇0𝑥𝑖(𝑘) exp

(︁
−𝑥2

𝑖 (𝑘)

2𝜎2
𝑘

)︁
5: minimize ℓ2 error
6: for 𝑗 = 1 . . .𝑀 do
7: 𝑥(𝑘 + 1) = 𝑥(𝑘) +

𝐴𝑇
𝑗

‖𝐴𝑗‖2
(𝑦𝑗 − 𝐴𝑗𝑥(𝑘))

8: end for
9: 𝑥(𝑘) = 𝑥(𝑘 + 1), 𝜎𝑘+1 = 𝜎𝑘𝛿

10: end for
11: Output: 𝑥(𝑘)

Set 4: ℓ0 based optimization was infeasible as the function is not differentiable at

0. Later, sparse recovery using function approximations of ℓ0 norm were used such

as few listed below.
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∙ Smooth L0 (SL0) [26].

∙ X-L0 E-L0 sparse recovery (XEL0) [27].

The ℓ0 function of the sparse vector is computed using inverted Gaussian function

ℓ0(𝑥) = 1 − 𝑒𝑥𝑝(−𝑥2/2𝜎), where 𝜎 controls the level of approximation. The error

y −Ax is taken as the minimization constraint. For evaluation the values are set as

𝜎𝑚𝑖𝑛 = 10−8 and 𝜎 decrease factor as 𝛿 = 0.95. The ℓ0 minimization method is given

in algorithm 2.

Algorithm 2
Smooth L0, ℓ0 minimization based method
Require: A, y, 𝐿 , 𝜇
1: Task: Solve: minx ‖x‖0 subject to y = Ax
2: Initialization: 𝑥(0) = A†y
3: for 𝜎 > 𝜎𝑚𝑖𝑛 do
4: for 𝑗 = 1 . . . 𝐿 do
5: 𝑥𝑖(𝑘) = 𝑥𝑖(𝑘)− 𝜇0𝑥𝑖(𝑘) exp

(︁
−𝑥2

𝑖 (𝑘)

2𝜎2
𝑘

)︁
6: 𝑥(𝑘 + 1) = 𝑥(𝑘)− 𝐴†(𝐴𝑥(𝑘)− 𝑦)
7: end for
8: 𝑥(𝑘) = 𝑥(𝑘 + 1), 𝜎𝑘+1 = 𝜎𝑘𝛿
9: end for

10: Output: 𝑥(𝑘)

Set 5: Iterative re-weighted least square (IRLS) [28] is a ℓ𝑝 norm based method

generally taken as the bench mark algorithm for comparison. The method is described

in algorithm 3.

Algorithm 3
Iterative reweighted least square, ℓ𝑝 minimization based method
Require: A, y
1: Task: Solve: minx ‖x‖𝑝 subject to y = Ax
2: Initialization: W = I
3: for 𝑘 = 1 . . . 𝐿 do
4: x = WWAT(AWWAT)†y
5: W = 𝑑𝑖𝑎𝑔(x𝑝

𝑖 ), 𝑖 = 1 . . . 𝑁
6: end for
7: Output: x

Set 6: In ℓ1 function minimization based method, basis pursuit [29] is widely
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used as the benchmark algorithm, where the indexes of the maximum support values

are estimated and the sparse signal is reconstructed using the pseudo inverse of the

submatrix of A indexed using the estimated locations. The algorithm is described

in algorithm 4. The ℓ1 minimization methods used here for comparison are listed

below.

∙ Basis pursuit (BP) [29].

∙ Lasso [30].

∙ homotopy [31].

Algorithm 4
The basis pursuit, the ℓ1 minimization based algorithm
Require: A, y , 𝜏
1: Task: Solve: minx ‖x‖0 subject to y = Ax
2: Initialization: 𝑟 = 𝑦,Ω = ∅
3: for 𝑟𝑇 𝑟 > 𝜏 do
4: Ω = Ω ∪ 𝑖𝑛𝑑𝑒𝑥(max(𝐴𝑇 𝑟))
5: 𝑟 = 𝑦 − 𝐴Ω𝐴

†
Ω𝑦

6: end for
7: 𝑥 = 𝐴†

Ω𝑦
8: Output: 𝑥(𝑘)

Set 7: The Expectation maximization Gaussian mixture approximate message

passing (EGAmp) [32] is taken as a candidate Bayesian method. The format of the

Bayesian estimation based algorithms can be written as (2.4) [33].

x* = max
x∈R𝑁

𝑝(x | y) = min
x∈R𝑁

(− log 𝑝(y | x)− log 𝑝(x)) (2.4)

Set 8: The proximal projection based methods are latest addition to the sparse

signal recovery. A candidate algorithm Iterative proximal projection with smooth-

ly clipped absolute deviation (IPP-scad) [37] is described in algorithm 5. Other

projection methods used here for performance comparison are listed below.

∙ Smoothly clipped absolute deviation (SCAD) [34], [35].
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∙ Successive concave sparse approximation(SCSA) [36].

∙ Iterative sparsification projection with SL0 (ISP-SL0) [37].

∙ Iterative sparsification projection with Imat (ISP-Imat) [37].

∙ Iterative proximal projection with hard thresholding (IPP-hrd) [37].

∙ Iterative proximal projection with mcp (IPP-mcp) [37].

∙ Iterative proximal projection with SCAD (IPP-scad) [37].

Algorithm 5
Iterative proximal projection based algorithm
Require: A, y, 𝐿 , 𝛿, 𝜃, 𝜏, 𝛾, M = (𝐼 + 𝛾𝐴𝑇𝐴)−1

1: Task: Solve: minx ‖x‖0 subject to y = Ax
2: Initialization: 𝑥0 = A†y, 𝑣 = 0
3: while 𝜃 > 𝜏 do
4: for 𝑗 = 1 . . . 𝐿 do
5: 𝑥𝑘 = 𝑇ℎ𝑟𝑒ℎ𝑠𝑜𝑙𝑑(𝜃, 𝑥𝑘 + 𝑤(𝑥𝑘 − 𝑥𝑘−1))
6: 𝑒 = 𝑦 − 𝐴𝑥𝑘

7: while ‖𝑒‖2 − 𝜀2 > 𝜏 do
8: 𝑒 = 𝑒+ 1

𝛾
𝑣

9: 𝑖𝑓 : ‖𝑒‖ > 𝜀? : 𝑒 = 𝑒
‖𝑒‖𝜀

10: 𝑥𝑘+1 = 𝑀(𝑥𝑘 + 𝛾𝐴𝑇 (𝑦 − 𝑒+ 1
𝛾
𝑣))

11: 𝑒 = 𝑦 − 𝐴𝑥𝑘+1

12: 𝑣 = 𝑣 − 𝛾(𝑒𝑜𝑙𝑑 − 𝑒)
13: end while
14: 𝑥𝑘 = 𝑥𝑘+1

15: end for
16: 𝜃 = 𝛿𝜃
17: end while
18: Output: 𝑥𝑘

Further discussions on the signal recovery algorithms are limited to recovery per-

formance evaluation and the limitations of the conventional performance evaluation

metric. In the following section a method to improve the performance comparison is

discussed.
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2.3 Recovery Performance Measures

Based on the general idea discussed, large number of sparse signal recovery algorithms

have been designed and published. In all the cases, the theoretical explanation and

the proof of sparse recovery algorithms are followed by the experimental evidence and

graphs illustrating the advantages over the existing algorithms. The metric used for

quantifying the advantages of the algorithms are given in terms of the mean squared

error (2.5) or relative mean squared error (2.6).

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=𝑖

(x𝑖 − x̂𝑖)
2 (2.5)

𝑟𝑒𝑙𝑀𝑆𝐸(x̂,x) =
‖x− x̂‖22
‖x‖22

(2.6)

where, x is the original sparse signal and x̂ is the signal recovered from the measure-

ment y. In some evaluations the 𝑆𝑁𝑅 of the recovered signal is computed using (2.7)

is used.

𝑆𝑁𝑅 = 10 log

(︂
‖x̂‖22

‖x− x̂‖22

)︂
(2.7)

where, the signal recovery error ‖x − x̂‖2 is considered as the noise. The support

recovery error is computed as (2.8) and the the probability of exact signal recovery is

evaluated as (2.9).

𝑆𝑢𝑝𝐸𝑟𝑟𝑜𝑟(x̂,x) = 1− ‖𝑠𝑢𝑝𝑝(x) ∩ 𝑠𝑢𝑝𝑝(x̂)‖0
max(‖x‖0, ‖x̂‖0)

(2.8)

𝑝(x̂ := x) =
‖𝑠𝑢𝑝𝑝(x) ∩ 𝑠𝑢𝑝𝑝(x̂)‖0

max(‖x‖0, ‖x̂‖0)
(2.9)

where 𝑠𝑢𝑝𝑝(.) gives the location index set of the non zero elements and ‖.‖0 is the

number of non zero elements. The complexity of sparse signal recovery algorithms

are compared in terms of the number of iterations or the total computational time.

To analyse the robustness of the sparse recovery algorithms in presence of noise,

the compressed sensed measurement y = Ax is perturbed with Gaussian noise w𝑛
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𝒩 (0, 0.1) of relative strength varying from -40dB to -10dB (𝑛𝐿 = 0.01 to 0.20). The

signal is recovered from the noisy measurement y𝑛 (2.10) using various algorithms.

y𝑛 = Ax+ 𝑛𝐿
‖Ax‖
‖w𝑛‖

w𝑛 (2.10)

A detailed study on the effect of noise in the recovery of compressed measurements

is presented in [38]. Similarly, the perturbation analysis of the sparse recovery is given

in [39]. From these studies, it is observed that the relative absolute error (2.6) is close

to zero for greedy sparse recovery algorithms, but the probability of exact recovery

(2.9) is unacceptable. Moreover, it is not easy to arrive at a conclusive comparison

of algorithms from this list of different performance measures. And, the ranking of

the algorithms depends upon the type of analysis performed. It is inevitable to have

a generalized performance comparison for all types of sparse recovery algorithms. A

novel metric for generalized comparison of various types of sparse recovery algorithms

is discussed in the following section.

2.3.1 Sparse Recovery Limit

An empirical function 𝑆𝑚(x̂,x) (2.11) using (2.6) the relative 𝑀𝑆𝐸 (𝑟𝑒𝑙𝑀𝑆𝐸(x̂,x))

and the exact support recovery probability 𝑝(x̂ := x) (2.9) is proposed. This is

designated as the signal similarity measure between the original signal and the re-

constructed signal in terms of the relative error and probability of recovery. The

function is formed in this way so that the resulting value is always less than unity

𝑆𝑚(x, x̂) ∈ [0, 1].

𝑆𝑚(x̂,x) =
1

2

⎧⎪⎨⎪⎩𝑝(x̂ := x) + 𝑟𝑒𝑙𝑀𝑆𝐸(x̂,x) + 1, 𝑒 ≤ 1

𝑝(x̂ := x) + 1
𝑟𝑒𝑙𝑀𝑆𝐸(x̂,x)+1

, 𝑒 > 1

(2.11)

The variation of 𝑆𝑚(.) with sparsity 𝐾 is expected to be distinct for every algorithms,

so that a relative comparison is possible. However, the plot of this function 𝑆𝑚(x̂,x)

does not directly give a numerical value for the performance comparison and this
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graph needs to be interpreted to obtain a quantitative estimate for the comparison.

The analysis should be inclusive of all the performance measures, to get a compre-

hensive ranking. Factors used in the performance measure should also include the

ratio of maximum measurable sparsity to the sparse vector size (𝐾𝑚𝑎𝑥/𝑁) [4] and the

ratio of number of measurements to the vector size (𝑀/𝑁). A quantifiable value from

the above signal similarity measure graph is obtained as the maximum value of the

sparsity 𝐾𝑚𝑎𝑥 when the similarity 𝑆𝑚(x̂,x) reduces to 0.9 or any other value (𝑐) as

desired. A graphical representation of obtaining 𝐾𝑚𝑎𝑥 from 𝑆𝑚(x̂,x) graph is shown

in Figure 2-1, where 𝐾𝑚𝑎𝑥 is the maximum sparsity for which the recovered signal x̂

has a visual similarity index of 𝑐 = 0.8 or more with respect to the original signal x.

Figure 2-1: The graphical representation of obtaining 𝐾𝑚𝑎𝑥 from 𝑆𝑚(x̂,x) vs sparsity
𝐾 curve.

To have a relative comparison across all sparse vector size and to maintain the

proposed numerical measure within a bound, the normalized value of the measure-

ment size 𝑀 with respect to the sparse vector size (𝑀/𝑁) and the normalized value

𝐾𝑚𝑎𝑥/𝑀 is taken as reference. The value 𝐾𝑚𝑎𝑥 = 0 is assumed if the graph of

𝑆𝑚(x̂,x) is below the required mark. Using these two values a new comprehensive
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metric designated as sparse recovery limit of the algorithm 𝜉 is defined (2.12).

Sparse Recovery Limit 𝜉|𝑐 =
1

2
(1− 𝑀

𝑁
+

𝐾𝑚𝑎𝑥

𝑀
)
⃒⃒⃒
𝑆𝑚(x̂,x)=𝑐

(2.12)

where 𝑐 is the minimum value of the signal similarity 𝑆𝑚(x̂,x) (2.11) as indicated

and the factor 1− 𝑀
𝑁

is included to limit the maximum value of 𝜉 to 1. This value 𝜉

is a measure of limit of recovery performance. This measure gives a comprehensive

comparison of the absolute ability of the algorithm in sparse signal reconstruction,

since it incorporates all of the otherwise individual performance measures; and has

the following salient features.

1. The probability of exact signal recovery 𝑝(x̂ := x).

2. The relative 𝑀𝑆𝐸.

3. The sparse vector size 𝑁 .

4. The measurement vector size 𝑀 .

5. The maximum sparsity supported 𝐾𝑚𝑎𝑥.

6. The data similarity between original and reconstructed signal 𝑆𝑚(x̂,x).

7. The user defined threshold limit for comparison 𝑐.

8. Inherent normalization of all measures.

9. Clearly defined measure bound 0 < 𝜉 < 1.

10. The value 𝜉 = 1 indicates the best achievable sparse recovery algorithm.
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2.4 Performance Evaluation

Two types of synthetic sparse signals are generated for algorithm simulation. i) The

sparse signals with non zero values at random locations and ii) Locally sparse pulse.

Null vectors of length 50 are generated using MATLAB function and then made

sparse by adding random values at random locations. The number of locations where

random values are inserted are increased from 1 to 15, to simulate different sparsity

level (𝐾 = 1 . . . 15). For generating the locally sparse pulse, the null vectors of

length 50 are generated and are transformed into sparse pulse by adding random

values at 𝐾 consecutive locations. As in the earlier case the number of locations

are increased from 1 to 15. The random measurement matrix A of size 30 × 50

are generated by arranging 50 columns of i.i.d. Gaussian random vectors of length

30. The sparse vectors (x) are compressed sensed using the measurement matrix

(y = Ax). The sparse vectors are then reconstructed using the 24 different sparse

recovery algorithms selected from different categories. The parameter values used in

the different algorithms are given identical values regarding their significance for a fair

comparison. The performance measure computed are absolute mean squared error

given in (2.5), relative reconstruction error given in (2.6), the probability of exact

support recovery given in (2.9), signal to noise ratio in the reconstructed signal given

in (2.7), and the computational time in addition to the proposed signal similarity

measure 𝑆𝑚(.) given in (2.11) and the overall measure the sparse recovery limit

of the algorithm 𝜉 given in (2.12). The compressed measurement and reconstruction

were performed 50 times using different measurement matrices for every sparse vector,

and the averaged results are presented. The simulations were done using 𝑀𝐴𝑇𝐿𝐴𝐵

running on Intel-i3 1.9 𝐺𝐻𝑧 dual-core processor with 12 𝐺𝐵 RAM and 64 bit MS

Windows 8 operating system.
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2.4.1 Results

The performance measure of the algorithms compared is given in Table 2.1 and Table

2.2 for the sparse pulse and sparse spike signals with sparsity 𝐾 = 5. A careful

reading of the values of relative error and the support recovery error suggests that

Orthogonal matching pursuit [17], Generalized orthogonal matching pursuit, Basis

pursuit [29], and Lasso homotopy methods [30] are the best as these algorithms give

reconstruction error in the order of 10−30 with no support error for the two types

of sparse signals simulated. These measurements are averaged over entire span of

the sparse signal. However, there are advanced reconstruction methods listed in the

same table. But these algorithms are not giving the specific numbers in terms of the

reconstruction errors alone. Furthermore, when noise is simulated, the relative error

in the reconstructed signal varies significantly.

The sparse pulse signals recovered using various algorithms in presence of acqui-

sition noise are shown in Figure 2-2, where the signals are compared in terms of SNR

(2.7), but the inference is not conclusive. The 𝑟𝑒𝑙𝑀𝑆𝐸(x̂,x) (2.6) for some of the

algorithms compared is given in Figure 2-3. It is difficult to conclude which of these

is the best one without looking at the probability of signal recovery graph given in

Figure 2-4 and Figure 2-5. However, there is no characteristic difference between the

graphical results obtained. The results are indistinguishable from one another for the

candidate algorithms from different classes (ℓ0, ℓ𝑝, ℓ1) studied. Also, the inference

from noise perturbation vs relative 𝑀𝑆𝐸 as shown in Figure 2-6 does not provide con-

clusive remark. So for a generalized comparison of the performance measures the new

metric sparse recovery limit (2.12) for a given signal similarity measure (𝜉 |𝑆𝑚(x̂,x)=𝑐)

is used.

The signal similarity measure 𝑆𝑚(x̂,x) is computed using the proposed method

(2.11). The data set used is random sparse signal and the sparsity is varied from

𝐾 = 1 . . . 15. The setup configuration used in the simulation are as discussed earlier.

The graphs of 𝑆𝑚(x̂,x) obtained for 24 algorithms are given in Figures 2-7, 2-8 and

2-9. The graphs are generated for different measurement noise levels with relative

32



strength 0.01, 0.02 and 0.03. Evidently, the characteristics of these function curves

are different for different classes of algorithms. As expected, the signal similarity

measure is reduced significantly in classical optimization methods like PALM and

DALM (Figure 2-7 and Figure 2-8). The signal similarity measure graphs of ℓ0, ℓ𝑝

and ℓ1 methods show similar characteristic curves (SL0, IRLS, BP in Figure 2-8). The

signal similarity measure graph of projected gradient methods are distinct from other

classes of algorithms and the measure is maintained high for large sparsity numbers

as shown in Figure 2-9.

The performance comparison of the algorithms is done by computing the sparse

recovery limit of the algorithm 𝜉 from the 𝑆𝑚(x̂,x) graphs using the proposed

method (2.12). The 𝜉-metric is computed for 𝑆𝑚(x̂,x) = 1, 𝑆𝑚(x̂,x) ≥ 0.9 and

𝑆𝑚(x̂,x) ≥ 0.8. Also, the values obtained for the noisy and noise free cases are

given in Table 2.3 and Table 2.4. The tables clearly show that many of the algo-

rithms have poor value 𝜉 = 0.2 when the measurements are noisy. Interestingly the

smoothly clipped absolute deviation improves the signal recovery when noise is added

to the measurement (SCAD in Figure 2-8). Amongst all the algorithms compared,

the recently published iterative proximal projection [37] shows the best sparse re-

covery limit value (𝜉 |𝑆𝑚=0.9= 0.416). The variation of signal similarity measure of

the reconstructed signal when the measurement is perturbed with noise of relative

strength −40 dB to −10 dB is shown in Figure 2-10. It can also be seen that the

signal similarity graph of ℓ0, ℓ𝑝 and ℓ1 based algorithms have same profile, when the

measurements are noisy.
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Figure 2-2: Spares pulse signal sampled from i.i.d Gaussian noisy measurements and
reconstructed using various algorithms.

Note: Sparse pulse signal x0 (length 𝑁 = 50, sparsity 𝐾 = 10, max | x0 |= 1) sampled
using 𝑀 = 30 i.i.d Gaussian noisy measurements (noise level 𝑛 = 4%). The signal
is then recovered using various algorithms. The quality of reconstruction is measured
in SNR. Based on the computed SNR of the reconstructed signal, it can be seen that
Smoothly Clipped Absolute Deviation (SCAD) based thresholding gives better signal
reconstruction when the measurements (𝑀 = 30) are noisy.
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Figure 2-3: The relative MSE in sparse vector reconstruction using ℓ0, ℓ𝑝 and ℓ1 based
minimization algorithms from perturbed measurements.

Note: The sparse vector (length 𝑁 = 50, sparsity 𝐾 = 1) is measured with 𝑀 = 30
samples and then reconstructed using ℓ0 (SL0), ℓ𝑝 (IRLS) and ℓ1(Basis Pursuit) mini-
mization algorithms. The 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑆𝐸 in signal reconstruction for these algorithms,
when the measurement is perturbed with Gaussian noise of relative strength 𝑛 = 2%,
𝑛 = 10%, 𝑛 = 20% and 𝑛 = 33% are shown in the corresponding graphs.

Figure 2-4: The probability of reconstruction of sparse vector using ℓ0, ℓ𝑝 and ℓ1
based minimization algorithms from perturbed measurements.

Note: The sparse vector (length 𝑁 = 50, sparsity 𝐾 = 1) is measured with 𝑀 = 30
samples and then reconstructed using ℓ0 (SL0), ℓ𝑝 (IRLS) and ℓ1(Basis Pursuit) min-
imization algorithms. The probability of exact signal reconstruction for these algo-
rithms, when the measurement is perturbed with Gaussian noise of relative strength
𝑛 = 2%, 𝑛 = 10%, 𝑛 = 20% and 𝑛 = 33% are shown in the corresponding graphs.
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Figure 2-5: The probability of reconstruction of sparse vector using ℓ0, ℓ𝑝 and ℓ1
based minimization algorithms for various noise levels.

Note: The sparse vector (length 𝑁 = 50, sparsity 𝐾 = 1, 2, 4, 10) is measured with
𝑀 = 30 samples and then reconstructed using ℓ0 (SL0), ℓ𝑝 (IRLS) and ℓ1(Basis
Pursuit) minimization algorithms. The probability of exact signal reconstruction for
these algorithms, when the measurement is perturbed with Gaussian noise of relative
strength −40𝑑𝐵 to −10𝑑𝐵 is shown.

Figure 2-6: The relative MSE in sparse vector reconstruction using ℓ0, ℓ𝑝 and ℓ1 based
minimization algorithms for various noise levels.

Note: The sparse vector (𝑁 = 50, sparsity 𝐾 = 1) is measured with 𝑀 = 30 samples
and then reconstructed using few candidate algorithms discussed. The 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑆𝐸
in signal reconstruction when measurement is perturbed with Gaussian noise of relative
strength −40𝑑𝐵 to −10𝑑𝐵 is shown.
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2.4.2 Observation

The results presented in Table 2.3 and Table 2.4 can be classified into four cases,

namely case 1: noise free random sparse signal recovery, case 2: noisy random sparse

signal recovery, case 3: noise free discrete pulse recovery, and case 4: noisy discrete

pulse recovery. Prima facie, all the cases considered the highest value for the sparse

recovery limit of the algorithm 𝜉 is achieved by the iterative proximal projection

algorithm with smoothly clipped absolute deviation thresholding function [37]. In

fact, this is the ground truth known even before obtaining the new metric. This

observation confirms the validity of the proposed metric. It can also be observed

that the values in case 4 are lesser compared to the corresponding values in other 3

cases. In fact, the pulse recovery in presence of measurement noise (case-4) is most

challenging for all algorithms. In the noisy cases (case 2 and 4), the value of sparse

recovery limit 𝜉 is almost same for most of the algorithms. The reality is that the

performance of many of the sparse recovery algorithms are impeded by the noise in

measurement.

After analyzing the data given in Table 2.3 and Table 2.4 critically, it can be

seen that most of the algorithms compared give sparse recovery limit in the range

(0.20 ≤ 𝜉 ≤ 0.35) when the measurements are noisy; And the projected gradient

based methods give better performance (0.33 ≤ 𝜉 ≤ 0.45). It can be inferred directly

from this comparison of sparse recovery limit 𝜉 of the algorithm that the projected

gradient methods give relatively better signal reconstruction performance when the

measurements are noisy. However, this is claimed in the paper [37] but, a quantitative

measure is not known until this new measure is used for comparison. It is also

noted that this kind of direct inference of relative performance of the sparse recovery

algorithms cannot be done by analyzing the conventional measures given in Table 2.1

and Table 2.2.
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2.5 Chapter Summary

Many sparse signal recovery algorithms have been proposed in the last two decades.

Furthermore, many newer algorithms have been developed, and research in this area

continues. Moreover, these algorithms are presented with their particular merits and

claim. The plethora of sparse recovery algorithms with different characteristics cre-

ates a dilemma while choosing the suitable one for a particular application. The

conventional metric used to compare the sparse signal recovery algorithms are rela-

tive 𝑀𝑆𝐸 and probability of support recovery. These two metrics are not standalone

and need to be interpreted together. Here a method to evaluate the sparse signal

recovery performance of the algorithms by using these two metrics to compute sig-

nal similarity between the original signal and the reconstructed signal is proposed.

This chapter present two performance characterization functions indicated as signal

similarity measure 𝑆𝑚(x̂,x) and sparse recovery limit 𝜉 of the algorithm to relative-

ly compare the performance of sparse signal recovery algorithms. The computation

time of the algorithms needs to be compared separately and is not included in the

empirical function. The algorithms are evaluated using sparse vectors, and the per-

formance comparison of algorithms on images is not studied. In short, the proposed

method of comparison simplifies the interpretation of performance measures of the

sparse recovery algorithms; and incorporates the relative 𝑀𝑆𝐸, the probability of

exact support recovery and use the (K/M) ratio and the (M/N) ratio indirectly to

generate a numerical figure of merit. It is shown experimentally that the proposed

method gives a quantifiable performance measure. This new performance metric is

computed for 24 algorithms from 8 different categories, and is shown numerically that

the recently published projected gradient-based algorithms perform better. Following

the inspiration gained from the analysis of different classes of algorithms and the ad-

vantages of thresholding and projected gradient methods, a new generalised method

of sparse recovery algorithm design is proposed in the next chapter.
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Figure 2-7: The variation of similarity measure 𝑆𝑚(x̂,x) vs sparsity 𝐾 of greedy ℓ1
and thresholding methods.

Note: The similarity measure 𝑆𝑚(x̂,x) of signals recovered using OMP, GOMP,
CoSAMP, L1LS and YALL (greedy ℓ1), BIHT, FISTA (threshold) and PALM.
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Dual Augmented Legrangian Method (DALM)
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RBF aproximated Sparse Recovery (RASR)
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Polynomial Aproximated Sparse Recovery (PolySR)
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Smooth L0 Sparse Recovery (SL0)
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X-L0 Error-L0 Sparse Recovery (XEL0)
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Iterative Reweighted Least Square (IRLS)
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Basis Pursuit Sparse Recovery (BP)
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Figure 2-8: The variation of similarity measure 𝑆𝑚(x̂,x) vs sparsity 𝐾 of Lagrangian,
ℓ0, ℓ𝑝 and ℓ1 methods.

Note: The similarity measure 𝑆𝑚(x̂,x) of signals recovered using DALM, RASR,
PolySR (Lagrangian), SL0, XEL0 (ℓ0), IRLS (ℓ𝑝), BP and Homotopy (ℓ1).
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Smoothly Clipped Absolute Deviation (SCAD)
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Successive Concave Sparse Aproximation (SCSA)
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Iterative Sparsification Projection (ISP IMAT)
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Iterative Sparsification Projection (ISP SL0)
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Iterative Proximal Projection (IPP Hard)
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Iterative Proximal Projection (IPP MCP)
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Iterative Proximal Projection (IPP SCAD)
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Figure 2-9: The similarity measure 𝑆𝑚(x̂,x) vs sparsity 𝐾 of the reconstructed signals
recovered using the projected gradient methods and Bayesian method.

Note: The 𝑆𝑚(x̂,x) measure is close to 1 for perfect recovery with negligible recon-
struction error.
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Figure 2-10: The variation of similarity measure 𝑆𝑚(x̂,x) vs noise perturbation for-
Lagrangian, ℓ0, ℓ𝑝 and ℓ1 methods.

Note: The similarity measure 𝑆𝑚(x̂,x) vs acquisition noise of the reconstructed sig-
nals recovered using classical Lagrangian method RBF Network based sparse recovery
and Polynomial Approximation based sparse recovery; the ℓ0 method SL0 and X-
EL0, the ℓ𝑝 method IRLS and the ℓ1 method basis pursuit. The sparsity simulated
are 𝐾 = 1, 2, 4, 10. The measurement is perturbed with Gaussian noise of strength
−40𝑑𝐵 to −10𝑑𝐵. The signal recovery similarity measure of the ℓ0, ℓ𝑝 and ℓ1 based
methods shows similar characteristic curve in presence of noise. The graph is shown
here for illustration. The 𝜉-metric is computed from 𝑆𝑚(x̂,x) vs 𝐾 graph.
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Table 2.1: Performance comparison of sparse signal reconstruction algo-
rithms in terms of conventional measures 𝑀𝑆𝐸, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑀𝑆𝐸, Support Er-
ror and Execution time.

Method 𝑀𝑆𝐸 Relative Supp Time
𝑀𝑆𝐸 Error (𝑚𝑠)

OMP 1.41×10−3 6.64×10−31 0.03 0.0065
GOMP 2.57×10−32 1.20×10−31 0.0 0.0007
CoSAMP 1.90×10−32 9.38×10−32 0.0 0.0110
L1 LS 1.03×10−4 4.95×10−4 0.24 0.0323
YALL 9.03×10−8 4.07×10−7 0.0 0.0070
BIHT 5.24×10−2 2.51×10−1 0.26 0.0426
FISTA 3.83×10−4 1.84×10−3 0.07 0.0221
PALM 5.02×10−11 2.38×10−10 0.0 0.5053
DALM 3.83×10−4 1.84×10−3 0.07 0.0508
RASR 8.17×10−3 3.13×10−2 0.09 0.0508
PolySR 1.13×10−7 5.27×10−7 0.0 0.0464
SL0 5.44×10−17 2.61×10−16 0.0 0.0082
XEL0 1.03×10−9 4.90×10−9 0.0 0.0054
IRLS 2.84×10−30 1.36×10−29 0.0 0.0556
BP 1.44×10−30 6.41×10−30 0.0 0.0246
Homtop 7.20×10−33 4.17×10−32 0.0 0.0039
EGAmp 1.77×10−7 1.47×10−5 0.04 0.053
SCAD 7.97×10−2 3.73×10−1 0.89 0.0063
SCSA 7.00×10−13 3.76×10−12 0.0 0.0102
ISP Imat 2.99×10−2 1.54×10−1 0.09 0.0015
ISP SL0 2.88×10−11 1.45×10−10 0.0 0.0235
IPP hrd 2.87×10−10 1.37×10−9 0.0 0.0230
IPP mcp 3.09×10−10 1.48×10−9 0.0 0.0262
IPP scad 2.94×10−10 1.41×10−9 0.0 0.0297

Data type used for simulation : sparse spike signal.
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Table 2.2: Performance comparison of sparse signal reconstruction algo-
rithms in terms of conventional measures 𝑀𝑆𝐸, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑀𝑆𝐸, Support Er-
ror and Execution time.

Method 𝑀𝑆𝐸 Relative Supp Time
𝑀𝑆𝐸 Error (𝑚𝑠)

OMP 8.15×10−33 1.07×10−30 0.0 0.002
GOMP 1.92×10−33 1.33×10−31 0.0 0.000
CoSAMP 1.01×10−3 8.34×10−2 0.06 0.011
L1 LS 8.67×10−5 2.63×10−2 0.10 0.026
YALL 1.34×10−9 1.36×10−7 0.0 0.006
BIHT 4.90×10−3 2.64×10−1 0.22 0.042
FISTA 3.38×10−4 1.04×10−1 0.05 0.021
PALM 1.64×10−11 1.45×10−9 0.0 0.484
DALM 3.38×10−4 1.04×10−1 0.05 0.048
RASR 2.72×10−16 6.16×10−15 0.0 0.045
PoySR 1.42×10−9 3.22×10−8 0.0 0.042
SL0 5.54×10−17 2.41×10−14 0.0 0.007
XEL0 9.54×10−10 4.18×10−7 0.0 0.005
IRLS 9.74×10−10 8.05×10−8 0.0 0.059
BP 1.85×10−31 9.18×10−30 0.0 0.024
Homtop 5.28×10−34 2.93×10−32 0.0 0.002
EGAmp 1.77×10−7 1.47×10−5 0.04 0.053
SCAD 4.50×10−3 3.14×10−1 0.89 0.006
SCSA 1.12×10−14 1.01×10−12 0.0 0.011
ISP Imat 3.61×10−34 3.27×10−32 0.0 0.001
ISP SL0 4.18×10−11 1.76×10−8 0.0 0.024
IPP hrd 2.99×10−10 1.28×10−7 0.0 0.019
IPP mcp 2.96×10−10 9.73×10−8 0.0 0.024
IPP scad 2.95×10−10 9.86×10−8 0.0 0.025

Data type used for simulation : sparse pulse signal.
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Table 2.3: Comparison of sparse recovery algorithms in terms of 𝜉-metric
computed for different similarity index 𝑆𝑚(.)

case-1 case-2
Noise nil nil nil 0.01 0.01 0.01
𝑆𝑚(.) 1.0 ≥0.9 ≥0.8 1.0 ≥0.9 ≥0.8

genre method 𝜉 |𝑠𝑚=1 𝜉 |𝑠𝑚≥0.9 𝜉 |𝑠𝑚≥0.8 𝜉 |𝑠𝑚=1 𝜉 |𝑠𝑚≥0.9 𝜉 |𝑠𝑚≥0.8

Greedy OMP 0.2833 0.3167 0.3167 0.2000 0.2000 0.2000
ℓ1 GOMP 0.3333 0.3500 0.3500 0.2000 0.2000 0.2000

CoSAMP 0.3500 0.3500 0.3500 0.3167 0.3333 0.3500
L1-LS 0.2333 0.2833 0.3500 0.2500 0.2667 0.3000
YALL1 0.3667 0.3833 0.4000 0.2000 0.2000 0.2000

Thresh. FISTA 0.2667 0.3000 0.3500 0.2667 0.2833 0.3333
BIHT 0.2333 0.2500 0.2667 0.2333 0.2333 0.2667

Lagran. PALM 0.3667 0.3833 0.4000 0.2000 0.2000 0.2000
DALM 0.2667 0.3000 0.3500 0.2667 0.2833 0.3333
RASR 0.2833 0.3167 0.3167 0.2000 0.2000 0.2000
PolySR 0.3333 0.3500 0.3667 0.2000 0.2000 0.2000

ℓ0 SL0 0.3500 0.3833 0.3833 0.2000 0.2000 0.2000
XEL0 0.3667 0.4000 0.4000 0.2000 0.2000 0.2000

ℓ𝑝 IRLS 0.3667 0.3833 0.4000 0.2000 0.2000 0.2000
ℓ1 BP 0.3667 0.3833 0.4000 0.2000 0.2000 0.2000

Homtop 0.3667 0.3833 0.4000 0.2667 0.2833 0.3333
Bayes EGAmp 0.2333 0.2333 0.4333 0.2000 0.2000 0.2000
Projected SCAD 0.2000 0.2000 0.2000 0.3667 0.3667 0.4500
Grad. SCSA 0.3667 0.3833 0.4000 0.3333 0.4167 0.4167

ISP Imat 0.2833 0.2833 0.3667 0.2000 0.2000 0.2000
ISP SL0 0.3500 0.3500 0.3833 0.2333 0.3667 0.4000
IPP hrd 0.3500 0.3500 0.3833 0.3333 0.3333 0.3833
IPP mcp 0.3500 0.4000 0.4000 0.3833 0.4167 0.4167
IPP scad 0.3500 0.4000 0.4000 0.3833 0.4167 0.4167

Data type used for simulation : sparse spike signal. Case 1: noise free measurement. Case 2: 1.0%
noise added to the measurement.
Higher value of 𝜉 indicates closeness of reconstructed signal to the original signal. The highlighted
values indicate the best values obtained for both noisy and noise free case considered. Sparse signal
reconstruction using iterative proximal projection based algorithms give highest closeness to original
signal.
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Table 2.4: Comparison of sparse recovery algorithms in terms of 𝜉-metric
computed for different similarity index 𝑆𝑚(.)

case-3 case-4
Noise nil nil nil 0.01 0.01 0.01
𝑆𝑚(.) 1.0 ≥0.9 ≥0.8 1.0 ≥0.9 ≥0.8

genre method 𝜉 |𝑠𝑚=1 𝜉 |𝑠𝑚≥0.9 𝜉 |𝑠𝑚≥0.8 𝜉 |𝑠𝑚=1 𝜉 |𝑠𝑚≥0.9 𝜉 |𝑠𝑚≥0.8

Greedy OMP 0.2667 0.3167 0.3667 0.2333 0.2500 0.3167
ℓ1 GOMP 0.3667 0.3667 0.3667 0.2000 0.2000 0.3500

CoSAMP 0.3000 0.3000 0.3500 0.2833 0.2833 0.3500
L1-LS 0.2000 0.2667 0.3000 0.2000 0.3000 0.3167
YALL1 0.4000 0.4167 0.4167 0.2000 0.2000 0.2000

Thresh. BIHT 0.2500 0.2667 0.2667 0.2333 0.2333 0.2500
FISTA 0.2000 0.2000 0.3000 0.2000 0.2000 0.3000

Lagran. PALM 0.4167 0.4167 0.4167 0.2000 0.2000 0.2000
DALM 0.2000 0.2000 0.3000 0.2000 0.2000 0.3000
RASR 0.3167 0.3167 0.3167 0.2000 0.2000 0.2000
PolySR 0.3500 0.3500 0.3833 0.2000 0.2000 0.2000

ℓ0 SL0 0.3667 0.3667 0.4000 0.2000 0.2000 0.2000
XEL0 0.4167 0.4167 0.4167 0.2000 0.2000 0.2000

ℓ𝑝 IRLS 0.3833 0.4167 0.4167 0.2000 0.2000 0.2000
ℓ1 BP 0.4167 0.4167 0.4167 0.2000 0.2000 0.2000

Homotp 0.2667 0.2667 0.3667 0.2500 0.3000 0.3167
Bayes EGAmp 0.2333 0.4000 0.4167 0.2000 0.2000 0.2000
Projected SCAD 0.2000 0.2000 0.2000 0.3167 0.3167 0.4000
Grad. SCSA 0.4167 0.4167 0.4167 0.3667 0.3667 0.4000

ISP Imat 0.3667 0.3667 0.3667 0.2000 0.2000 0.2000
ISP SL0 0.3667 0.3667 0.4000 0.2000 0.3333 0.3667
IPP hrd 0.3667 0.3667 0.4000 0.3500 0.3500 0.3500
IPP mcp 0.4167 0.4167 0.4167 0.3667 0.3667 0.4000
IPP scad 0.4167 0.4167 0.4167 0.3667 0.3667 0.4000

Data type used for simulation: sparse pulse signal. Case 3: noise free measurement. Case 4: 1.0%
noise added to the measurement.
Higher value of 𝜉 indicates closeness of reconstructed signal to the original signal. The highlighted
values indicate the best values obtained for both noisy and noise free case considered. Sparse signal
reconstruction using iterative proximal projection based algorithms give highest closeness to original
signal.
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Chapter 3

Framework for Segmented Threshold Based

Sparse Signal Recovery

Signal reconstruction from compressed sensed data need iterative methods since the

sparse measurement matrix is analytically non invertible. The iterative thresholding

and ℓ0 function minimization are of special interest as these two operations provide

sparse solution. However these methods need an inverse operation corresponding

to the measurement matrix for estimating the reconstruction error. The pseudo-

inverse of the measurement matrix is used in general for this purpose. A sparse signal

recovery framework using an approximate inverse matrix Q and iterative segment

thresholding of ℓ0 and ℓ1 norm with residue addition is presented in this chapter.

Two recovery algorithms are developed using this framework. The ℓ0 based method is

later developed to a basis function dictionary based network for sparse signal recovery.

The proposed framework enables the users experiment with different inverse matrix

to achieve better sparse signal recovery efficiency and implement in the algorithm in

computationally efficient way.

3.1 Introduction

Sparse signals with limited number of nonzero values can be measured with lesser

number of samples compared to Nyquist rate using Compressed Sensed (CS) from

a linear projection space [1]. Signal sampling in CS based sparse signal acquisition

47



combines the acquisition and compression into a single process, there by able to re-

duce the sample count. Instead of sampling x, the correlated and integrated signal

y = Ax is sampled, where A is the measurement matrix. This type of data acquisi-

tion is used in synthetic aperture radar, magnetic resonance imaging and computed

tomography, where the high sampling requirement for fine resolution is not achievable

due to physical constraints [2]. The compressed measurements need to be converted

back to its original form. The realtime recovery of sparse signal is used in applications

like channel estimation, where the average signal property is sufficient [40]. Different

algorithms based on greedy matrix minimization [41], least squared error minimiza-

tion, neural network and ℓ0, ℓ𝑝 and ℓ1 function approximation are available for sparse

signal recovery. The ideal ℓ0 minimization problem is non polynomial time hard in

terms of computation hence alternative methods are used. The initially developed

greedy matrix minimization methods for ℓ1 solution like Orthogonal matching pur-

suit (OMP) [17], Generalized orthogonal matching pursuit (GOMP) [18], Compressive

sampling matching pursuit (CoSAMP) [19], and the later developments like L1 reg-

ularized least square (L1LS) and Your algorithm for L1 (YALL) [20] are successful

in their demonstrated data set. The ℓ1 function minimization based methods, basis

pursuit [29] and homotopy [31] are widely used as the benchmark algorithms. These

algorithms perform better on sparse data with high correlation. The basis pursuit

denoising (BPDN)[42] relaxes the recovery condition with an acceptable error term 𝜖.

This recovery condition is modified in Dantzig selector [43] with ℓ∞ norm. The least

absolute shrinkage and selection operator (LASSO) algorithm [30] also solves the ℓ1

approximation of ℓ0 problem.

The classical Lagrangian constrained minimization based sparse recovery methods

were used later such as Prime augmented Lagrangian multiplier (PALM) [23], Dual

augmented Lagrangian multiplier (DALM) [24] and Radial basis function approxima-

tion sparse recovery algorithm (RASR) [25]. These classical methods performs well in

defined noise levels. These algorithms are used here for the performance comparison.F

Initially, the ℓ0 based optimization was not attempted as the function is not differen-

tiable at 0. Later, sparse recovery using function approximation of ℓ0 norm was used
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in Smooth L0 (SL0) [26]. Iterative re-weighted least square (IRLS) [28] is a ℓ𝑝 norm

𝑝 ∈ (0, 1) based method generally taken as the bench mark algorithm for many appli-

cations. ℓ𝑝 function approximation based sparse signal recovery is a recent addition

to this class [44]. A combination of ℓ𝑝 and ℓ1 norm minimization for sparse recovery

is described in [45]. The methods based on the ℓ1 minimization with thresholding like

the Backtracking iterative hard threshold (BIHT) [21] and the Fast iterative shrink-

age thresholding (FISTA) [22] induce highly sparse solutions, when the threshold is

set to 𝜏 = 10−3. The proximal projection based methods are new addition to the

sparse signal recovery. The variation of this method like Smoothly clipped absolute

deviation (SCAD) [34], [35], Successive concave sparsity approximation [36] , Iterative

sparsification projection with SL0 (ISP-SL0) [37], Iterative proximal projection with

hard thresholding (IPP-hrd) [37], Iterative proximal projection with mcp (IPP-mcp)

[37], and Iterative proximal projection with SCAD (IPP-scad) [37] give promising re-

sults. The Expectation maximization Gaussian mixture approximate message passing

(EGAmp) [32] is taken as a candidate Bayesian method [33]. Comparative evaluation

of various sparse recovery algorithms can be found in [46].

3.1.1 Constraints in Computing Platform and Algorithms

All the sparse recovery algorithms discussed above need heavy matrix computation

and iterative function minimization. These are well established methods and work

well in desktop computing platforms with MATLAB. But when it comes to imple-

mentation there are constrains on the computing platform. These algorithms are

herculean task for platforms like IoT devices. However, the IoT based compressed

sensing and sparse recovery are gaining momentum [47]. The evaluation AM3358

processor based IoT platform board for the implementation of networked data acqui-

sition system is given in [48]. In scenarios where the measurements are sparse and

distributed, like in ground potential rise measurements or electric field measurements,

compressed sensing based signal acquisition can be used to reduce the bandwidth re-

quirement for data collection [49]. The use of this approach in power quality analysis

is described in [50] and agricultural environment monitoring is given in [51]. Two
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aspects need to be considered in such field applications. The systems may get dam-

aged due to environmental condition hence needs to be replaceable with lesser cost.

Second, the unit should have sufficient processing capability to handle the computa-

tional requirements. One way to meet both conditions is to use low cost computing

platform and develop computationally efficient signal processing algorithm.

Considering the implementation constraints there is a need to design efficient s-

parse recovery algorithm. Here a discussion about spare signal recovery algorithms,

their constraints and a general framework for designing efficient algorithms using spar-

sity promoting functions is presented. The rank deficient sparse measurement matrix

is non invertible and hence other methods are used for the recovery of sparse data.

One such method is the approximation of ℓ0 norm function and its minimization.

However an appropriate inverse matrix for the measurement matrix A is needed. In

general sparse recovery algorithms use pseudo inverse 𝐴† or 𝐴𝑇 as the approximate in-

verse matrix. A framework for using any approximate inverse matrix Q in the sparse

recovery algorithm is described here. The proposed framework is a combination and

generalization of the approaches given in smooth ℓ0 (SL0) [26], ℓ0-zero attraction pro-

jection (ℓ0-ZAP) [52], radial basis function cascade network for sparse signal recovery

(RASR) [25] and the iterative proximal projection algorithm (IPP) [37]. The algo-

rithm framework discussed here uses iterative method for the estimation of residue,

segmented thresholding of the residue and the projection of residue to obtain optimal

solution. Based on this framework two sparse reconstruction algorithms are proposed.

First one is iterative segmented thresholding of residue for ℓ1 minimization and the

second is the iterative segmented thresholding of polynomial basis function approxi-

mation of ℓ0 minimization for sparse recovery. A computing network architecture for

implementation of the second algorithm namely the polynomial basis function dictio-

nary based cascade network for sparse signal recovery is presented in section 4.3.3.

The network is implemented with multiply and accumulate unit (MACC), ℓ0-gradient

approximation polynomial lookup table and segmented threshold function. Similar 3

layer implementation of the neural network using floor function, exponential and step

function is described in [53]. Higher degree Lagrange polynomial based optimization
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of neural network is given in [54]. This chapter is arranged as follows: the methods

for improving the performance of function minimization based sparse recovery algo-

rithm are given in section 4.2. The section 4.3 presents the proposed sparse recovery

frame work. The simulation and performance comparison with other seven classes of

algorithms are given in section 4.4, followed by the chapter conclusion.

3.2 Optimization Based Sparse Signal Recovery

The unknown x given in the minimization problem (3.1) has two features; the support

of x and the non zero values at the support locations, where Σ𝐾 is the set of all 𝐾

sparse vectors.

x* = argmin
x

‖x‖0 , subject to y −Ax = 0 (3.1)

∃A ∋ y = Ax, (1−𝛿𝐾) ‖x‖22 ≤ ‖Ax‖22 ≤ (1+𝛿𝐾) ‖x‖22 , ∀x ∈ Σ𝐾 ⊂ R𝑁 ,A ∈ R𝑀×𝑁

Two alternatives for finding the solution to this problem are (i) greedy algorithms:

where the support is determined first, then the non-zero values of x are determined

by least square method, and (ii) relaxation methods: where, x ∈ R𝑁 is considered as

a signal and the objective function ‖x‖0 is approximated using a continuous differen-

tiable function. The algorithms like SL0[26] and IPP[37] use ℓ0 minimization with ℓ2

of the error to optimize the solution. The ℓ0 norm for error estimation is not explored

in many sparse recovery algorithms. The ℓ0 approximation of the signal x and the

ℓ0 approximation of the error e with segmented threshold is used here to develop a

framework for sparse recovery algorithm. The points addressed in the development

of this new framework are as follows.

∙ As the measurement matrix is not invertible, the best approximate-inverse of

this matrix that can be used in the minimization algorithm needs to be found.

∙ The solution can be constrained using proximal projection.

∙ The thresholding induces sparse solution and hence an optimal thresholding

method needs to be determined
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Since the calculation of the inverse of the rank deficient measurement matrix is not

feasible, a framework method for evaluating with various inverse matrices for the given

problem is proposed. This is achieved by developing a computational expression using

arbitrary approximate inverse matrix Q. Two objective function minimization routes

are used one through ℓ1 minimization and second through ℓ0 minimization. Any

combinations of the sparsity inducing functions described in (3.2) can be used for

sparse recovery, where 𝑒(x) = y −Ax, x is the current solution, Q is the inverse

matrix and 𝜆 is a regularization constant.

𝑓(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑎𝑠𝑒 1 : ℓ0(x)− 𝜆‖Q𝑒(x)‖0

𝑐𝑎𝑠𝑒 2 : ℓ0(x)− 𝜆‖Q𝑒(x)‖𝑞𝑞 𝑞 ∈ [1, 2]

𝑐𝑎𝑠𝑒 3 : ℓ𝑝(x)− 𝜆‖Q𝑒(x)‖𝑞𝑞 𝑞 ∈ [1, 2], 0 < 𝑝 < 1,

𝑐𝑎𝑠𝑒 4 : 𝑙1(x)− 𝜆‖Q𝑒(x)‖22

(3.2)

The first part of function induces sparse solution and second part constraining

the error so that the solution has minimum support error with respect to the original

signal. Ideally this method results in solution with exact support recovery. If error

still persists, that will be in the magnitude part of the solution. In the first case

the iterate and the reconstruction error are made sparse using ℓ0 norm. In the later

case, the iterate is made sparse using ℓ0 norm and the error is minimized through

𝑝-norm, with 1 ≤ 𝑝 ≤ 2. The typical example of the case-3 algorithm is IRLS [28],

where p-norm of signal and the mean squared error (𝑀𝑆𝐸) of the recovered signal are

minimized. Many of the algorithms in this class use only 𝑀𝑆𝐸 of the error instead

of any other norm. The framework for improving the sparse signal reconstruction is

developed using the following concepts.

∙ Iterative residue estimation is used to compensate for the inaccuracy in the

inverse transformation.

∙ Translating the estimated residue to the solution space.

∙ Use segmented threshold as proximity operator for inducing sparse solution.
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In the following sections these concepts are described and used in the development of

basis function dictionary based network for sparse signal recovery.

3.2.1 Improving Sparse Signal Recovery using Residue

The compressed measurement is not an 1-to-1 map. The sparse signal in R𝑁 space

is measured in R𝑀 space using non invertible measurement matrix A. The inverse

mapping function Q will induce a finite error with respect to the original signal

(‖x− x̂‖ ≠ 0). The process involved in this operation using the measurement matrix

A : R𝑁 → R𝑀 is illustrated in Figure 3-1; where, x is transformed to measurement

y. The original signal is estimated from the measurement by defining an inverse

function Q : R𝑀 → R𝑁 , which maps y back to x̂. As the measurement matrix A

is not invertible in general and the selected inverse function Q may not give exact

recovery. The difference 𝛿x(𝑘) between the iterative estimate x(𝑘) and the forward

followed by the inverse operation of the estimate will be finite non zero value (3.3).

𝛿x(𝑘) = x(𝑘)−QAx(𝑘) (3.3)

where, 𝑘 indicates the iteration. It is possible to estimate a residue r(𝑘) ∈ R𝑀 in

measurement space as given in (3.4), such that it compensates the error.

𝛿x(𝑘) = Qr(𝑘) (3.4)

This residue is taken as function (f𝑟) of the difference between the original measure-

ment y and the measurement mapped from the current iterate Ax(𝑘), the inverse

function Q and the measurement matrix A.

r(𝑘) = f𝑟(y − y(𝑘),Q,A) (3.5)

where, y(𝑘) = Ax(𝑘). This residue value should reduce if the iteration converges to

the solution. Using (3.3) and (3.4) the projected residue is expressed as (3.6) and a
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Figure 3-1: The mapping between sparse vector x, measurement vector y and recon-
structed vector x̂.

Note: Sparse measurement is not an 1-to-1 map. The sparse signal from R𝑁 is
measured in R𝑀 using a non invertible measurement mapping function A. The best
possible inverse mapping function Q results in some error with respect to the original
signal (‖x− x̂‖ ̸= 0). There is a residue r(𝑘) ∈ R𝑀 which when projected using Q
compensates the error in the iterate x(𝑘). The accuracy of reconstruction depends on
how accurately this residue r(𝑘) is estimated.
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small change in the residue is expressed as (3.7).

(I−QA)x(𝑘) = Qr(𝑘) (3.6)

(I−QA)𝑑x = Q𝑑r (3.7)

Considering 𝑑x = x(𝑘)− x(𝑘 − 1), the finite change in residue required to eliminate

the inverse operation error is written as (3.8).

𝑑r = (Q† −A)𝑑x (3.8)

where Q† is the pseudo inverse of Q and x(𝑘− 1) is the previous iterate. The residue

update and its inverse operation in solution space is written as (3.9) and (3.10)

r(𝑘 + 1) = r(𝑘) + (Q† −A)𝑑x (3.9)

Qr(𝑘 + 1) = Qr(𝑘) + (I−QA)𝑑x (3.10)

Considering (3.2) as the Lagrangian formulation of the problem, the signal estimate

is updated as (3.11), using the projected residue and the gradient of the Lagrangian

function; where 𝛼 < 1 is a scale factor and ∇𝑓(x(𝑘)) the gradient.

x(𝑘 + 1) = x(𝑘)− 𝛼∇𝑓(x(𝑘)) + 𝛼Qr(𝑘) + �̂�𝑑x (3.11)

�̂� = 𝛼(I−QA) is the scalar approximation of the weak diagonal I−QA matrix with

low condition number. The element vise magnitude representation of QA matrix

is shown in Figure 3-2. Ideally, if the inverse operation is perfect the matrix QA

will be a diagonal matrix. This scalar is used to change the search direction during

optimization. For example if the Lagrangian is 𝐿 = ‖x‖1 − 𝜆
2
‖Qe‖22, the update can

be written as (3.12).

x(𝑘 + 1) = x(𝑘)− 𝛼(1̂− 2𝜆(QA)TQe) + 𝛼Qr(𝑘) + �̂�𝑑x (3.12)
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Figure 3-2: The gray scale representation of QA matrix.

Note: The dark spots show the non zero values. The matrix will be diagonal if the
inverse transformation is perfect.

3.2.2 Improving Sparse Solution through Proximal Projection

It is found from the preliminary study that the iterative proximal projection based

methods give better reconstruction of the sparse signals. The use of proximal projec-

tion method is explored in the framework for improving the sparse recovery perfor-

mance. The proximal function minimization is written in general as (3.13)

x* = 𝑎𝑟𝑔 min
x∈R𝑁

𝑓(x) 𝑠.𝑡. Proximal to 𝑔(x) (3.13)

In the present scenario 𝑓(x) is sparsity inducing function and 𝑔(x) is a continuous

differentiable function. The functions which induce sparse solution have two parts;

(1) a 𝑝-norm computation 𝑙𝑝(x) and (2) error minimization, generalized as (3.14).

𝑓(x) = 𝑙𝑝(x) + ℎ(|y −Ax|) 0 ≤ 𝑝 ≤ 1 (3.14)
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where ℎ(|y −Ax|) is a function for error minimization, is taken as scaled error

𝛼‖y −Ax‖22 or as projected value of error ‖Q(y −Ax)‖𝑝. Given a current solu-

tion point, x(𝑘 + 1), the proximal point estimated using the function 𝑔(x) is defined

as (3.15)

Proximal to 𝑔 : 𝑔𝜇(x(𝑘 + 1)) = 𝑎𝑟𝑔 min
x∈𝒟𝑔

1

2
‖x− x(𝑘 + 1)‖22 + 𝜇.𝑔(x(𝑘 + 1)) (3.15)

where 𝒟𝑔 denotes the domain of the function 𝑔(x), 𝜇 is a scalar and the factor

‖x − x(𝑘 + 1)‖22 constraints the deviation from the current solution. The proximal

solution is written as

x̂ = 𝑔𝜇(x(𝑘 + 1)) (3.16)

3.2.3 Segmented Thresholding as Proximity Operator

The computational precision introduce limit cycle oscillations in solution making it

hard to reach ideal zero, when the iteration approaches the minimum. To improve

the sparseness of the solution a thresholding function is used as proximal operator.

The user configurable thresholding function 𝑔(x, 𝜇 �̂�) is defined using linear segments

as given in (3.17) ∀𝑥 ⊂ x.

𝑔(x, 𝜇, �̂�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ |𝑥| ≤ 𝑎1𝜇

sign(𝑥)( 𝑎2−1
𝑎2−𝑎1

|𝑥| − 𝑎1𝜇) 𝑎1𝜇 < |𝑥| ≤ 𝑎2𝜇

sign(𝑥)max(|𝑥| − 𝜇, 0) 𝑎2𝜇 < |𝑥| ≤ 𝑎3𝜇

(𝑎−1)𝑥−sign(𝑥)𝑎𝜇
𝑎−2

𝑎3𝜇 < |𝑥| ≤ 𝑎𝜇

𝑥 |𝑥| > 𝑎𝜇

(3.17)

where sign(𝑥) gives the sign of the variable. The linear segments slope and range are

controlled using the parameters �̂� = [𝑎1, 𝑎2, 𝑎3, 𝑎] (𝑎1 < 𝑎2 < 𝑎3 ≤ 𝑎) and 𝜇 a finite

positive constant. The graph of this function is given in Figure 3-3. The non linear

thresholding is effective for |𝑥| ≤ 𝑎𝜇 and for values |𝑥| > 𝑎𝜇 the transfer function is

linear. A similar approach of thresholding used in [37] where only two segments for
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Figure 3-3: The segmented threshold function 𝑇𝜆(𝑥) used as the proximal projection
operator.

Note: The segmented threshold function 𝑇𝜆(𝑥) is used as the proximal projection
operator for the proposed segmented threshold algorithm. For small values the vector
is soft thresholded and later a non linear transfer function is created using linear
segments which reach unity gain for |𝑥| > 𝑎𝜇. The graph is shown for the case
𝑎 = 3 𝜆 = 1. The parameter used is �̂� = [0.75, 1.25, 2, 3]. 𝑇𝜆(𝑥) represents 𝑔(x, 𝜇, �̂�)
described in the text.

soft thresholding is used. In this framework a configurable threshold function (3.17)

is defined and used.

3.2.4 Error due to Segmented Threshold

The thresholding of the signal x into x𝑇 (3.18) makes the signal sparser by decreasing

the number of non zero coefficients.

x𝑇 = {𝑥𝑗 : ∀𝑥𝑗 ≥ 𝜃 : 𝑥𝑗 = 𝑥𝑗 else 𝑥𝑗 = 0} (3.18)

where 𝜃 is the threshold limit value. The thresholding introduces an error 𝑒𝑇 (x).

𝑒𝑇 (x)𝑝 = minx𝑇
‖x− x𝑇‖𝑝 s.t. ‖x𝑇‖0 ≤ ‖x‖0 (3.19)

58



The upper limit of error is determined by arranging the elements of x and x𝑇 in

non increasing order as x
′ and x

′
𝑇 . When threshold is chosen to limit the maximum

number of elements to 𝐾, the non zero elements beyond 𝐾 in the rearranged x𝑇

contribute to the error as given in (3.20).

𝑒𝑇 (x)
𝑝
𝑝 =

𝑁∑︁
𝑘=1

|𝑥𝑘 − 𝑥𝑇𝑘|𝑝 =
𝑁∑︁
𝑘=1

|𝑥′

𝑘 − 𝑥
′

𝑇𝑘|𝑝 =
𝑁∑︁

𝑘=𝐾+1

|𝑥′

𝑘|𝑝 (3.20)

Using quasi p-norm ‖x‖𝑝𝑝,∞ = max𝑘(𝑘|𝑥
′

𝑘|𝑝), 𝑘 = 1 . . . 𝑁 , the error in the threshold

approximation is written as (3.21).

𝑒𝑇 (x)
𝑝
𝑝 ≤ (

1

𝐾2
− 1

𝑁2
)‖x‖𝑝𝑝,∞ (3.21)

Considering the upper limit of quasi-p norm ‖x‖𝑝𝑝,∞ ≤ ‖x‖𝑝𝑝, the relative noise in

solution due to the segmented thresholding is computed as (3.22). The thresholding

error can be approximated as (3.23) for highly sparse signals.

Threshold Noise = 10 log

(︂
(
1

𝐾2
− 1

𝑁2
)
𝐾𝑎2𝜇2

‖x‖22

)︂
(3.22)

Threshold Noise ≤ −20 log(

√
𝐾‖x‖2
𝜇𝑎

) (3.23)

The error introduced depends on the sparsity 𝐾 and thresholding limit 𝜇𝑎 alone for

normalized vector of large length (𝐾 ≪ 𝑁).
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3.3 Framework for Sparse Signal Recovery using

Residue Projection and Thresholding

Using the concepts described in the section earlier, a framework for designing algo-

rithms for sparse signal recovery is presented here. The process starts with selection

of an approximate inverse matrix Q corresponding to the measurement matrix A.

Then select a starting point for iteration by setting x(0) and the initial residue r(0).

The incremental change in the residue is computed as 𝑑r = (Q†−A)𝑑x. The residue

is projected to solution space and augmented with Lagrangian gradient minimization.

In the later step the segmented thresholding is used as the proximal solution operator.

The schematic description of the minimization framework is given in Figure 3-4

and the algorithmic representation is given in Algorithm-6. Using this framework

two sparse recovery algorithms are developed; namely iterative segmented thresh-

old residue projection for ℓ1 minimization and iterative segmented threshold residue

projection for ℓ0 minimization. The second algorithm is further modified as a ba-

sis function dictionary based network for sparse signal recovery. The performance

enhancement with respect to the existing benchmark algorithm is evaluated in the

experimental evaluation section.

Algorithm 6
Framework for Sparse Recovery through Residue Projection and Thresholding
Require: y,A,Q, 𝑝, 𝑞, 𝜇, 𝛼, �̂�, 𝑔𝜇
1: Task: obtain sparse x
2: Initialization: Select inverse matrix Q for the given A
3: Define Error e(x) = (y −Ax), �̂� = 𝛼(I−QA)
4: Thresholding function 𝑔𝜇(x, 𝜇, �̂�), 𝜇0 = 𝜇
5: Define Objective 𝑓(x) = 𝑙𝑝(x)− 𝜆‖Qe(x)‖𝑞𝑞 0 ≤ 𝑝 ≤ 1, 0 ≤ 𝑞 < ∞
6: compute : ∇𝑓(x)
7: while 𝜇𝑘 > 𝜇𝑚𝑖𝑛 do
8: x̂(𝑘) = x(𝑘)− 𝛼∇𝑓(x(𝑘)) + 𝛼Qr(𝑘) + �̂�𝑑x
9: x(𝑘 + 1) = 𝑔𝜇(x̂(𝑘), 𝜇, �̂�)

10: x(𝑘) = x(𝑘 + 1)
11: reduce: 𝛼, 𝜇
12: end while
13: Output: sparse signal x(𝑘)
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Figure 3-4: Schematic representation of the residue computation for minimizing the
projection error.

Note: Residue computation for minimizing the error. From the previous 2 iterates,
the current difference Δx is determined. This value along with thresholding function
𝜃() determines an intermediate value x̄(𝑘). The error in measurement �̄�𝑦 due to non
optimal solution is determined. The updated residue r(𝑘+1) is computed as a function
of this error. The new residue is projected back using Q to update the iterate.

3.3.1 Segmented Threshold Residue Projection for

ℓ1 Minimisation

Taking the sparsity inducing function described in case : 4 of (3.2) and using the

residue mapping and the segmented thresholding a new algorithm is proposed based

on ℓ1 minimization. The function used for the Lagrangian based minimization is

defined as (3.24)

𝑓(x) = 𝜀‖x‖1 +
𝜆

2
‖Q(y −Ax)‖22 (3.24)

where 𝜀 and 𝜆 are regularization constants and Q is the inverse transformation matrix.

The segmented thresholding function 𝑔(x, 𝜇, �̂�) (3.17) is used as proximal operator.

The 𝑖-th element of the Lagrangian function gradient, in the 𝑘-th iteration is given

in (3.25) where e(𝑘) = y −Ax(𝑘).

∇𝑓(x(𝑘)𝑖) = 𝜀− 𝜆[(QA)TQe(𝑘)]𝑖, 𝑖 = 1 . . . 𝑁 (3.25)
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Using the Lagrangian minimization, the residue mapping and the segmented thresh-

olding described in the framework, the iterate solution update is written as (3.26)

and (3.27).

x̂(𝑘) = x(𝑘) + 𝛼𝑘

(︀
𝜆(QA)TQe(𝑘)− 𝜀1̂

)︀
+ 𝛼𝑘Qr(𝑘) + �̂�𝑑x (3.26)

x(𝑘 + 1) = 𝑔(x, 𝜇, �̂�) (3.27)

where 𝑑x = x(𝑘)− x(𝑘 − 1). The scale factor 𝛼𝑘 is decreased in every iteration and

𝜆 = 1 is set in the proceeding discussion. The residue is updated using new error

e(𝑘 + 1) and the finite change in residue estimated from (3.8).

r(𝑘 + 1) = r(𝑘) + 𝛼𝑘e(𝑘 + 1)− 𝜀𝛼𝑘𝑑r (3.28)

where 𝜀 < 1 is a finite scale factor and e(𝑘+ 1) = y−Ax(𝑘+ 1). After the iteration

the scale factor 𝛼𝑘 and the threshold determination factor 𝜇𝑘 are updated as (3.29),

where 𝛿 < 1 is the value reduction factor.

𝛼𝑘+1 = 𝛿𝛼𝑘, 𝜇𝑘+1 = 𝛿𝜇𝑘 (3.29)

The algorithm is identified here as iterative segmented threshold residue projection

(ISTRP). The computations steps in the proposed method is given in Algorithm-7.

Parameter Initialization for ISTRP: The initial value for the iteration is taken as

x(0) = A†y and initial residue as r(0) = 𝜀(y −Ax(0)). The inverse of the mea-

surement matrix Q is arbitrarily taken as (3.30) for the evaluation of this algorithm

(3.30).

Q =

(︂
I− 1

2

⟨
ATA

𝑑𝑖𝑎𝑔(ATA)

⟩)︂−1

A† (3.30)

where the operator ⟨⟩ is defined to performs the column vise division with the cor-

responding element of denominator vector. The 𝑑𝑖𝑎𝑔(ATA) represents the diagonal

vector of ATA. The regularization constants are set as (3.31) and the segmented
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Algorithm 7
Iterative segmented threshold residue projection (ISTRP)
Require: y,A,Q, 𝜇𝑚𝑖𝑛, 𝛿𝑇 , 𝛼, 𝜆, �̂�
1: Task: min 𝜀 ‖x‖1 +

1
2
Q‖y −Ax‖22 s.t. Proximal to g(x, 𝜇𝑘, �̂�)

2: Initialization: P = (QA)TQ, J = Q† −A, �̂� = I−QA
3: x(0) = x(1) = A†y, r(1) = 𝜀(y −Ax(0)), 𝜇1 = 3max(x(1))
4: while (𝜇𝑘 > 𝜇𝑚𝑖𝑛) do
5: while 1...N do
6: 𝑑x = x(𝑘)− x(𝑘 − 1)
7: x̃(𝑘) = x(𝑘) + �̂�𝑑x
8: x̄(𝑘) = g(x̃(𝑘), 𝜇𝑘, �̂�)
9: e(𝑘) = y −Ax̄(𝑘),

10: while ‖e(𝑘)‖2 > 𝜀 do
11: x(𝑘 + 1) = x̄(𝑘) +Qr(𝑘) + 𝛼𝜆Pe(𝑘)− 𝛼𝜀1̂
12: e(𝑘 + 1) = y −Ax(𝑘 + 1)
13: residue:
14: 𝑑x = x(𝑘 + 1)− x(𝑘)
15: 𝑑r = J𝑑x
16: update:
17: r(𝑘 + 1) = r(𝑘) + 𝛼(e(𝑘 + 1)− 𝜀𝑑r)
18: e(𝑘) = e(𝑘 + 1)
19: r(𝑘) = r(𝑘 + 1)
20: end while
21: x(𝑘 − 1) = x(𝑘)
22: x(𝑘) = x(𝑘 + 1)
23: end while
24: 𝜇𝑘+1 = 𝜇𝑘𝛿𝑇 , 𝑘 = 𝑘 + 1
25: end while
26: Output: x(𝑘)
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threshold function is set using the parameters given in (3.32).

𝜆 = 1, 𝛼 = 0.2, 𝜀 = 0.0001 (3.31)

�̂� = [0.75, 1.24, 1.90, 2], 𝜇0 = 3max |x(0)𝑖| (3.32)

After every iteration the threshold level is reduced as (3.33) and the iteration is

continued till the threshold reaches the minimum 𝜇𝑚𝑖𝑛 .

𝛿 = 0.9, 𝜇𝑚𝑖𝑛 = 1.0× 10−15 (3.33)

3.3.2 Segmented Threshold Residue Projection for

ℓ0 Minimization

The first case of (3.2) is considered for ℓ0 minimization and the Lagrangian function

is defined as (3.34).

𝑓(x) = ‖x‖0 + 𝜆‖Qe‖0 (3.34)

The ℓ0 norm of the signal x and the ℓ0 norm of the projected error is considered for

minimization. The proximal solution is found using segmented thresholding function.

The logic for using the ℓ0 norm of the projected error (‖Qe‖0) is that: for the algo-

rithm to converge, the error in reconstruction should be in the magnitude part of the

sparse vector only. Since the ℓ0 norm is not a differentiable function, the radial basis

function is used to approximate the ℓ0 function in [26], here the polynomial function

is used to approximate the ℓ0 norm as given in (3.35), where, 𝑞 is an even and 𝜎 is a

scalar value.

‖x‖0 := lim
𝜎→0

𝑁∑︁
𝑖=1

1− 1

1 + 𝑥𝑞

(𝜎/𝑎)𝑞

, ∀x ∈ R𝑁 , (3.35)

The Figure 3-5 show the function plots of this approximated ℓ0 norm for various values

of 𝜎 and 𝑞. In addition to approximating the ℓ0 norm, this function (3.35) performs

the thresholding also. The parameter 𝜎 determines the level of ℓ0 approximation and

the scalar value 𝑎 determines the thresholding profile. The value 𝜎𝑘 is reduced in
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every iteration till 𝜎𝑚𝑖𝑛 is reached, to change the ℓ0 approximation from coarse to fine

solution. This function approaches ℓ0 norm when 𝜎/𝑎 → 0. The thresholding changes

from soft to had when 𝑞 is increased. The optimization problem for ℓ0 minimization

is defined as (3.36), where Θ(x, 𝑎, 𝜇𝑘) is the thresholding operator.

min
x

‖x‖0 s.t. ‖Q (y −Ax)‖0 ≤ 𝜀 and proximal to Θ(x, 𝑎, 𝜇𝑘) (3.36)

The recovery error is computed as the projected value of the difference between

measurement y and the measurement corresponding to the reconstructed signal;

e = Q(y −Ax). Applying the polynomial approximation to the Lagrangian problem

defined in (3.34) it is represented as (3.37).

𝐿 := 𝑁 −
𝑁∑︁
𝑖=1

(
1

1 + (𝑎𝑥𝑖

𝜎𝑘
)𝑞
)− 𝜆

(︃
𝑁 −

𝑁∑︁
𝑖=1

(
1

1 + (𝑎𝑒𝑖
𝜎𝑘
)𝑞
)

)︃
(3.37)

The Lagrangian gradient is approximated as (3.38), by setting 𝛾𝑘 = 𝑞(𝑎/𝜎𝑘)
𝑞 and

considering only the lower order terms of the polynomial derivative.

𝜕𝐿

𝜕𝑥𝑖

≈ 𝛾𝑘𝑥
𝑞−1
𝑖

1 + 2
𝑞
𝛾𝑘𝑥

𝑞
𝑖

+ 𝜆QA
𝛾𝑘𝑒

𝑞−1
𝑖

1 + 2
𝑞
𝛾𝑘𝑒

𝑞
𝑖

(3.38)

where 𝑥𝑖 ⊂ x, 𝑒𝑖 ⊂ e and 𝜕𝑒𝑖
𝜕𝑥𝑖

= −(QA)𝑖. The new iterate point (x̂(𝑘)) is computed

as (3.39), by adding projected error e(𝑘) and the Lagrangian gradient to the x(𝑘).

x̂(𝑘) = x(𝑘) + 𝛽e(𝑘)− 𝛼𝑘∇𝐿(𝑘) (3.39)

where 𝛽 is the scale factor for error correction. The gradient scale factor 𝛼𝑘 is

represented in terms of 𝜎𝑘, 𝑎 and 𝑞 as (3.40), where 𝛼0 is a positive constant and

𝛾𝑘 = 𝑞(𝑎/𝜎𝑘)
𝑞

𝛼𝑘 =
𝑞

𝛾𝑘
𝛼0 (3.40)
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Figure 3-5: The approximation of ℓ0 norm function using polynomial 1 − 1/(1 +
𝑥𝑞/(𝜎/𝑘)𝑞).

Note: The plot of ℓ0 norm approximation polynomial 1−1/(1+𝑥𝑞/(𝜎/𝑘)𝑞) for various
values of 𝑞 and 𝑘. When 𝜎 → 0 all non zero values are given support 1. (a):
𝑞 = 2, 𝑘 = 1, (b): 𝑞 = 4, 𝑘 = 15, (c): 𝑞 = 40, 𝑘 = 15
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The iterative update equation (3.39) is modified as (3.41) after removing higher order

terms from the gradient.

x̂𝑖(𝑘) = x𝑖(𝑘) + 𝛽e𝑖(𝑘)− 𝛼𝑘(
𝛾𝑘𝑥

𝑞−1
𝑖

1 + 2
𝑞
𝛾𝑘𝑥

𝑞
𝑖

+ 𝜆QA
𝛾𝑘𝑒

𝑞−1
𝑖

1 + 2
𝑞
𝛾𝑘𝑒

𝑞
𝑖

) (3.41)

The slope of the ℓ0 approximation function (1/1 + (𝑎𝑥𝑖

𝜎𝑘
)𝑞) near origin is increased in

each iteration as (3.42) where 0 < 𝛿 < 1 determines the rate of convergence of 𝜎𝑘.

𝜎𝑘+1 = 𝜎𝑘𝛿 (3.42)

The initial value 𝜎0 is set in the range (0, 3]. The iterative update is simplified to

(3.43), where Δx𝑘 and Δe𝑘 (3.44) are small changes in each iteration.

x̂(𝑘) = x(𝑘) + 𝛽e(𝑘)− 𝑞𝛼0(Δx𝑘 +Δe𝑘) (3.43)

Δx𝑘
𝑖 ≈

x𝑖(𝑘)
𝑞−1

1 + 2
𝑞
𝛾𝑘x𝑖(𝑘)𝑞

Δe𝑘𝑖 ≈ 𝜆QA
e𝑖(𝑘)

𝑞−1

1 + 2
𝑞
𝛾𝑘e𝑖(𝑘)𝑞

(3.44)

The solution is made sparser (3.45) by applying the segmented thresholding.

x(𝑘 + 1) = 𝑔(x̂(𝑘), �̂�, 𝜇𝑘) (3.45)

Iteration Limit: The small amplitude values at the unsupported indexes appear in

the reconstruction process when 𝜎 reaches lower limit and the incremental update is

comparable to the noise figure 𝑥𝑛. The error residue and the gradient update become

negligible at this final stage of solution convergence. Equating (3.43) to 0 gives the

limiting condition (3.46) and the value of 𝛾𝑘 is obtained as (3.47)

|𝑥𝑛| = 𝑞𝛼0
𝑥𝑞−1
𝑛

1 + 2
𝑞
𝛾𝑘𝑥

𝑞
𝑛

(3.46)

𝛾𝑘 = (𝑞𝛼0𝑥
−2
𝑛 − 𝑥−𝑞

𝑛 )𝑞/2 (3.47)

since 𝛼0 is positive, the following conditions (3.48), (3.49) and (3.50) are obtained as
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limiting condition for the iteration.

𝛼0 >
1

𝑞𝑥𝑞−2
𝑛

(3.48)

𝛾𝑚𝑎𝑥 > (𝑐− 1)𝑥−𝑞
𝑛 𝑞/2 (3.49)

𝜎𝑚𝑖𝑛 < 𝑎

(︂
2𝑞𝑥2

𝑛

𝛼0(1− 1/𝑐)

)︂1/𝑞

(3.50)

where 𝑐 > 1 is a finite constant. The iterations (3.41) is stopped when 𝜎𝑘 reaches the

minimum value 𝜎𝑚𝑖𝑛. The ℓ0 minimization for sparse signals based on this method

is referred here as Segmented Threshold X-L0 E-L0 (STXEL0) algorithm. A special

case of this algorithm using the inverse matrix Q = A† and 𝑞 = 2 is considered here

for evaluation and the update equation is written as (3.51), where 𝑖 = 1 . . . 𝑁 .

x(𝑘 + 1) = 𝑔

⎛⎝x(𝑘) + 𝛽e(𝑘)− 𝛼0

⎡⎣ x𝑖(𝑘)

1 +
x2
𝑖 (𝑘)

𝜎𝑘

+ 𝜆
e𝑖(𝑘)

1 +
e2𝑖 (𝑘)

𝜎𝑘

⎤⎦ , �̂�, 𝜎𝑘

⎞⎠ (3.51)

where 𝑔(.) is the thresholding function, �̂� is the parameter for segmented threshold,

𝜎𝑘+1 = 𝛿𝜎𝑘 and 𝛿 < 1. The values of 𝜎𝑚𝑖𝑛 is determined as (3.52).

𝜎𝑚𝑖𝑛 = max(�̂�)𝑥𝑛/
√︀
𝛼0(1− 1/𝑐) (3.52)

If the gradient of the polynomial is replaced with gradient of the Gaussian function

1 − 𝑒𝑥𝑝(−𝑥2
𝑛/2𝜎

2
𝑚𝑖𝑛) for finite magnitude elements near zero, the limiting values of

𝜎𝑚𝑖𝑛 can be determined as (3.53).

𝜎𝑚𝑖𝑛 =
𝑥𝑛√︀

2 ln(𝛼0)
(3.53)

Remark 1: A possible alternative condition for ℓ0 minimization problem is given in

(3.54), where x𝑜𝑝𝑡 is taken as an optimal solution since the prior information about

the ideal solution x𝑜𝑟𝑔 is not available.

min
x

‖x‖0 𝑠.𝑡. ‖x𝑜𝑝𝑡 − x̂‖0 ≤ 𝜀 (3.54)
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The Lagrangian condition gives same solution as above when x̂ is defined as A†Ax.

Even when the problem is defined as minx ‖x‖0 𝑠.𝑡. ‖x− x̂‖0 ≤ 𝜀 or with a different

subjective condition minx ‖x‖0 𝑠.𝑡.
⃦⃦
A†(y − ŷ)

⃦⃦
0
≤ 𝜀, the solution do not change

significantly and hence the problem defined in (3.36) is considered optimal. The

implementation of segmented threshold ℓ0 minimization method for sparse recovery

is described in Algorithm-8.

Algorithm 8
Segmented Threshold X-L0 E-L0 Algorithm Description
Require: y,A,Q, �̂�, 𝛼, 𝛽, 𝜎𝑚𝑖𝑛, 𝜇𝑚𝑖𝑛, 𝛿𝛼, 𝛿𝑇 , 𝛾
1: Task: min ‖x‖0 s.t: ‖Q(y −Ax)‖0 ≤ 𝜀, proximal to g(x, 𝜇𝑘, �̂�)
2: Initialization: Q = (I+ 𝛾ATA)−1A†, �̂� = [0.75, 1.25, 1.99, 2]
3: 𝛼 = 0.7, 𝜎𝑚𝑖𝑛 = 10−8, 𝛿𝜎 = 0.95, 𝛾 = 0.1
4: 𝛽 = 1.1, 𝜇𝑚𝑖𝑛 = 10−15, 𝛿𝑇 = 0.90, 𝜆 = 1, 𝜀 = 𝑒𝑝𝑠
5: x(1) = Qy, 𝜎1 = 2𝑚𝑎𝑥(|x(1)|), 𝜇1 = 3𝑚𝑎𝑥(|x(1)|)
6: e(1) = Q(Ax(1)−y)
7: while (𝜎𝑘 > 𝜎𝑚𝑖𝑛) do
8: while 1 . . . 𝑁 do
9: 𝑑x𝑖(𝑘) = x𝑖(𝑘)/(1 + x𝑖(𝑘)

2/𝜎𝑘)
10: 𝑑e𝑖(𝑘) = 𝜆e𝑖(𝑘)/(1 + e𝑖(𝑘)

2/𝜎𝑘)
11: x̄(𝑘) = x(𝑘)− 𝛼𝑘(𝑑x(𝑘) + 𝑑e(𝑘))
12: x̂(𝑘) = g(x̄(𝑘), 𝜇𝑘, �̂�)
13: e(𝑘) = 𝛽Q(Ax̂(𝑘)− y)
14: x(𝑘 + 1) = x̂(𝑘)− e(𝑘)
15: end while
16: 𝜎𝑘+1 = 𝛿𝜎𝜎𝑘

17: 𝜇𝑘+1 = 𝛿𝑇𝜇𝑘

18: 𝛼𝑘+1 = 𝛿𝑇𝛼𝑘

19: 𝑘 = 𝑘 + 1
20: end while
21: Output: x(𝑘)

The initial value x(0) = A†y is selected for evaluation. The 𝜎0 is set as 2 ×

max𝑥𝑖
{x(0)}. The stopping criterion is set as (𝜎𝑘 < 𝜎𝑚𝑖𝑛). The computational time

is determined by 𝛿 and 𝜎𝑚𝑖𝑛. The error term e(x) is computed in every step to improve

the recovery precision. The optimal value of 𝛼 and 𝛽 is determined experimentally

and, is described later in the next chapter.
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3.4 Chapter Summary

The development of sparse recovery algorithms have adopted concepts from wider

areas of mathematics and engineering and is ever improving. However there is a

fundamental constraint in the problem. The sparse measurement matrix is gener-

ally non invertible and hence other methods like iteration need to be done for the

reconstruction of the original data. This involves function optimization process using

ℓ0 or ℓ1 or ℓ𝑝 based objective functions. Also an appropriate inverse matrix for the

measurement matrix A is needed. Many of the currently available algorithms use

𝐴† or 𝐴𝑇 as the approximate inverse matrix. A general framework using arbitrary

inverse matrix Q for the development of sparse recovery algorithms is proposed. This

provides analytical tool for experimenting with various approximations of the matrix

inverse for sparse signal recovery. The method is used in the development of two im-

proved algorithms based on ℓ1 and ℓ0 minimization, residue estimation and segmented

thresholding techniques. The first is based on iterative segmented thresholding of ℓ1

residue with the inverse operation. The second is based on segmented threshold-

ing of polynomial approximation of ℓ0 function. The logic for selecting residue and

minimizing it for arriving at optimal sparse solution is described. A range alterable

segmented thresholding function is proposed and used in the final stage of the itera-

tion. The next chapter presents the cascaded computational network implementation

of the proposed ℓ0 minimization based STXEL0 algorithm for real time use.
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Chapter 4

Function Dictionary Based Network Implementation

for Sparse Signal Recovery

The segmented thresholded X-L0 E-L0 algorithm described in (3.43) is configured as a

cascade network consisting of three parts. One part for error computation, the second

part for ℓ0 minimization using a dictionary of approximation functions obtained from

the gradient of the function 1 − 1/(1 + 𝑥𝑞

(𝜎/𝑎)𝑞
) and the third part is the segmented

thresholding function. In the first part the vector x(𝑘) to be minimized is set as the

weights of the network. The rows of the measurement matrix (A𝑖) are taken as inputs

to the network. The element vise weighted inputs are added with scale factor (−1)

to the corresponding element of the measurement y𝑗. The resulting scalar value is

taken as input for the multiply accumulate unit (MAC), where each column of the

inverse matrix Q𝑗 is weighted with this scalar and accumulated. The multiply and

accumulate process is continued for 𝑀 times and the resulting vector is stored in the

output register. In the second stage of the network, 𝑥𝑖’s (𝑖 = 1 . . . 𝑁), and the output

of the first stage are ℓ0 minimized using a set of dictionary functions. The modified

values are scaled and accumulated to generate the output of the second stage. The

ℓ0 minimization is performed using the dictionary of basis functions computed using

(4.1), derived from the gradient of the ℓ0 approximation; where 𝑞 is an even number

and 𝑝 = 2( 𝑎
𝜎
)𝑞.

𝐹 (𝑥) =
𝑥𝑞−1

1 + 𝑝𝑥𝑞
(4.1)
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Figure 4-1: The dictionary of ℓ0 gradient minimization basis functions generated from
𝐹 (𝑥) = 𝑥𝑞−1

1+𝑝𝑥𝑞 for various values of 𝑞 and 𝜎.

Note: It can be seen from the figure that as 𝜎 approach 0, the gradient based correc-
tions are applied only to values near zero. Values close to zero are corrected heavily
compared to higher values.

The output is thresholded using the segmented thresholding function. The dictio-

nary of ℓ0 gradient minimization basis functions generated for various values of 𝑞 and

𝜎 are shown in Figure 4-1. Based on the architecture described a network schematic

for implementation of the polynomial basis function dictionary based cascade network

for sparse signal recovery is illustrated in Figure 4-2. After every iteration the basis

function of the second stage network is changed to next function table corresponding

to lower 𝜎 value. The process is continued till the basis function table corresponding

to 𝜎𝑚𝑖𝑛 = 𝑥𝑛/
√︀

2 ln(𝛼0) is selected.

The basis functions corresponding to various values of threshold upper limit 𝑎

and threshold profile 𝑞 are generated and stored in RAM. The magnitude plot of this
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dictionary matrices are shown in Figure 4-3. The computational complexity of this

architecture can be estimated as (4.2), where 𝑛 is the number of iterations.

𝑁.𝑂𝑝𝑠 = 𝑛× [𝑁(2𝑀 + 3)𝑚𝑢𝑙 +𝑁(𝑀 + 4)𝑎𝑑𝑑] (4.2)

Based on the initial value chosen for iteration and the exit condition selected, the

number of iteration can be approximated as (4.3) for 𝜎𝑘 decrease factor 𝛿𝜎 = 0.9;

where |𝑥0| is the initial value chosen for iteration. A detailed discussion on the

value approximation rate of the neural network with polynomially decaying activation

function is given in [55].

𝑛 ≈ 20 log

(︂
max |𝑥0|
𝜎𝑚𝑖𝑛

)︂
(4.3)

The number of processor operations can be simplified as (4.4) if the data is normalized

and all operations are performed using MAC unit.

𝑁.𝑂𝑝𝑠 ≈ 40𝑀𝑁 log

(︂
1

𝜎𝑚𝑖𝑛

)︂
(4.4)

The computational load on the real-time recovery of sparse signal from compressed

measurements acquired at 𝐹𝑠 frames per second rate is approximated as (4.5), where

𝑒𝑝𝑠 is the computational machine precision.

𝑁.𝑂𝑝𝑠/𝑠𝑒𝑐 ≈ 40𝑀𝑁𝐹𝑠 log

(︂
1

𝑒𝑝𝑠

)︂
(4.5)

Considering 𝑒𝑝𝑠 = 10−5, matrix size 30×50 and frame rate of 20, the processing load

is expected to be ≈ 6.0 𝑀𝐹𝐿𝑂𝑃𝑆. Due to smaller throughput requirement, this

network can be implemented on conventional low profile computational platforms.

The evaluation of IoT platform board 𝐴𝑀3358 for the implementation of networked

data acquisition system is given in [48].
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Figure 4-2: The network architecture of the basis function dictionary based cascade
network for sparse signal recovery developed from STXEL0 algorithm
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Figure 4-3: The ℓ0 minimization basis functions generated from 𝐹 (𝑥) = 𝑥𝑞−1

1+𝑝𝑥𝑞 .

Note: The functions are generated for various threshold limit 𝑎 and the exponent 𝑞.
The input to the function table are −15 < 𝑥𝑖 < 15 and 0 < 𝜎 < 10. (a) The ℓ0
gradient minimization basis function set for 𝑎 = 5, 𝑞 = 2. (b) The basis function set
for 𝑎 = 5, 𝑞 = 4. (c) The basis function set for 𝑎 = 5, 𝑞 = 8.
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4.1 Simulation and Evaluation

The algorithms are tested in various sparse signal recovery scenarios. Three types of

sparse signals are used in the testing: (1) gray scale images, (2) sparse spike signals

with sparsity between 1 to 15 and (3) sparse pulse signal with pulse width varied

from 1 to 15. Benchmark images of size 256× 256 pixels are segmented into 16× 16

pixels with no overlapping and used in the image acquisition and recovery process.

DCT matrix of size 16× 16 is used as the basis transformation matrix for converting

the image into sparse data. Each image segment is transformed to a vector of size

256 and then compressed sensed into a vector of size 100 using a measurement matrix

of size 100 × 256. The measurement matrix are generated from normal distribution

𝒩 (0, 1). The measurements are simulated using (4.6), where 𝑛𝐿 is the relative noise

strength and w𝑛 = 𝒩 (0, 0.01) is white Gaussian noise.

ŷ = Ax+ 𝑛𝐿
‖ADx‖
‖w𝑛‖

w𝑛 (4.6)

The measurement y = Ax is perturbed with noise of relative strength −60𝑑𝐵 to

−20𝑑𝐵 (𝑛𝐿 = 0.001 to 0.1). Individual image blocks are reconstructed from the per-

turbed measurements ŷ’s and combined together to form the complete image. The

throughput estimated is 102.4 𝑀𝐹𝐿𝑂𝑃𝑆 for 20 frames per second reconstruction

rate. The schematic representation of process involved in the image acquisition and

reconstruction is illustrated in Figure 4-4. In the second simulation scenario, the

sparse vectors of length 50 are selected from normal distribution 𝒩 (0, 1). The ele-

ments of the measurement matrix of size 30× 50 are taken from normal distribution

𝒩 (0, 1) and the columns are later normalized. The reconstruction quality is estimat-

ed in terms of average SNR (4.7) and the probability of exact signal recovery (4.8),

where x̂ is the reconstructed signal.

𝑎𝑣𝑔.𝑆𝑁𝑅 = 10 log

(︂
‖x− x̂‖2

‖x‖2

)︂
(4.7)
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Figure 4-4: Simulation setup for algorithm evaluation.

Note: The image scene is captured as segmented 16 × 16 block and converted to 265
vector. This vector is acquired as 100 compressed measurements using an augment-
ed measurement matrix AD, which is the product of chosen measurement matrix A
and the DCT matrix D. Sparse recovery algorithms are used to reconstruct the s-
parse components. The image segment is recovered using Inverse-𝐷𝐶𝑇 of the sparse
components.

The probability of exact signal recovery is estimated by comparing the support indexes

of the non zero value in the reconstructed signal and the original signal.

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑟𝑜𝑏. = 1− max(‖x‖0, ‖x̂‖0)− ‖x ∩ x̂‖0
max(‖x‖0, ‖x̂‖0)

(4.8)

where, the operator ∩ determine the support locations common to the original signal

x and the reconstructed signal x̂. The computational complexity of the algorithms

are measured in terms of the algorithm execution time, relative to the benchmark

algorithm SL0 [26]. All the simulations are performed in MATLAB, running in 64-bit

MS Windows-8 OS on Intel i3 dual core 1.9 GHz processor with 12 GB RAM. The

recovery performance are compared with benchmark sparse recovery algorithms and

recently published iterative proximal projection smoothly clipped absolute deviation

IPPSCAD [37]. The initial value for the iteration is set as x(0) = 2 × A†y. The

basis functions for STXEL0 algorithm is generated for the parameter set 𝑞 = 2 and

𝑎 = 10, 30, 50, 80; where 𝑎 is the last element of �̂�. The approximate inverse is

taken as Q = A†. The segmented threshold is generated using the parameter set

�̂� = [0.74, 1.25, 1.9, 3.0]. The gradient scale factor 𝛼0 = 0.7 and residue scale factor

𝛽 = 0.25 are experimentally determined. The effect of 𝛼0 and 𝛽 in the convergence

of STXEL0 algorithm is discussed in the following subsection. The stopping criterion

77



is set as 𝜎𝑚𝑖𝑛 = 10−8 and the 𝜎𝑘 reduction factor is set as 𝛿𝜎 = 0.95

4.1.1 Influence of Scale Factors 𝛼0, 𝛽 and 𝑞 on SNR

The effect of the gradient scale factor 𝛼0 and residue scale factor 𝛽 are studied through

simulations. The noise perturbation in the measurement is set to the minimum

−60𝑑𝐵. To study the effect of 𝛽 on the reconstruction performance, the 𝛼0 is set

to 2.0. The simulations are performed with threshold limit 𝑎 = 10, 30, 50, 80 and the

value of 𝛽 is varied from 0.03 to 3.0. The images of size 256 × 256 from MATLAB

image processing repository are used in the simulation. The images are segmented as

discussed earlier. 10 Nos of image-simulations for each value of 𝛽 is performed and

the SNR of reconstructed images are averaged. The SNR increases as 𝛽 increases

from 0.03 and value reaches maxima near 𝛽 = 0.25. Segmented reconstruction fails

when 𝛽 is increased above 2.121. The simulations were repeated for threshold limit

𝑎 = 30. The SNR variation with respect to 𝛽 follows the same profile as earlier. The

SNR peak is also observed near 𝛽 = 0.25. The SNR for various values of 𝛽 is shown

in Figure 4-5. The experiments are repeated for noisy case. The noise perturbation

is increased to −26𝑑𝐵, however the SNR variation with 𝛽 shows the similar profile.

SNR reaches maxima near 𝛽 = 0.25 and the reconstruction fails when 𝛽 is increased

above 2.121. The observation is consistent for noisy and noise free reconstruction

cases.

To study the effect of the gradient scale factor 𝛼0 on SNR of the recovered signal,

𝛽 is set to 0.25 and the degree of ℓ0 approximation polynomial is set as 𝑞 = 2. The

𝛼0 is varied from 0.1 to 50 and the SNR of the recovered signal is determined. The

experiment is repeated for threshold limits 𝑎 = 10, 30, 50, 80, without noise pertur-

bation. The variation of SNR is found to be minimal till 𝛼0 is varied from 0.1 to 5.

The SNR reduces when 𝛼0 > 5.0. However, when noise perturbation is increased to

−26𝑑𝐵, SNR of the recovered signal reduces when 𝛼0 > 2.0. The observed variation

of SNR with respect to change in 𝛼0 is shown in Figure 4-6.
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Figure 4-5: SNR of the STXEL0 recovered signal for various values of residue scale
factor 𝛽.

Note: (a) SNR during noise free case: 𝛽 is varied from 0 to 3, 𝛼0 = 2.0 and 𝑞 = 2.
(b) SNR when the measurement is perturbed with Gaussian noise of relative strength
−26𝑑𝐵 and 𝛽 is varied form 0 to 3 while 𝛼0 = 2.0 and 𝑞 = 2. Consistently, SNR
peaks near 𝛽 = 0.25 and reconstruction fails for 𝛽 > 2.121.
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Figure 4-6: SNR of the STXEL0 recovered signal for various values of the gradient
scale factor 𝛼.

Note: (a) SNR in noise free case: 𝛼 changed from 0 to 50, 𝛽 = 0.25 and 𝑞 = 2.
The SNR decreases when 𝛼0 > 5. (b) SNR when the measurement is perturbed with
Gaussian noise of relative strength −26𝑑𝐵 and 𝛼 changed from 0 to 50 while 𝛽 = 0.25
and 𝑞 = 2. SNR decrease when 𝛼0 > 2.
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Figure 4-7: SNR of the STXEL0 recovered signal for different values 𝑞 = 2, 4, 6 and
8 when 𝛽 = 0.25.

Note: The measurement is perturbed with white Gaussian noise of relative strength
−60𝑑𝐵

The effect of degree of polynomial basis function in the performance of the STX-

EL0 is analysed. Image reconstruction performance is used in the simulation. The

measurements are perturbed with white Gaussian noise of relative strength −60𝑑𝐵.

The reconstruction is performed using basis functions generated using 𝑞 = 2, 4, 6, and

8. The parameters 𝛽 is set to 0.25 and the gradient scale factor 𝛼0 is varied from

0.1 to 50. The optimal value of 𝛼0 is found to differ with respect to the 𝑞. The

SNR variation with respect to 𝛼0 for various values of 𝑞 is shown in Figure 4-7. The

optimal value of 𝛼0 is found to be ≈ 2.0 for 𝑞 = 2. In higher degree ℓ0 approximations

with 𝑞 = 4 , 𝑞 = 6 and 𝑞 = 8, the optimal value of 𝛼0 is found to be of the order

10−4, 10−16 and 10−26 respectively. The implementation of higher order polynomial

versions of STXEL0 algorithm (𝑞 = 6 and 𝑞 = 8) is infeasible in low profile devices,

since the gradient scale factor 𝛼0 corresponding these are negligibly small compared

to the computational precision. The optimal values 𝛼0 = 2.0, 𝛽 = 0.25 and 𝑞 = 2,

obtained from this simulation are used in the proceeding algorithm evaluations.
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4.2 Sparse Recovery using the Proposed ℓ1 Based

ISTRP Algorithm

Two types of sparse signals of length 50 are generated for the simulation. Sparse spikes

having 2 to 10 non zero elements and sparse pulses with 2 to 10 continuous sample

wide. These sparse signals are measured using normalized 𝑖.𝑖.𝑑. measurement matrix

of size 30× 50 and then recovered using various algorithms. The simulations are per-

formed 100 times for each signal, using different measurement matrix and the average

measures from the reconstruction are recorded. Seven different classes of algorithms

are simulated and compared with the proposed method. The results are tabulated

in Table 4.1 and Table 4.2 The SNR of recovery and execution time are taken into

consideration. It can be found from the result that the proposed ℓ1 based projection

and thresholding method give finite improvement over the existing methods. To eval-

uate the algorithm in more realistic scenario electric field mill signal acquired during

lightning is used in the simulations. The lighting flash from cumulonimbus clouds

span for 50 to 200 𝑚𝑠 with a discharge peak near 10 𝜇𝑠 and the voltage transients

persists for duration typically < 200 𝜇𝑠. In the case of periodic sampling this signal

should be sampled with frequency > 5000 𝐻𝑧. However, most of the time the mea-

surements are zero or a constant bias value. The data equivalent to 1000 Nyquist

samples are acquired in 600 samples per frame. The processor throughput estimated

for recovery of the signal from this frame is 600 𝑀𝐹𝐿𝑂𝑃𝑆. The signal reconstructed

using various benchmark algorithms and the proposed method are shown in Figure 4-

8 and the results are summarized in Table 4.3. The analysis of the results shows that

the iterative segmented threshold residue mapping gives an improvement of 0.04𝑑𝐵

over the benchmark algorithm iterative proximal projection-SACD [37], indicating

the possibility of improvement using segmented thresholding. The second proposed

ℓ0 minimization with segmented thresholding method is evaluated in image recovery

scenario.
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Figure 4-8: Comparison of electric field mill signal reconstructed using ISTRP algo-
rithm and other optimization and thresholding based algorithms

Note: Electric field mill signal during lighting acquired at 20 kHz sampling rate with
10:1 down conversion. The same signal is acquired using compressed sensing and
reconstructed using various algorithms. The function optimization based algorithms
(SCSA, SL0) perform better compared to the ℓ1 and ℓ𝑝 based methods (BP, IRLS).
The function optimization and projection with thresholding algorithms (IPP Hard
threshold and IPP SCAD threshold) give the promising results. ISTRP (Algorithm-
7) gives 0.04dB advantage over the existing iterative proximal projection algorithm
IPPSCAD.
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4.3 Reconstruction of Images using the Proposed

STXEL0 Algorithm

The benchmark images from MATLAB image processing repository are used in the

evaluation. The STXEL0 basis function network architecture supports arbitrary in-

verse matrix. Three types of inverse operations are used in the evaluation namely

Q = 𝜆A𝑇 , Q = 𝜆A†, Q = (I+ 𝜆ATA)−1AT and Q = 𝜆(I+ATA)−1AT. The SNR

of the recovered images obtained using these methods are given in Table 4.4. The

algorithm fail to converge for some combinations of inverse matrix and input noise

level. It is observed that when 𝑄 = 𝜆A† the algorithm performs well and converges

for wider range 𝜆 > 0.18. This inverse matrix is used in the further evaluations.

The experimental evaluation the SNR of the recovered pulse signal obtained from

the proposed method and existing methods are shown in Figure 4-9, for comparison.

The probability of support recovery of these algorithms are shown in Figure 4-10. The

experiments are repeated 50 times and the average SNR value of the reconstructed

sparse signals are plotted. The results are recorded when the measurements are

perturbed with −33𝑑𝐵 white noise. It can be seen from the SNR values that all

algorithms performs well in reconstruction of the spike signal when measurements

are noise free. When the noise level is −26𝑑𝐵, SNR of 10𝑑𝐵 is achieved in the

reconstruction of high-sparse signals. (𝐾 = 10).

The SNR of benchmark images recovered using various algorithms are given in

Table 4.5. The comparison of recovered images using various algorithms are shown

in Figure 4-11 to Figure 4-14. The ℓ0 gradient basis function dictionary based sig-

nal and error minimization network performs better compared to other benchmark

algorithms, in terms of the 𝑆𝑁𝑅 of recovered signal and the time for computation.

SL0 execution time is taken as benchmark for comparison. The computation time of

other algorithms are expressed as multiples of SL0 recovery time. The computations

time is recorded in the last column of the performance comparison Table 4.5. In case

of image recovery, the algorithm performance varies with scenario. Algorithms like
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YALL (ℓ1), IRLS (ℓ𝑝), and FISTA (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑔) give performance measures com-

parable to the proposed methods. These algorithms performs in par with proposed

method in image reconstruction scenario, but, with larger processing demand.
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Figure 4-9: SNR of recovered sparse pulse signal when reconstructed from noisy
(−33𝑑𝐵) measurements.

Note: XEL0 represent the STXEL0 algorithms without segmented thresholding.
ISTRP represent proposed ℓ1 based minimization method with segmented threshold-
ing.

88



0 5 10 15
Cardinality

0.8

0.85

0.9

0.95

1

P
ul

se
 R

ec
ov

er
y 

P
ro

ba
bi

lit
y

Pulse Recovery Probability (noise -33dB)

OMP
COSAMP
GOMP
FISTA
BIHT
IRLS

(a)

0 5 10 15
Cardinality

0.8

0.85

0.9

0.95

1

P
ul

se
 R

ec
ov

er
y 

P
ro

ba
bi

lit
y

Pulse Recovery Probability (noise -33dB)

HOMO
EGAMP
SL0
XEL0
SCAD
SCSA

(b)

0 5 10 15
Cardinality

0.8

0.85

0.9

0.95

1

P
ul

se
 R

ec
ov

er
y 

P
ro

ba
bi

lit
y

Pulse Recovery Probability (noise -33dB)

DALM
L1Ls
YALL
BP
PALM
RASR

(c) (d)

Figure 4-10: Probability of exact support reconstruction of the sparse pulse signal
reconstructed from noisy (−33𝑑𝐵 ) measurements.

89



Ta
bl

e
4.

5:
S
N

R
of

th
e

im
ag

e
re

co
n
st

ru
ct

ed
u
si

n
g

va
ri

ou
s

al
go

ri
th

m
s

N
oi

se
-2

6d
B

-3
3d

B
ni

l
T

im
e

A
lg

or
it

hm
I1

I2
I3

I4
I1

I2
I3

I4
I1

I2
I3

I4
G

re
ed

y
O

M
P

15
.1

14
.6

16
.4

6.
9

17
.8

15
.8

18
.8

7.
0

18
.8

16
.1

19
.8

6.
9

14
.7

ℓ 1
C

O
SA

M
P

13
.5

12
.0

15
.4

6.
0

13
.5

12
.0

15
.4

6.
0

13
.5

12
.0

15
.4

6.
0

0.
2

G
O

M
P

18
.4

16
.4

19
.6

7.
5

19
.1

16
.8

20
.4

7.
5

19
.2

16
.6

20
.3

7.
2

0.
2

L1
LS

16
.1

15
.2

16
.1

9.
4

16
.8

16
.4

19
.1

9.
4

18
.9

17
.3

14
.9

9.
2

40
.7

Y
A

LL
18

.1
17

.6
19

.7
9.

5
21

.0
19

.0
21

.8
9.

7
21

.9
19

.4
22

.9
9.

7
0.

5
ℓ 1

B
P

-2
.0

-2
.6

-2
.4

-2
.5

-2
.0

-2
.3

-2
.1

-2
.2

-2
.0

-2
.3

-2
.4

-2
.0

9.
1

H
om

to
p

18
.1

17
.5

19
.6

9.
4

21
.0

18
.9

21
.8

9.
7

21
.9

19
.4

23
.2

9.
6

1.
8

La
gr

an
gi

an
D

A
LM

18
.1

17
.5

19
.6

9.
4

21
.0

18
.9

21
.8

9.
7

21
.9

19
.4

23
.2

9.
6

1.
1

PA
LM

18
.1

17
.5

19
.6

9.
4

21
.0

18
.9

21
.8

9.
7

21
.9

19
.4

23
.2

9.
6

18
.8

ℓ 0
SL

0
15

.3
15

.1
16

.9
7.

2
18

.7
16

.5
19

.4
7.

4
19

.8
17

.2
20

.7
7.

4
1.

0
ℓ 𝑝

IR
LS

18
.1

17
.5

19
.6

9.
4

20
.9

18
.9

21
.8

9.
7

21
.9

19
.4

22
.9

9.
6

40
.0

T
hr

es
ho

ld
F
IS

TA
18

.0
17

.5
19

.6
9.

4
20

.9
18

.9
21

.7
9.

7
21

.9
19

.4
22

.9
9.

6
1.

9
B

IH
T

13
.5

12
.0

15
.4

6.
0

13
.5

12
.0

15
.4

6.
0

13
.4

12
.0

15
.4

6.
0

0.
8

B
ay

es
E

G
A

m
p

18
.6

16
.8

20
.0

8.
8

18
.8

16
.7

20
.2

8.
8

18
.9

16
.8

20
.4

8.
5

7.
4

SC
A

D
18

.3
16

.9
20

.1
8.

2
20

.1
17

.8
21

.1
8.

0
0.

2
-0

.2
-0

.2
0.

1
4.

4
SC

SA
18

.9
17

.1
20

.3
8.

2
20

.0
17

.6
21

.2
8.

4
21

.9
19

.4
23

.1
9.

6
2.

0
P

ro
je

ct
ed

IS
P

IM
A

T
16

.7
16

.4
18

.1
8.

4
19

.9
17

.9
20

.6
8.

4
21

.0
18

.5
22

.1
8.

4
0.

2
G

ra
di

en
t

IP
P

SC
A

D
18

.3
16

.5
19

.7
7.

6
19

.6
17

.2
20

.6
7.

9
20

.6
17

.9
21

.5
8.

1
3.

4
T

hr
es

ho
ld

IS
T

R
P

17
.8

16
.2

19
.3

7.
6

19
.4

17
.1

20
.4

7.
9

20
.6

17
.9

21
.5

8.
0

2.
3

X
E

L0
17

.7
17

.3
19

.3
9.

0
20

.8
18

.8
21

.6
9.

3
21

.9
19

.3
23

.0
9.

3
0.

4

N
ot

es
:

Im
ag

es
re

co
ve

re
d

fr
om

no
is

y
m

ea
su

re
m

en
ts

of
16

×
16

bl
oc

ks
co

m
pr

es
se

d
se

ns
ed

da
ta

.
𝐼
1

B
ar

be
ra

,
𝐼
2

St
ar

fis
h,

𝐼
3

A
ir

pl
an

e,
𝐼
4

SA
R

sh
ip

s.
M

ea
su

re
m

en
t
m

at
ri

x
us

ed
is

:
A
D

.
R
ec

on
st

ru
ct

io
n

m
at

ri
x

us
ed

is
:

A
.

Im
ag

e
re

co
ve

ry
do

ne
us

in
g
x
=

D
−
1
z

w
he

re
D

is
16

×
16

D
C

T
m

at
ri

x.

90



4.3.1 Convergence and Execution Time

The convergence condition of the algorithm using ℓ0 thresholding method is described

in (3.48) and (3.50). The convergence of the proposed ℓ1 and the ℓ0 based threshold-

ing methods are studied by analyzing the variation of the internal parameters of the

algorithms. The parameter studied are variation from the original signal |x(𝑘)−x𝑜𝑟𝑔|,

the internal residue r(𝑘), projected residue Qr(𝑘), the Lagrangian function gradient,

projected measurement Ax(𝑘), delta change in 𝑑x and 𝑑r. All parameters internal

to the algorithms shows decreasing tread indicating convergence. The Figure 4-15

shows the internal parameter convergence. The convergence of the error is evaluated

by computing the error in every iteration as shown in Figure 4-16(a). The ℓ1 based

thresholding algorithm IPPSCAD and ISTRP follows same profile. When the data

is sparse spike or sparse pulse, it is found that the proposed ℓ1 thresholding method

ISTRP take comparable convergence time. However, for image reconstruction it is

1.5× times faster compared to other algorithm with similar reconstruction perfor-

mance. The algorithms with performance same as the proposed methods in terms of

SNR of recovery are YALL, DALM, Homotopy and FISTA, but, at the expense of

computational time. These methods have the computational load of 1.2×, 3×, 4×

and 5× times respectively compared to the proposed STXEL0 method. To study

the effectiveness of thresholding on the new algorithm, simulations are carried out

with and with out thresholding. The convergence profile obtained is shown in Figure

4-16(b). The initial relative error is large for ℓ1 based methods and reduce to 0.1

with in 50 iterations. The initial relative error in the ℓ0 based methods are half of ℓ1

based methods. However the error reduction to 0.1 takes the same number of itera-

tions. When thresholding is not applied XEL0 takes nearly double the iterations to

converge.
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Figure 4-11: The house-image reconstructed from compressed measurements

Note: Image is captured through noise free compressed sensing of 16 × 16 blocks of
image scene. The reconstructed image using various algorithms are shown. The SNR
achieved and the algorithm execution time are given in title of each image.
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Figure 4-12: The Barbara-image reconstructed from compressed measurements

Note: Image is captured through noise free compressed sensing of 16 × 16 blocks of
image scene. The reconstructed image using various algorithms are shown. The SNR
achieved and the algorithm execution time are given in title of each image.
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Figure 4-13: The starfish-images reconstructed from compressed measurements

Note: Image is captured through noise free compressed sensing of 16 × 16 blocks of
image scene. The reconstructed image using various algorithms are shown. The SNR
achieved and the algorithm execution time are given in title of each image.
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Figure 4-14: The airplane-images reconstructed from compressed measurements

Note: Image is captured through noise free compressed sensing of 16 × 16 blocks of
image scene. The reconstructed image using various algorithms are shown. The SNR
achieved and the algorithm execution time are given in title of each image.
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Figure 4-15: The convergence of internal parameters of the two proposed algorithms
ISTRP and STXEL0.

Note: All of the internal parameters used inside the algorithms show decreasing trend
with iteration, indicating convergence of the solution. Compared to the proposed ℓ1
based method ISTRP, the ℓ0 based method converges 4× times faster.
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Figure 4-16: The convergence of reconstruction error of the two proposed algorithms
ISTRP and STXEL0.

Note: (a) Decreasing absolute error in reconstruction with iteration. The ℓ1 based
thresholding algorithm IPPSCAD and ISTRP follows same profile. (b) Decreasing
relative error of the proposed algorithm with thresholding (STXEL0) and without
thresholding (XEL0).
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4.4 Chapter Summary

The ℓ0 minimization based sparse signal recovery method STXEL0 presented in the

previous chapter is reformulated into a cascaded computational network, to enable

the implementation on low profile computing platforms for real time use. Here the

gradient minimization functions are defined for various values of algorithm parameter

and stored in RAM to reduce processing load. The computational complexity of the

hardware implementation is described in terms of the basic MAC units. The compu-

tational precision limits of the algorithms is described and evaluated. The optimal

value of the algorithm regularization parameters are determined experimentally. The

magnitude change in the internal variables of the algorithms are studied to confirm

the convergence. Extensive experimental evaluation of the algorithms are done and

the results are compared with the seven different classes of existing methods. The ad-

vantage of the proposed methods are presented. The algorithm is tested with various

signal reconstruction scenarios.

The analysis shows that the ℓ0 minimization based STXEL0 algorithm gives better

SNR in the reconstruction of images with lesser processing time. Generally ℓ0 methods

are avoided during problem definition, since an analytical solution is difficult to arrive.

The ℓ0 problem is approximated with a polynomial and the solution is obtained more

efficiently. In short the methods described here enable the users to experimentally

determine optimal inverse matrix for the specific sparse recovery problem and estimate

the computational load required for the implementation. The theoretical analysis of

convergence guarantee for any arbitrary inverse matrix is not discussed. However,

if arbitrary matrix is selected as the inverse, the convergence is influenced by the

value of regularization parameter. The proposed method enables implementation of

the sparse recovery algorithm with basic MAC units and function tables. However,

the proposed algorithms are optimized for low profile computing devices, these were

simulated and tested using MATLAB on 64-bit MS Windows OS in Intel i3 dual

core 1.9 GHz processor with 12 GB RAM. The evaluation of a low profile computing

platform for implementation of this algorithm is presented in the next chapter.
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Chapter 5

Evaluation of AM3358 Board for Networked

Sparse Signal Acquisition

5.1 Introduction

The single board computers are extensively used in rapid prototyping and product

development [56], [57], [58], [59]. This chapter presents the result and analysis of

a feasibility study on Beaglebone black single board computer (beagle board) for

realtime data acquisition and commanding application. This board has 𝑇𝐼𝐴𝑀3358

ARM processor and 𝐿𝐴𝑁8710𝐴 IEEE802.3 10/100Base-T/TX transceiver with a

reduced media independent interface. The TCP/IP protocol stack is implemented on

the Debian Linux kernel and the MAC protocol is implemented on a dedicated eMAC

unit. The sections of this chapter is presented as follows: the section 2 describes the

platform constraints of the board [60]. The section 3 gives the analysis and feasibility

of using the board as a realtime data acquisition system. [61], [62]. The summary of

analysis and scope of improvement are given in the chapter summary.

5.2 Platform Constraints

IoT platforms are used in data acquisition and control applications [63], [64]. The

performance evaluation of Ethernet protocol for realtime application is given in [65].

The processor and protocol stack of this board supports 1000Base-T (1Gb Ethernet)
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Figure 5-1: The plot of data loss after 150 frames when inter message gap is < 0.7
𝑚𝑠.

with 2016 byte frames size and allows the servicing of core interrupts by the Cortex

A8 or programmable realtime unit [66]. However, the network interface hardware

in the board restricts the speed to 10Base-T or 100Base-Tx. In both cases the bit

duration is 8 𝑛𝑠 corresponding to 125 𝑀𝑏𝑝𝑠 signaling rate and the 4/5𝐵 bit encoding

of 100BaseTx reduces the effective bit rate to 100 𝑀𝑏𝑝𝑠. The 5 level voltage signaling

(1.0, 0.5, 0.0, -0.5, -1.0 v) of 1000BaseT for representing the logic values 00, 01, 10, 11

respectively excluding 0v gives signaling rate of 250 𝑀𝑏𝑝𝑠 and its 8/9𝐵 bit encoding

reduces the effective bit rate to 222 𝑀𝑏𝑝𝑠. The 4 pair half duplex mode can achieve

888 𝑀𝑏𝑝𝑠.

The UDP evaluation program for sending and receiving 1k frames from a given

port is written in C and compiled using native gcc. Two sockets are created for trans-

mission and reception. The network communication is implemented using 𝑠𝑒𝑛𝑑𝑡𝑜 and

𝑟𝑒𝑐𝑣𝑓𝑟𝑜𝑚 functions. To verify that all the transmitted frames are received without

error and in sequence, the frames are designated with source ID, destination ID and

frame sequence number at byte locations 4, 6 and 16 respectively in the Tx frame

buffer; 65536 such frames are transmitted in a burst. Checking the command and

command complement words at location 12 and 14 of the buffer confirms the validity

of the frame In the receiver board the frame number and sequence in which it is

received are recorded. The process is repeated 100 times to get an average estimate.

The data frames are transmitted from the board in 0, 200, 500, 700 𝜇s time gaps
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Figure 5-2: The data loss between the boards in Rx and Tx mode when inter message
gap is < 2.0 𝑚𝑠.

and the frames are received using the same board in loop-back mode. The plot of

frame number versus receive sequence count is shown in figure 5-1. This gives a

measure of number of frames transmitted and received by the same board for various

inter messages gaps. After the reception of 150 frames the buffer over flow occurs and

the receiver misses the frames. However, if the inter message gap > 0.7 𝑚𝑠 no data

loss is observed. The buffer overflow happens due to the limited buffer size (200k)

of the board [67]. From this analysis it is found that 100% loss less communication

is achieved when the inter message gap is 700 𝜇s and hence the useful bandwidth is

11.7028𝑀𝑏𝑝𝑠 (1024×8/700 𝜇𝑠) even if the network interface operating in 100Base-Tx

mode.

The communication integrity between two similar boards is shown in figure 5-

2. In this case if the inter message gap is > 2 𝑚𝑠 no data loss is observed. The

maximum transmit bandwidth observed is 4.096 𝑀𝑏𝑝𝑠 (1024× 8/2000 𝜇𝑠). The test

is repeated with direct interface and interface using network switch; in both the cases

the maximum receive bandwidth available is same. The percentage of date received

by the board in loop back mode and remote data reception mode through network

switch for various inter message gap between 0 to 2000 𝜇s is shown in figure 5-3(a)

and figure 5-3(b).
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(a) (a)

Figure 5-3: The change in communication efficiency when inter message gap is in-
creased from 1 𝑢𝑠 to 2 𝑚𝑠.

Note: (a) The percentage of date received in loop back mode. (b) The percentage of
date received in remote reception mode.

Figure 5-4: The data loss plot when the board receive the data through multiple
software threads.

Note: Multiple threads usage: the number of frames received by each thread is reduces
approximately by the same factor as number of threads
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5.2.1 Effect of Software Threads on Throughput

The board is configured to receive data through dedicated threads. No improvement

in communication integrity is observed when inter message gap is < 2.0 𝑚𝑠 as shown

in Figure 5-4. The experiment is repeated with 10 data sockets ports and each

socket is programmed to receive the data using individual threads. The inter message

gap is varied between 0 𝑚𝑠 to 2.0 𝑚𝑠. It is observed that irrespective of delay or

the number of threads the communication bandwidth is limited by the capability

of interface hardware. When inter message gap is 1.9 𝑚𝑠 only 10% of the total

frames are received by each thread and total number of frame received remains same

(10%× 10 = 100% ). Hence no improvement can be achieved using multiple threads.

It is observed that only one thread is receiving the complete data frame in sequence.

The communication bandwidth is not related to the processing power of the PRU,

but limited by usable communication bandwidth of the interface hardware.

5.2.2 Effect of Network Switch on Throughput

The network is configured with 32 units of the beagle board and an industrial comput-

er capable of network speed negotiation up to 1Gbps. The communication protocol is

developed over UDP/IP with no retransmission even if acknowledgment frame is not

received. The data frame is buffered using 200kb circular buffer inside the network

interface chip. This buffer is emptied after PRU has completed the frame processing.

When the PRU is not performing the processing at the rate at which the data is

received the buffer gets overwritten by the new data received and eventually results

in the data frames loss. Also, the network traffic is monitored using wireshark ap-

plication and found that all data frames are send to the board. The data log of the

network switch also confirms this. The loss of data is more when the two boards are

connected directly, since the virtual buffer created by the network switch is absent in

that case.
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5.2.3 Bandwidth Limitations of the Board

To evaluate the realtime performance a process control network with 32 commanding

and data acquisition modules is considered. The commands to the modules are send

through Ethernet. The modules acquire the data and transmit back to control con-

sole. As the available bandwidth is 4.096 𝑀𝑏𝑝𝑠 the frame rate possible is 500 frames

per second (4.096𝑀/8). This corresponds to 2 𝑚𝑠 command periodicity when frame

size is 1024 byte long. Commanding all 32 boards using 64 bytes command and 256

bytes data acknowledgment frame require 10240 bytes per cycle. The communication

format is shown in Figure 5-5. In bus topology network with no active switching

system this communication load results in 50 frames per second or 20 𝑚𝑠 periodicity.

This gives a realizable communication bandwidth of 50𝐻𝑧 and control bandwidth of

10Hz. Considering the transmission bandwidth of 4.5223 𝑀𝑏𝑝𝑠, the achievable chan-

nel sampling rate is 4.41𝐾 samples per second if there are 64 simultaneous sampling

ADC channels with 16 bit resolution. In general the achievable networked control

bandwidth can be written as (5.1), where 𝐵𝑊𝑛𝑒𝑡 is the network bandwidth, 𝐿𝑐𝑚𝑑 is

command frame length, 𝐿𝑑𝑎𝑡 is the data frame length and 𝑁 is total number of data

acquisition and control modules.

𝐵𝑊𝑐𝑡𝑟𝑙 =
𝐵𝑊𝑛𝑒𝑡

8(𝐿𝑐𝑚𝑑 + 𝐿𝑑𝑎𝑡)𝑁
(5.1)

Figure 5-5: The communication frame format of the networked data acquisition and
control modules

Note: Frame format of the networked control modules with 32 units. First 64 bytes
corresponds to command frame followed by 256 bytes acknowledgment frame contains
status and acquired data.
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5.3 Timing Analysis

From the experimental evaluation it is estimated that the board has 4.5223 𝑀𝑏𝑝𝑠

transmission and 4.096 𝑀𝑏𝑝𝑠 reception bandwidth. The reduction in the reception

bandwidth is due to the processing overhead involved in frame validation process.

The programmable boards with Ethernet interface are used in networked data acqui-

sition and control applications [68]. The feasibility of implementing the realtime data

acquisition and commanding system using beagle board is discussed here. The anal-

ysis of timing requirements for the networked control system is described in [69],[70]

and the time delay compensation scheme is given in [71]. The configuration of data

acquisition network used in the evaluation is shown in Figure 5-6. The functional

requirement specifications are summarized as :

∙ Receive system commands from the supervisor module and configure the data

acquisition system for the specified sampling rate.

∙ Periodically acquire and store the parameters in local memory.

∙ Send the status message with in 12 𝜇𝑠 of command reception.

∙ Performs high-speed sampling of the requested analog channel.

∙ Acquire parameters of maximum 30 measurement channels within 20 𝑚𝑠.

However, the data acquisition should complete before 20 𝑚𝑠, to yield time to pro-

cess the system commands. The maximum number of words involved in the system

commanding is 4 words plus network frame header. While maintaining the status

response latency of 12 𝜇𝑠, the maximum time required to complete a system com-

mand is 4× 20 𝜇𝑠+12 𝜇𝑠. The net time required to command all the 30 sub-systems

is 2.760 𝑚𝑠 and hence there is a time margin of 17.24 𝑚𝑠. After providing a time

margin of 1 𝑚𝑠 the remaining 16.24 𝑚𝑠 can be equally divided for data acquisition

from 30 sub-systems. This gives 541 𝜇𝑠 for data acquisition from each sub-system.

Within this time maximum 27 words can be transmitted. But, considering the data
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Figure 5-6: The configuration of the data acquisition and control network.

request command, status response and 12 𝜇𝑠 response latency the maximum 24 word

communication is possible. The 24 data word limit is sufficient for sending the system

related information back to control console. Considering all this timing constrains

discussed, it is feasible to complete the commanding and data acquisition within one

cycle period of 20 𝑚𝑠.

Algorithm 9 Networked Data Acquisition and Commanding
Require: 𝑇𝑐𝑦𝑐𝑙𝑒, 𝐼𝐷, [𝐶𝑀𝐷,𝑆𝐼𝐷]
1: Task: receive and process control command
2: Initialization: 𝑛𝑜𝑑𝑒𝐼𝐷 = ID
3: while 𝑆𝐼𝐷 == Ctrl Console do
4: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 : [Network data]
5: 𝑣𝑒𝑟𝑖𝑓𝑦 : DID == 𝑛𝑜𝑑𝑒𝐼𝐷
6: 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒: CMD xor ¯𝐶𝑀𝐷 == 0xFFFF
7: 𝑠𝑒𝑛𝑑: Status to Ctrl Console
8: 𝑔𝑒𝑡 : command angle 𝜃
9: 𝑠𝑒𝑛𝑑 : 𝜃 to DSP

10: end while
11: while 𝑡𝑖𝑚𝑒 > 𝑇𝑐𝑦𝑐𝑙𝑒 do
12: 𝑓𝑜𝑟𝑚𝑎𝑡: data response
13: 𝑠𝑒𝑛𝑑: Data to Ctrl Console
14: 𝑤𝑎𝑖𝑡: 𝑇𝑐𝑦𝑐𝑙𝑒

15: if link fail then
16: Do 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒: salvage mode
17: end if
18: end while
19: Output: command angle 𝜃
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Figure 5-7: The relation between control latency vs. number of nodes, network bus
load vs. data frame size.

Note: (a) The number of sub-systems that can be controlled using the node vs feasible
control latency of the node. (b) The number of data words that can be handled in one
frame vs bus load on the network.

Based on the timing analysis discussed, a protocol for commanding the beagle

board is given in algorithm-9. The cycle timing analysis of realtime protocol over

Ethernet is given in [72]. The command to the board consists of command word and

2 data words; the first 5 bits of the data word are the controller address repeating

the same address as in the first command word. The remaining 11 bits specify the

sub-system control word. The second word is the complement of the first. Additional

26 bytes network header and 32 extra bytes are included to make the frame 64 bytes

long. In response to the command frame the board sends status word response within

12 𝜇𝑠 and executes the actuation. The status frame consists of 26 bytes frame header,

24 words status data, 128 bytes analog data corresponding to 64 ADC channels and

54 extra bytes to make the frame 256 bytes long.

5.3.1 Communication Bus Load

In command overload situation the supervisor system send commands to all the 30

subsystems in 20𝑚𝑠 interval, this limiting case is considered to estimate the maximum

load scenario. After issuing command the control console waits for the status data
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Table 5.1: Realtime latency and number of control nodes

Control No Words in Max No of
latency Data Msg nodes
2 ms 64 7
4 ms 74 15
8 ms 100 25
16 ms 200 31

from the node. The beagle board responds within 12 𝜇𝑠 by transmitting command

word followed by 64 data words containing information about the sub-system. This

total communication takes 30 × 8 × 320/4.096 𝑀𝐻𝑧 = 18.75 𝑚𝑠 leaving 1.25 𝑚𝑠

margin. Based on this worst-case timing the bus is free for (100× 1.25/20) = 6.26%

of the cycle interval. The communication load can be determined using equation

(5.2) where 𝐵𝑊𝑛𝑒𝑡 is the network bandwidth in bits per second unit, 𝑇𝑝 is minor

cycle period and other parameters are as described earlier.

bus load =
8(𝐿𝑐𝑚𝑑 + 𝐿𝑑𝑎𝑡)𝑁

𝐵𝑊𝑛𝑒𝑡 × 𝑇𝑝 𝑚𝑠
100 (5.2)

The response latency of the network for various frame size and number of nodes is

shown graphically in Figure 5-7(a) and is summarized in Table 5.1. The change in

bus load when number of nodes are increased from 1 to 32 and the number of data

words are increased from 2 to 256 is given in Figure 5-7(b) and summarized in Table

5.2. Under any given constraints the number of nodes and the number of data words

are limited. However, if the control latency is > 20 𝑚𝑠, 32 control nodes with 256

byte data words and 64 byte command can be used in the network. If the latency is

limited to 10 𝑚𝑠 there will be corresponding reduction in communication bandwidth.

5.3.2 Computational Complexity and Power Dissipation

The computational complexity of the networked data acquisition and control algorith-

m is determined from the types of instructions used in the algorithm implementation.

108



Table 5.2: Message length and bus load

No. No. Rx No.Tx Net BW
Act CMD Data time load
30 64 64 7.85 ms 38.0%
30 64 100 9.84 ms 48.0%
30 64 200 15.74 ms 82.2%
30 64 256 19.24 ms 94.2%

(a) (b)

Figure 5-8: The variation in average power dissipation versus inter message gap during
network data acquisition.

Note: (a) Transient variation in power dissipation per node during network data
acquisition. (b) Average power dissipation versus inter message gap.

The processor instructions used in the implementation of the algorithm are classified

into 4 types; register instructions, ALU instructions, branch instruction and float in-

structions. The word comparison is implemented using 2 MOV, 1 CMP and 1 JMP

instructions. The data communication uses the required number of MOV instruc-

tions. The computational complexity in the implementation of the algorithm can be

written as (𝐿𝑐𝑚𝑑 + 𝐿𝑑𝑎𝑡 + 8)𝑀𝑂𝑉 + 3𝐴𝐿𝑈 + 3𝐽𝑀𝑃 + 𝐹𝐿𝑂𝑃 . Assuming all integer

operations takes the same processor load and the floating-point operation uses 5 INT

operations, the computational complexity can be written as (5.3).

Number of instructions = 𝐿𝑐𝑚𝑑 + 𝐿𝑑𝑎𝑡 + 19 𝑜𝑝𝑠 (5.3)
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This empirical equation includes the commanding and communication process only

and the complexity of the DSP based controller algorithm is not discussed. The

operating current of the board is measured during transmission and reception. The

transient variation in power dissipation when the board is receiving 1024 byte network

frame is given in Figure 5-8(a). The average power dissipation when the inter message

gap is varied between 0s to 10s is given in Figure 5-8(b). At maximum transmission

load the peak average power dissipation measured is 2.5𝑤𝑎𝑡𝑡𝑠 and at steady state the

power dissipation measured is 1.8𝑤𝑎𝑡𝑡𝑠.

5.4 Chapter Summary

In summary the AM3358 processor based beagle board can be used for networked

realtime applications with the following timing constraints: (i) Realtime system re-

sponse tolerance is > 20 𝑚𝑠. (ii) The data receive speed is limited to 4.096 𝑀𝑏𝑝𝑠.

(iii) The individual network command periodicity is > 2 𝑚𝑠 for command frame of

size 1024 bytes long. (iv) The data acquisition and transmission bandwidth is lim-

ited to 4.5223 𝑀𝑏𝑝𝑠. The realtime network performance can be achieved under the

above constraints as the AM3358 processor of the board has predictable performance.

The dedicated use of threads for data reception process does not improve network

bandwidth, And if higher communication bandwidth is required, the network inter-

face chip or module can be replaced to 1𝐺𝑏𝑝𝑠 capable device. In short the beagle

board based networked data acquisition system can work in 20 𝑚𝑠 realtime period-

icity and with 10𝐻𝑧 output bandwidth if the number nodes are < 32. In summary

the AM3358 based processor board can be used for realtime application with strict

timing specifications. An implementation of the distributed sparse data acquisition

system is presented in the next chapter, which use the data communication protocol

described in this chapter and X-L0 E-L0 algorithm described in the previous chapter

for reconstruction of the sparse data.
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Chapter 6

Distributed Measurement of Naturally Sparse Events

6.1 Introduction

Events with naturally sparse measurement signature are lightning induced ground

potential rise, earthquake or tsunami triggered seismic events, hurricane and flood

triggered water saturation and land slides, solar flare induced electric and magnetic

field variations. These events are rare and result in extreme inconveniences. However

there are large number of widely distributed binary sensor systems for detecting

such extreme events, in many case these warning systems are signal threshold based

detection and the measurement are detected when it is large and some times the

damage starts when the events are occurring. All of these events generates typical

precursor signals, however these signals are often missed due the lower acquisition

rate, not due to the low sampling rate as extremely fast signal sampling systems are

available for measurement and storage of all of signals. The event missing depends

on how the sampled data is acquired and this needs no explanation that these rare

events are not possible to measure and acquire from the data analysis lab. The sensors

need to be widely distributed in event prone remote locations. It is easy to establish

high sampling rate system in every location to capture the typical precursor signals,

however bringing these signals to the labs for real time analysis is important. The

solution to this problem is simple, use high bandwidth communication systems. But

it is not cost effective and impractical. An alternative solution is to compress the data
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and transmit through low bandwidth communication framework. But there exist a

method of measuring and compressing at the same time and it is widely studied and

used in various applications like synthetic aperture radar signal measurements and

MRI. One way to increase the chance of detection is to spawn expendable low cost

measurement systems widely and establish a communication network for acquiring

these signals.

The Internet of things based measurement system provides the low cost expend-

able measurement and processing platform. This chapter discusses about the net-

working that can be implemented using these units for transmitting the acquired

sparse signals using the concept of wireless sensor networking systems. There exist

advanced systems and algorithms for all the processes that are explored in the chap-

ter, what is being discussed is how to optimize system to a minimum level so that

it is implementable using expendable IoT platforms. The contents of this chapter is

organized into three sections, the measurement of sparse events, distributed acqui-

sition and reliability. The accurate measurement of the ground potential voltage at

distributed locations inside a plant is necessary for correcting the offset in the corre-

sponding ground referenced measurements for better data interpretation; especially

in industrial process control applications. This offset is transient and exist only for a

short duration < 200𝜇𝑠 and in most of the time the value is zero. The sampling rate

has to be high to capture these transient characteristics in the signal. Considering

the large number of such distributed measurements the data generated will also be

enormous. The following four problems need to be addressed in this scenario:

∙ The measurement of transient signal.

∙ The handling of large amount of data.

∙ The transmission of the acquired signal to the data processing station

∙ The implementation of the system.

Considering the implementation of the system, it needs to be low cost and expendable,

because, even if high reliable components are used in the fabrication of these devices,
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the degradation is eminent as long as they are left outside. Hence the low cost

IoT based devices are selected in such scenario. But, such devices have processing

capabilities limitation that constrains the implementation of data acquisition, data

handling and the communication processes. The capability of one such IoT data

processing board is discussed in the earlier chapter. The sparse measurement method

is adopted here to solve the first two problems as described in section 2. Also the

processing requirement is relatively low compared to conventional high speed data

acquisition and compression process, as the sparse measurement combines the data

acquisition and compression into a simpler process of matrix multiplication. This

gives triple advantage of high speed acquisition, data compression and simplified

computation. Also, the processing can be done in the limited resources of IoT devices.

Considering the transmission of measured data to data processing station, the

use of copper cables is infeasible as the communication cables become electrically

polarized during lightning and causes damage to the devices interfaced to it. In such

case the measurement system will be the first one to fail. However, wireless sensor

network can be used in this scenario as these are independent, easily deployable,

network scalable and implementable using IoT devices [73],[74]. A trivial solution is

to implement a data collection node with multiple data acquisition and transmission

nodes. But this is limited by the communication range of the underlying physical

layer. To spread-out the data acquisition units in a wider area a routing mechanis-

m need to be implemented for data acquisition and transmission nodes; and at the

same time implementable using IoT devices with limited capabilities. Some of the

algorithms available for such routing are Dijikstra’s algorithm (DA), ad hoc on de-

mand distance vector routing (AODV) [75], ad hoc on demand multipath distance

vector routing (AOMDV) [76], secure multipath load balancing-AODV [77]. The low

energy adaptive clustering hierarchy (LEACH) [78] with self-organization and adap-

tive clustering feature is the base of many of the power aware routing algorithms.

The algorithm is compared with other power aware routing algorithms like Energy

efficient clustering (DEEC) [79], Immune cooperative particle swarm optimization

(ICPSO) [80], Extended stable election protocol (ESEP) [81] and Energy-efficient,
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delay-aware and lifetime-balancing data collection protocol (EDAL) [82]. Other en-

ergy conservation options in WSN are spectrum sensing and channel allocation [83]

and Efficient energy-aware routing with redundancy elimination [84], but in these the

route configuration is fixed and not randomly deployable. The implementations of

these algorithms demand high computational power as these algorithms are designed

for high efficiency routing applications; but, if the implementation platform is a low

cost IoT processor the cost of computation is a major factor. A comparison of these

algorithms is given in Table 6.1.

A similar work on combining compressed sensing and MAC protocol design is

presented in [85]. A custom protocol development scheme for adaptive multipath

load balancing scheme based on disjoint links found from path vacant ratio is given

in [77]. A node distribution strategy maximizing the coverage is described in [86].

A survey of multipath routing protocols and its classifications is given in the paper

[87]. A comparison and evaluation-metric for multipath routing algorithms can be

seen in [88] and a survey of Bluetooth multi-hop networks including low energy mesh

networks is given in [89]. Power dissipation can be further reduced using radio duty

cycling protocol [90] or straight line routing protocol [91]; but these are not considered

as they need platform hardware change. The geographical energy aware routing is

not considered as this requires GPS based triangulation method for route discovery.

Based on various wireless sensor network schemes studied in [92] it is observed that

IEEE 802.11 based solutions are suitable in such applications. A general guideline for

design and analysis of sensing network can be found in [93] and a frame work for MAC

protocol modeling is given in [94]. The reliability of the network is estimated using

accelerated testing concept described in [95]. An empirical expression for reliability

estimate using Eyring model is described in [96]. The quantitative estimation of the

reliability of the proposed network is given in section 3 and 7 of this chapter. The

chapter summary is given in section 4.
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6.2 Ground Potential Measurement

The lighting flash from 1 to 10 𝑘𝑚 altitude cumulonimbus clouds span for 50−200𝑚𝑠

with a discharge peak near 10𝜇𝑠. The ground potential rise due to lightning current

leakage to ground is expressed as 𝑉𝑟 =
𝐼𝜌
2𝜋𝑟

, where 𝜌 is the local surface resistivity of

earth in Ω𝑚, 𝐼 is the leakage current, 𝑟 is the radial distance from the lighting strike

point [98]. The figure 6-1(a) shows the peak time value of the simulated potential

during electrical discharge. The lightning induced ground potential is simulated using

matlab model1 and the transients are acquired using simulink model. The simulink

schematic is similar to one used in [99] for wide band signal acquisition for spectral

estimation. The transient nature of this signal can be observed from figure 6-2(a). In

ground potential measurement the reference ground is infeasible hence two electrical

probes at a distance apart measure the relative potential difference. The probes

located in radial direction measure large potential difference compared to electrodes

along the tangent to the equi-potential field as shown in the figure 6-1(b). The

Schlumberger resistance technique is used to calibrate the measurement device. The

differential potential developed can be written as (6.1) where 𝑑 is the spacing between

electrodes.

𝑉𝑑 =
𝐼𝜌

𝜋𝑟
(

1

1 + 𝑟/𝑑
) (6.1)

As this transient voltage exist only for a short duration < 200𝜇𝑠; based on sampling

theorem this signal should be acquired least at 5𝐾𝐻𝑧. Due to sparse nature of the

event most of the time the measurement is zero. However to get the transient charac-

teristics the sampling rate cannot be compromised. Considering the large number of

such distributed measurement units the data generated will be enormous. 1000 such

measurement nodes will generate 5000𝐾 samples per second, that needs a bandwidth

of ≥ 50𝑀𝑏𝑝𝑠 at data collection node. This data requirement is more than the spec-

ifications of IoT devices. As discussed earlier the compressed sensing technique can

combine the data acquisition and compression into a simpler process of matrix mul-

1data taken form soil science society of America
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tiplication and can be done in any low profile computational units, hence the sparse

measurement method is adopted here to reduce the sampling rate.

6.2.1 Sparse Measurement of Ground Potential

Compressed Sensing is a signal measurement and compression technique for sparse

signals, where the analog to digital conversion can be done at sufficiently smaller

sampling frequency compared to the Nyquist sampling rate [1]. For any arbitrary

signal x ∈ R𝑁 with 𝐾-sparse representation z ∈ R𝑁 (‖z‖0 = 𝐾) in some basis B and

with x → z transformation given by x = Bz, (B ∈ R𝑁×𝑁) the theory states that the

signal x can be measured as y with 𝑀 ≪ 𝑁 samples from a linear sparse-projection

space B using a measurement matrix A (6.2).

y = AB−1x, A ∈ R𝑀×𝑁 , ‖z‖0 = 𝐾 < 𝑀 ≪ 𝑁 (6.2)

where B−1 ∈ R𝑁×𝑁 is the transformation matrix to convert x to sparse z. If the

signal to be acquired x is sparse, ‖x‖0 = 𝐾 ≪ 𝑁 then B = I. As the transient

signal acquired is in compressed form, it needs to be reverted back to its original

form prior to use. The voltage profile is reconstructed from the measurement using

ℓ0 minimization given in (6.3) with small error 𝜀 ≈ 0.

x* = Bz*, z* = argmin
z

‖z‖0 , s.t. ‖y −Az‖2 ≤ 𝜀 (6.3)

This optimization involves large computation, however this processing is not meant

to be done in IoT processor board. The signal reconstruction and analysis is done

in a remote supervisory console. The ℓ0 minimization is nondeterministic in poly-

nomial time (NP) hard problem in terms of function computation because of the

combinatorial search required, it is very large even for smaller vectors. However,

modified ℓ0 function approximation methods like Segmented Threshold X-L0 E-L0

(STXEL0) [100], the algorithm presented in Chapter 4 or radial basis function based

sparse recovery [25] does some alternate ways to minimize the computation require-
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Figure 6-1: The profile of simulated ground potential rise and measurement using
differential probes.

Note: (a) Simulated ground potential using 3.2𝐴𝑚𝑝 10𝑚𝑠 DC discharge pulse causes
proximately 5𝑉 ground potential rise along 5𝑚 radius in wet Clayey sand with 50Ω𝑚
resistivity. (b) The contour of ground potential rises. The voltage sensed by the
isolated differential probes [A,B] in the radial direction to the field is high compared
to the measurement by the probes [C,D] in the tangential direction to the field.
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Figure 6-2: Sparse measurement and reconstruction of ground potential signal

Note: Comparison of sparse ground potential variation signal reconstructed from com-
pressed samples using SL0 algorithm and the corresponding 10:1 down converted sam-
ples from 20 KHz base band measurement

ment. The computation in STXEL0 algorithm without segmentation is recapitulated

as minimize ‖z‖0 and ‖e‖0 by iteration using polynomial approximation subject to

the recovery error e = A† (y −Az) < 𝜀 and scale down the function gradient in every

iteration with smaller scale factor 𝛼𝑘 = 𝛼0𝜎𝑘. Here z is the sparse representation of

the compressible signal x. The initial value used is z(0) = A†y. The figure 6-2 shows

the voltage transients recovered using smooth ℓ0 [26] minimization method.

6.3 Wireless Sensor Network

Having acquired the data it needs to be transmitted to the monitoring station. The

network considered here consists of 3 types of nodes, the nodes with direct interface to

data processing station (N0 nodes), the nodes with data routing and data acquisition

functions (APQ nodes) and the nodes with data acquisition and transmission func-

tions (AQ nodes). The strength of the network depends on the effectiveness of the

logic build into its routing algorithm. Routing algorithms in general use clustering

or forwarding schemes, clustering is computationally demanding and is suitable for

high speed low data frame size networks. The frame forwarding scheme is optimal
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Figure 6-3: The routing architecture of the distributed sparse measurement system

Note: 𝑁𝑘 represents the node which is trying to establish communication with one of
its neighbourhood {𝑁𝑖, 𝑖 ∈ Ω𝑘}. The link weight is computed as function of 𝑑𝐺𝐼(𝑖),
𝑃𝑆(𝑖), 𝐹 (𝑖), 𝐿(𝑖) and 𝑏(𝑖).

for low data rate networks. A simpler protocol is needed for low profile IoT boards.

The table I shows the computational complexity of some of the currently available

algorithms. Here we try to develop a light-weight routing algorithm. Four factors

are considered as most essential; namely energy efficiency, data communication relia-

bility, data security and its maintainability. While considering reliability as primary

concern the multipath routing is optimal since it reduces the system unavailability

due to node failures. Considering the data synchronization issues of multipath rout-

ing, the stand-by redundant multipath routing technique is effective. Here every node

maintains a list of priority routes selected based on link cost estimation. These links

will be used in later time if a failure is observed in the active link. The parameters

used in the algorithm design are: number of nodes in the upstream path up to N0

node 𝑑𝐺𝐼 , link speed 𝐿, bandwidth 𝐵𝑊 , battery energy level 𝑏 / residual energy 𝐸𝑟,

received signal power 𝑃𝑆 and the data frame size 𝐹 . The table I shows the parameter

usage of some of the currently available algorithms.

The proposed routing strategy considers the above mentioned resources as con-

strained while determining the optimal route [101]. The network graph referred here

is shown in figure 6-3. The algorithm first identifies its neighbouring access point
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nodes (APQ) or N0 node which satisfies the network discovery process described as

Ω𝑘 = {𝑖 . . . } | 𝑃𝑤𝑑 = 𝑓(𝑆𝑆𝐼𝐷(𝑖)), ∀𝑖 ∈ N𝑘 (6.4)

where N𝑘 the enumeration index of all possible neighbouring APQs, Ω𝑘 is the set

of nodes such that the password 𝑃𝑤𝑑 can be decoded from the service set identifier

(SSID). To identify all nodes as part of this WSN, the SSID is given the format

[𝑆𝑌 𝑆]3.[𝑌 𝑌𝑀𝑀 ]4.[𝑆𝐸𝑁 ]3.[𝑁𝑈𝑀 ]6 where each field is of the specified bytes long

and SYS: system identifier, SEN: sensor type, YY SS: year and month of installation

and NUM: sensor number, like [MET1611DFV000822]. After boot up the nodes scan

all the WiFi channels for the compliance of the connection format and determines

neighbouring APQs [102]. The node 𝑁𝑘 then generates the parameter matrix W𝑘

from the information available in the beacon frame of the observable adjacent nodes

𝑖 . . . 𝑗 ∈ Ω𝑘.

W𝑘 =

⎡⎢⎢⎢⎣
𝑑𝐺𝐼(𝑖) 𝐹 (𝑖) 𝑃𝑆(𝑖) 𝐿(𝑖) 𝑏(𝑖) 𝐶ℎ(𝑖)

. . . . . .

𝑑𝐺𝐼(𝑗) 𝐹 (𝑗) 𝑃𝑆(𝑗) 𝐿(𝑗) 𝑏(𝑗) 𝐶ℎ(𝑗)

⎤⎥⎥⎥⎦
𝑇

⊂ R6×𝜅 𝑖 ∈ Ω𝑘, 𝜅 = |Ω𝑘|0

(6.5)

where (𝑖) indicates the node 𝑁𝑖, 𝑑𝐺𝐼(𝑖) ∈ (1, 𝑁𝑚𝑎𝑥) the hop distance, 𝑁𝑚𝑎𝑥 is the

maximum links to reach the data processing node, 𝑃𝑆(𝑖) is the observed signal strength

of the node 𝑁𝑖, 𝑃𝑚𝑖𝑛 ≤ 𝑃𝑆(𝑖) ≤ 𝑃𝑚𝑎𝑥 ≤ 0, 𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥 are the minimum and maximum

transmission power and 0 < 𝑏(𝑖) ≤ 1 is the energy reserve. The operator |.|0 finds the

number elements in the set and 𝜅 is the total number of neighbourhood nodes of 𝑁𝑘.

These parameters are used in the weight computation as exponential functions for

accommodating wider range. The upper limit of bandwidth 𝐿(𝑖) is accommodated

using saturating function (1 − 𝑒−𝜎𝐿(𝑖)). The frame size 𝐹 (𝑖) include the node’s own

data frame size and frame size of other nodes for which𝑁𝑖 functions as router. A trivial

routing from node 𝑁𝑘 to 𝑁𝑖 (ℛ(𝑘)) is to define a vector weight function 𝑤(R6×𝜅 → R𝜅)
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and select a node with largest link weight (6.7).

𝑖 = ℛ(𝑘) : ∀𝑘 ∃𝑖 ∈ Ω𝑘 ∋ 𝑖 = max
𝑖

{𝑤(W𝑘)} (6.6)

𝑤(W𝑘
𝑖 ) = 𝛼𝑒−𝜆𝑑𝐺𝐼(𝑖) + 𝛽𝑒𝛾𝑃𝑆(𝑖) + 𝜇

(︀
1− 𝑒−𝜎𝐿(𝑖)

)︀
+ 𝛿𝑒−𝜖𝐹 (𝑖) + 𝜁𝑏(𝑖)𝑒𝜉𝑏(𝑖) (6.7)

where (𝛼 𝜆), (𝛽 𝛾), (𝜇 𝜎), (𝛿 𝜖) and (𝜁 𝜉) are function normalization constants quan-

tified in later section. The computation is further reduced by taking the inter depen-

dency of the parameters. If the nodes generate same amount of data the cumulative

frame size 𝐹 (𝑖) increases as distance 𝑑𝐺𝐼(𝑖) to 𝑁0 node reduces (𝐹 (𝑖) ∝ 1/𝑑𝐺𝐼(𝑖)).

Hence these factors can be combined together. Similarly the maximum possible link

speed depends on the carrier power as 𝐿(𝑘→𝑖) = 𝐵𝑊 log(1 + 𝑃𝑆(𝑖)
𝑃𝑁

), where 𝑃𝑁 is the

ambient noise power [103]. Considering these dependencies the link weight function

is simplified as (6.8) after setting 𝜎0 = 𝜎𝐵𝑊 .

𝑤(W𝑘
𝑖 ) = 𝜇+𝛼𝑒−𝜆𝑑𝐺𝐼(𝑖) + 𝛿𝑒−𝜖/𝑑𝐺𝐼(𝑖) + 𝛽𝑒𝛾𝑃𝑆(𝑖) −𝜇𝑒−𝜎0 log(1+𝑆𝑁𝑅) + 𝜁𝑏(𝑖)𝑒𝜉𝑏(𝑖) (6.8)

The transmitted signal power 𝑃𝑇 (𝑖) of the node 𝑁𝑖 attenuates to 𝑃𝑆(𝑖) when it reaches

the node 𝑁𝑘 and this is related as 𝑃𝑆(𝑖) = 𝐺𝑇𝑃𝑇 (𝑖)
1

4𝜋|r|2
𝜆2
𝑊

4𝜋
𝐺𝑅, where 𝐺𝑇 and 𝐺𝑅 are

the transmitter and receiver antenna gain, 𝜆𝑊 is the wavelength and r is the distance

between nodes. If all nodes transmit the beacon frame at 𝑃𝑇 (𝑖) = 𝑃𝑚𝑎𝑥 power; and if

the antenna gain is same (𝐺𝐴) for all nodes the power ratio 𝜂 = 10 log(𝑃𝑇 (𝑖)/𝑃𝑆(𝑖))

can be written as (6.9).

𝜂 = 20

(︂
log(

4𝜋|r|
𝜆𝑊

)− log(𝐺𝐴)

)︂
= 10 log

𝑃𝑚𝑎𝑥

𝑃𝑆(𝑖)
(6.9)

If the node 𝑁𝑘 detects that the signal strength of the beacon frame 𝑃𝑆(𝑖) > 𝑃𝑠𝑒𝑛

(sensitivity of the node), then decreases the link power to a minimum enough to meet

the node 𝑁𝑖’s sensitivity. From the relation 𝐺𝐴𝑃𝑇𝑚𝑖𝑛
1

4𝜋|r|2
𝜆2
𝑊

4𝜋
𝐺𝐴 = 𝑃𝑠𝑒𝑛 the minimum

122



transmission power required is given in (6.10).

𝑃𝑇𝑚𝑖𝑛|(𝑘→𝑖) = 10 log(𝑃𝑠𝑒𝑛
𝑃𝑚𝑎𝑥

𝑃𝑆(𝑖)
) 𝑑𝐵𝑖 (6.10)

The access point mode beacon broadcast from 𝑁𝑘 is maintained at 𝑃𝑚𝑎𝑥. The data

frame size is automatically reduced using compression feature of sparse measurement

described in the previous section. This is also included in link weight function as

increase in energy level parameter: 𝑏(𝑖) = 𝑏𝑖 + 𝑐(𝑖), where 0 < 𝑐(𝑖) < 1 represents the

compression rate. The link weight function is changed as (6.11) after setting 𝜇 = 𝛼.

𝑤(W𝑘
𝑖 ) = 𝛼(1 + 𝑒−𝜆𝑑𝐺𝐼(𝑖) + 𝑒−𝜖/𝑑𝐺𝐼(𝑖) + 𝑏(𝑖)𝑒𝑏(𝑖)−1

+ 𝑒𝛾𝑃𝑆(𝑖)+1 − 𝑒−𝜎0 log(1+𝑆𝑁𝑅)) ∈ R𝜅 (6.11)

This function can be implemented as 4 lookup tables corresponding to each variable.

The network routing starts from the node proximal to N0 node. The APQ nodes con-

nected to the N0 node, broadcast the beacon frame with the information { 𝑑𝐺𝐼(0) = 0,

𝐿(0) = 𝐿0, 𝐹 (0) = 𝐹0, 𝑏(0) = 1 }. If the node 𝑁𝑘 gets the beacon broadcast from

multiple nodes like 𝑁𝑖, 𝑁𝑗 etc, the routing algorithm ℛ(.) determines the optimal

node using (6.11) and establishes the connection.

6.3.1 Sensor Network State Parameters

After establishing the upstream connection, the node then defines its current state 𝑆𝑘

(6.12) using the available information, where 𝐶ℎ(𝑘) is the WiFi channel, 𝑇𝑝𝑑𝑖 is the

propagation delay and 𝐿(𝑘) is the (𝑁𝑘 → 𝑁𝑖) link speed of the upstream link. 𝑃𝑆(𝑘)

is the received power and R(𝑘) is the route table from the node to 𝑁0 node.

S𝑘 = [𝑑𝐺𝐼(𝑘) 𝑃𝑆(𝑘) 𝐿(𝑘) 𝐹 (𝑘) 𝑏(𝑘) 𝐶ℎ(𝑘) 𝑇𝑝𝑑𝑖 R(𝑘) 𝑤(W𝑘
𝑖 ) 𝑃𝑇𝑚𝑖𝑛]

𝑇 (6.12)

The following parameters are updated with the information obtained from the up-

stream node: 𝑑𝐺𝐼(𝑘) = 𝑑𝐺𝐼(𝑖) + 1, 𝐹 (𝑘) = 𝐹 (𝑖) + 𝐹𝑘0. where 𝐹𝑘0 is its own data
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Figure 6-4: The graphical representation of the normalized link weight computation
function.

Note: The link speed is taken as function of signal strength 𝐿(𝑖) = 𝐵 log(1+ 𝑃𝑆(𝑖)
𝑃𝑁

) and
the frame size is taken as function of hop distance (𝐹 (𝑖) = 1/𝜖𝑑𝐺𝐼). The combined
link weight function is computed for 𝐵 = 2000𝑘𝑏𝑝𝑠, 𝑃𝑆(𝑘) ∈ [−90 − 20]𝑑𝐵𝑖, 𝑃𝑁 =
0.001𝑊𝑎𝑡𝑡𝑠, and 𝑑𝐺𝐼(𝑖) ∈ [1 . . . 36].

frame size and 𝑏(𝑘) = 𝑏𝑘. These values determine the quality of link through this

node. The node 𝑁𝑘 then starts the transmission of its beacon frame containing state

parameters in access point mode through its selected channel. The state parameters

𝑆𝑘 is also send to its upstream node. When the other downstream node 𝑁𝑚 connects

to 𝑁𝑘 the frame size is updated as 𝐹 (𝑘) = 𝐹 (𝑖)+𝐹𝑘0+𝐹𝑚0. As new node connects to

𝑁𝑚 the frame size of 𝑁𝑘 gets updated again as 𝐹 (𝑘) = 𝐹 (𝑖) +𝐹𝑘0 +𝐹 (𝑚). This new

information is updated through the beacon frame. Other nodes connected to 𝑁𝑘 can

switch to any alternate node if the link becomes suboptimal for it. This adaptability

strengthens the network structure.
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6.3.2 Node Weight Scaling Parameters

The values of sensitivity and scaling parameters in the link weight function (6.11) are

selected to keep 𝑤(W𝑘
𝑖 ) < 4 as given in (6.13)

𝜆 =
1

⌈{𝑑𝐺𝐼(𝑖)}⌉
, 𝛾 =

⃒⃒⃒⃒
1

⌈{𝑃𝑆(𝑖)}⌉

⃒⃒⃒⃒
, 𝜎 =

1

⌈{𝐿(𝑖)}⌉

𝜖 = 1/100, 𝜉 = 1, 𝜎0 = 𝜎𝐵𝑊

𝛼 = 1/𝑒, 𝛽 = 1, 𝜇 = 1/𝑒, 𝛿 = 1/𝑒, 𝜁 = 1/𝑒2 (6.13)

Using these values the link weight function is modified as (6.14). The graphical

representation of this normalized weight is shown in figure 6-4. It is interesting to

note that the node proximal to the data processing unit is not always energy efficient

when the entire WSN is considered as a single entity.

𝑤(W𝑘
𝑖 ) =

1

𝑒
(1+𝑒−𝜆𝑑𝐺𝐼(𝑖)+𝑒−𝜖/𝑑𝐺𝐼(𝑖)+𝑏(𝑖)𝑒𝜉𝑏(𝑖)−1+𝑒𝛾𝑃𝑆(𝑖)+1−𝑒−𝜎0 log(1+𝑆𝑁𝑅)) ∈ R𝜅

(6.14)

6.3.3 Failure Detection and Routing Switching

The data unavailability due to intermediate node failure is avoided by switching to

alternate link when no-response is obtained within 𝑇𝑝𝑑 time. To determine new link

the route logic is modified to N-point routing algorithm ℛ𝑁(𝑘) this gives a set of

indexes 𝑉 𝑘 ⊂ Ω𝑘 ordered according to its weight.

𝑉 𝑘 = ℛ𝑁(𝑘) : ∀𝑁𝑘 ∃𝑉 𝑘 ⊂ Ω𝑘 s.t.

𝑉 𝑘 = N Link Index ( Sort{𝑤(W𝑘)} ∈ R𝜅) (6.15)

where |𝑉 𝑘|0 = 𝑁 < |Ω𝑘|0 = 𝜅. The algorithm selects 𝑀 links for multipath routing.

The route table information (6.16) for data routing from an AQ node at the boundary

of the network (𝑁𝑏) to data collection node 𝑁0 (𝑁𝑏 → {𝑁𝑘}𝐾 → 𝑁0) is collectively
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obtained from the route table available in the state parameters S𝑘 of the upstream

nodes.

R(𝑏) = {𝑘1 . . . 𝑘𝐾} ⊂ Ω 𝑘𝑛 = ℛ(𝑘𝑛−1), 𝑘0 = 𝑏, 𝑛 = 1 . . . 𝐾, 𝑘𝐾 = 0 (6.16)

where Ω =
⋃︀𝐾−1

𝑘=0 Ω𝑘. The route table R(𝑏) is included in the system parameter S𝑘 to

avoid cyclic routing and if the node finds its own number that path is avoided. Based

on the routing strategy discussion above the resource constrained adaptive multipath

routing (RCAMR) for autonomous sensor network is described in Algorithm-10. The

timing diagram of the communication protocol is given in figure 6-5.

6.3.4 Network Analysis

According to the communication scheme discussed the access point node control the

data transmission. The protocol timing of communication between upstream node 𝑁0

and downstream node 𝑁1 is illustrated in figure 6-5 with respect to the 𝑁1 node. The

node senses the upstream communication link for 𝑡𝑠𝑒𝑛𝑠𝑒 duration and if the channel

is available, transmits its load of data to the upstream nod. This communication

exists for 𝑡𝑡𝑥 duration. Upon successful communication the acknowledgment frame is

received from the upstream node and the channel is left in sense mode. Other nodes

for which 𝑁0 is upstream, transmits their data. The entire upstream communication

extends up to 𝑡𝑡𝑥𝑐𝑦𝑐𝑙𝑒 duration depending on the number of nodes connected to 𝑁0

node. When all nodes have transmitted data the 𝑁0 node broadcasts the beacon

frame containing the state parameter information 𝑆0 for 𝑡𝑏𝑐𝑥 duration. All the nodes

are programmed to remain in idle mode for 𝑡𝑖𝑑𝑙𝑒 duration after the beacon frame

reception, during this time the network is available for other nodes waiting to establish

connection. The upstream communication cycle continues after this idle time. In the

downstream the communication happens in a different channel 𝐶ℎ2. The 𝑁1 node

in access point mode listens to transmission from its downstream nodes. The data is

received in succession from its 𝑛 downstream nodes. For every successful reception the

𝑁1 node transmits ack frame. This communication lasts for 𝑡𝑟𝑥𝑐𝑦𝑐𝑙𝑒. After reception,
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Algorithm 10
Resource Constrained Adaptive Multipath Routing
Require: SSID,
1: Task: determine fault tolerant multipath {𝑘 → 𝑖}𝑁 and forward data
2: Initialization: (6.13)
3: if GI=true then 𝑒𝑥𝑖𝑡 else
4: 𝑠𝑐𝑎𝑛: all WSN channel SSID
5: 𝑑𝑒𝑐𝑟𝑦𝑝𝑡: SSID → PWD
6: for SSID do
7: 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 : node 𝑁𝑘 with [𝑆𝑆𝐼𝐷, 𝑃𝑊𝐷]
8: if connected then
9: 𝑔𝑒𝑡: S𝑘 update Ω𝑘, W𝑘: 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡

10: end if
11: 𝑠𝑐𝑎𝑛: next
12: end for
13: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒: W𝑘 using (6.5)
14: for 𝑖 ∈ Ω𝑘 do
15: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒: 𝑤(𝑖) using (6.7)
16: 𝑠𝑜𝑟𝑡: W𝑘 𝑔𝑒𝑡 : 𝑉 𝑘 𝑠𝑡 |𝑉 𝑘| = 𝑁
17: end for
18: if |𝑉 𝑘| > 𝑁 then
19: 𝑝𝑟𝑢𝑛𝑒: |𝑉 𝑘| → 𝑁 , 𝑗 = 1
20: 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒(𝑖): link 𝑖 = {𝑉 𝑘}𝑖
21: end if
22: while route do
23: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒: 𝑃𝑇𝑚𝑖𝑛 using (6.10)
24: 𝑐𝑜𝑛𝑛𝑒𝑐𝑡: 𝑁𝑖 using [SSID, PWD]
25: (Thread Tx)
26: 𝑠𝑒𝑛𝑑: S𝑘 and [data] to 𝑁𝑖

27: 𝑤𝑎𝑖𝑡 𝑇𝑝𝑑 : if 𝑁𝑂 − 𝐴𝐶𝐾: 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒(𝑖+ 1)
28: 𝑤𝑎𝑖𝑡 𝑅𝑥𝐵𝑐𝑥 : if 𝑁𝑂 −𝐵𝐶𝑋: 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒(𝑖+ 1)
29: 𝑤𝑎𝑖𝑡 𝑇𝑖𝑑𝑙𝑒: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
30: (Thread Rx)
31: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 S𝑚 and [data] from 𝑁𝑚

32: 𝑠𝑒𝑛𝑑: 𝐴𝐶𝐾
33: 𝑤𝑎𝑖𝑡: 𝑇𝑟𝑥𝑐𝑦𝑐𝑙𝑒

34: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 𝑡𝑠𝑒𝑛𝑠𝑒: 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 S𝑘 in AP frame
35: end while
36: if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒: S𝑚 then
37: 𝑢𝑝𝑑𝑎𝑡𝑒: S𝑘,
38: 𝑠𝑒𝑛𝑑: S𝑘 to 𝑁𝑖

39: end if
40: if 𝑙𝑖𝑛𝑘𝑓𝑎𝑖𝑙: then Do 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒(𝑖+ 1)
41: Output: link 𝑘 → 𝑖
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Figure 6-5: Protocol timing diagram of data aggregation and forwarding node.

the node senses the channel for 𝑡𝑠𝑒𝑛𝑠𝑒 duration to confirm the channel silence and

the node then transmits the beacon frame containing its state parameter 𝑆1. As

earlier, all nodes in the network remains in idle mode for 𝑡𝑖𝑑𝑙𝑒 duration and during

this time the network is available for other nodes waiting to establish communication

with 𝑁1. The following definitions are made to have a clear understanding of the

communication protocol. The data aggregation network established by the node 𝑁𝑘

is synonymously called as network 𝑁𝑘, Ω𝑘: set of upstream nodes of 𝑁𝑘, Φ𝑘: set of

downstream nodes for which 𝑁𝑘 is the access point, 𝒫(𝑁𝑙) transmission probability

of node 𝑁𝑙 in the network 𝑁𝑘, 𝒫(𝑐𝑘|𝑁𝑙) conditional probability of collision when 𝑁𝑙

transmits. The probability of collision in the network 𝑁𝑘 can be written as 𝒫(𝑐𝑘) =∑︀
𝑙∈Φ𝑘 𝒫(𝑐𝑘|𝑁𝑙)𝒫(𝑁𝑙). However, the conditional probability of collision is difficult to

estimate for every node. The probability of any transmission in network 𝑁𝑘 can be

expressed as (6.17)

𝒫(𝑡𝑘) = 1−
∏︁
𝑙∈Φ𝑘

(1− 𝒫(𝑁𝑙)) (6.17)

The probability of collision free transmission happening from any downstream node

𝑁𝑚 to 𝑁𝑘 can be written as 𝒫(𝑁𝑚)[
∏︀

𝑙∈{Φ𝑘−𝑚}(1− 𝒫(𝑁𝑙))]/[1−
∏︀

𝑙∈Φ𝑘(1− 𝒫(𝑁𝑙))].

When the node 𝑁𝑘 is working reliably, the probability of successful reception by 𝑁𝑘

is same as probability of successful transmission from all the nodes in downstream

network as given in (6.18)

𝒫(𝑟𝑘) =
∑︁
𝑚∈Φ𝑘

𝒫(𝑁𝑚)
∏︀

𝑙∈{Φ𝑘−𝑚}(1− 𝒫(𝑁𝑙))

1−
∏︀

𝑙∈Φ𝑘(1− 𝒫(𝑁𝑙))
(6.18)
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Using these 2 expressions the collision probability can be expressed as 𝒫(𝑐𝑘) =

𝒫(𝑡𝑘)(1 − 𝒫(𝑟𝑘)). The probability that the network 𝑁𝑘 is in the idling state can

be written as 𝒫(𝑖𝑘) =
∏︀

𝑙∈Φ𝑘(1− 𝒫(𝑁𝑙)) = 1− 𝒫(𝑡𝑘).

If 𝑡𝑐 is the average collision time per cycle observed in the network, the total channel

usage time for one communication cycle using the protocol can be written as (6.19).

𝑇𝑝𝑟𝑜𝑡𝑜 = (𝑡𝑖𝑑𝑙𝑒 + 𝑡𝑠𝑒𝑛𝑠𝑒)𝒫(𝑖𝑘)

+ (|Φ𝑘|0(𝑡𝑟𝑥 + 𝑡𝑎𝑐𝑘) + 𝑡𝑏𝑐𝑥)𝒫(𝑡𝑘)𝒫(𝑟𝑘) + 𝑡𝑐𝒫(𝑐𝑘) (6.19)

where |.|0 gives number of elements in the set. The effective time utilized by all the

downstream nodes (𝑁𝑙, 𝑙 ∈ Φ𝑘) for real data communication including basic Headers

(𝐻), short interframe space (𝑆𝑆𝐼𝐹 ) and acknowledgment (𝐴𝑘) is computed as (6.20).

𝑇𝑑𝑎𝑡𝑎 = |Φ𝑘|0(
𝐻 + 𝑆𝑆𝐼𝐹 + 𝐴𝑘

𝐿(𝑘)
+ 2𝑇𝑝𝑑)

+
∑︁
𝑚∈Φ𝑘

𝐹 (𝑚)

𝐿(𝑘)
𝒫(𝑁𝑚)

∏︁
𝑙∈{Φ𝑘−𝑚}

(1− 𝒫(𝑁𝑙)) (6.20)

where 𝐿(𝑘) is the link speed and 𝑇𝑝𝑑 is the propagation delay of the network. 𝐹 (𝑚) is

the frame size of the 𝑁𝑚 node. The throughput of the network 𝑁𝑘 can be computed

as

𝒯𝑘 =
𝑇𝑑𝑎𝑡𝑎

𝑇𝑝𝑟𝑜𝑡𝑜

(6.21)

The state transition diagram of the protocol and the timing diagram of the commu-

nication protocol using the described algorithm are given in figure 6-6. The commu-

nication channels are colour coded as the network described in figure 6-3.

6.3.5 Power Dissipation

The factors that determine the practicality of WSN routing algorithms are energy

dissipation, number of nodes retained and the distribution of nodes after certain

amount of routing cycle. The power dissipation of the routing algorithm is computed
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Figure 6-6: Network communication timing diagram.

using the following expressions (6.22).

𝐸𝑅𝑋 = (𝐸𝑒𝑙 + 𝐸𝐷𝐴)𝐹 (𝑖)

𝐸𝑇𝑋 = (𝐸𝑒𝑙 + 𝐸𝑎𝑚𝑝𝑑
2
𝐺𝐼)𝐹 (𝑖)

𝐸𝐶𝐻 = (𝐸𝑒𝑙 + 𝐸𝑑𝑎 + 𝐸𝑎𝑚𝑝𝑑
2
𝐺𝐼)𝐹 (𝑖) (6.22)

The parameters are set as follows: initial energy 𝐸0 = 1𝐽 , bit processing 𝐸𝑒𝑙 = 50𝑛𝐽 ,

data aggregation 𝐸𝑑𝑎 = 5𝑛𝐽 , RF amplifier system 𝐸𝑎𝑚𝑝 = 100𝑝𝐽 , frame size 𝐹 (𝑖) =

4000 and number of nodes 𝑁 = 100. The probability that the node function as cluster

head is 𝑝 = 0.5. The algorithms used for comparison are LEACH[78], enhanced SEP

[81], and DEEC[79]. The simulation is run till 50% of nodes get depleted of its energy.

The figure 6-7 shows the energy consumption in the network established using various

algorithms. The energy dissipation of the proposed algorithm varies during multipath

route switching when the number of nodes start falling below 95%. After 50% of the

nodes get depleted the power consumption in the algorithms varies considerably. With

the same initial condition, number of active nodes falls to 50% in 600 to 1000 routing

cycles for the algorithms compared while the proposed RCAMR algorithm takes 2.8

times longer for 50% power depletion. The node attrition rate of these clustering

and routing algorithms is shown in figure 6-7(b). It is observed that when the nodes

use RCAMR algorithm there is considerable increase in the lifetime of nodes and

hence the overall network. The advantage of the proposed algorithm can be seen

when analysing the distribution of the nodes in the network after half of the nodes
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get depleted. The node distribution at 50% energy level is shown in figure 6-8. The

RCAMR algorithm retains the overall node distribution of the network for longer

duration, at the expense of finite increase in energy consumption. This signature

can be seen in the energy graph figure 6-7(b), while network using other algorithms

are at the end of its lifetime the proposed algorithm reconfigures the network to

remain active. This algorithm retains the network 1.5 times longer than extended

stable election protocol. this is the consequence of progressive reconfiguration of the

routes to minimize the energy consumption of the entire network Hence in network

established by RCAMR the distribution of the measurement is maintained for longer

duration and is suitable for applications where this distribution of the measurements

are necessary.

6.3.6 Reliability of Multipath Routing

The reliability of the network with 𝐾 routing nodes in series from the boundary node

𝑁𝑏 to the sink node 𝑁0 (𝑁𝑏 → {𝑁𝑘}𝐾 → 𝑁0) can be computed as (6.23).

𝑅(𝑡) =
∏︁

𝑘∈R(𝑏)

𝑒−𝜀𝑘𝑡, 𝑏 ∈ 𝜕Ω ⊂ Ω, |R(𝑏)|0 = 𝐾, 𝑡 ∈ [0,∞] (6.23)

where R(𝑏) is the route table described in (6.16), Ω is set of all nodes, 𝜕Ω is boundary

set, 𝑡 is the operational duration, 𝜀𝑘 = 1/𝑡𝐹𝑘 and 𝑡𝐹𝑘 is finite mean time to failure of

the node 𝑁𝑘. The fault tolerance is achieved using 𝑀 links (𝑉 𝑘
𝑖 , 𝑖 = 1 . . .𝑀) selected

by ℛ𝑁(𝑘) for multipath routing. The reliability of this configuration is given in (6.24)

assuming the measure of reliability 𝑒−𝜀𝑘𝑡 is identical for all nodes.

𝑅(𝑡) =
∏︁

𝑘∈R(𝑏)

𝑁∑︁
𝑚=𝑀

(𝑁𝑚) 𝑒−𝑚𝜀𝑘𝑡 (1− 𝑒−𝜀𝑘𝑡)𝑁−𝑚 (6.24)

Every node 𝑁𝑘 maintains 𝑁 number of routes leading to the sink node 𝑁0 connected

through to the 𝐾 − 1 links. Considering nodes with different reliability measures

Λ𝑘 = {𝜀𝑖𝑘 ⊂ R | 𝑖 ∈ 𝑉 𝑘, 𝑘 ∈ R(𝑏)}. After sorting elements of Λ𝑘 in ascending order

corresponding to nodes with higher to lower reliability, the set can be split into two
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Figure 6-7: The energy dissipation and node attrition rate of routing algorithms.

Note: (a) Energy dissipated per transmission for various clustering algorithms. (b)
The attrition rate of nodes for various clustering and routing algorithms.
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Figure 6-8: The comparison of distribution of the WSN nodes established by LEACH
and RCAMR routing algorithms.

Note: The green circles indicate the active and red circles indicate the energy depleted
nodes. The radius of the circle indicates the duration of active existence. The network
is shown after half of the total nodes are depleted of its energy. (a) The network
established by LEACH algorithm: the farthest nodes get depleted fast and the network
becomes localized. (b) The overall distribution of the active nodes is maintained by
RCAMR even after 50% of the nodes is depleted.
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parts (i) Λ𝑚
𝑘 with 𝑚 elements (ii) Λ�̄�

𝑘 with �̄� = 𝑁 −𝑚 elements. The reliability of

this redundant routing network can be written as (6.25).

𝑅(𝑡) =
∏︁

𝑘∈R(𝑏)

𝑁∑︁
𝑚=𝑀

(𝑁𝑚)
∏︁

𝜀𝑘∈Λ𝑚
𝑘

𝑒−𝜀𝑘𝑡
∏︁

𝜀𝑘∈Λ�̄�
𝑘

(1− 𝑒−𝜀𝑘𝑡) (6.25)

6.3.7 Reliability Estimation by Testing

The network reliability evaluation based on the measurements obtained from the ac-

celerated degradation testing is presented here. The processes that affect the system

reliability are (i) thermo-mechanical (TM) stress induced failure like PCB warping,

track breaking or solder disconnection, (ii) electrical (EL) stress induced failures like

electro migration or track burn out and (iii) thermo-environmental (TE) stress in-

duced failures like dendrite formation on PCB. Considering these effects the reliability

of the network can be estimated through accelerated degradation testing of a sample

node. Using the Eyring model [96] the mean time to failure (𝑚𝑡𝑡𝑓) can be written as

(6.26).

𝑡𝐹 (𝑇𝑀) = 𝑡𝐹 (𝑇𝑀)

(︂
𝑇𝑎

𝑇0

)︂𝛽𝑇

× exp

(︃
𝐸

𝑘𝐵
(
1

𝑇0

− 1

𝑇𝑎

) +
𝑖=𝑍∑︁
𝑖=1

𝐴𝑖Δ𝑆𝑖 +𝐵𝑖Δ𝑆𝑇
𝑖

)︃
(6.26)

Δ𝑆𝑖 = 𝑆𝑖0 − 𝑆𝑖𝑎 Δ𝑆𝑇
𝑖 =

𝑆𝑖0

𝑇0

− 𝑆𝑖𝑎

𝑇𝑎

where, S is stress, 𝑇𝑎 is accelerated testing temperature, 𝑇0 is the operational temper-

ature, 𝑡𝐹 (.) is the estimated time to failure during accelerated testing, 𝛽𝑇 is the power

of temperature interaction, 𝐴𝑖 and 𝐵𝑖 are empirical constants determining the stress

interaction, Δ𝑆𝑖 and Δ𝑆𝑇
𝑖 are the difference in stress and stress per temperature rise

experienced in operational temperature and accelerated test temperature. 𝑘𝐵 is the

Boltzmann constant and 𝐸 is the activation energy of the PCB track metal. The

time to failure due to thermo electrical stress induced electro migration is given in

(6.27), where 𝐽0 and 𝐽𝑎 are the current densities at the dendrite formation point at
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operational and accelerated testing temperatures.

𝑡𝐹 (𝐸𝐿) = 𝑡𝐹 (𝐸𝐿)(𝐽𝑎/𝐽0) (6.27)

Time to failure due to thermo environmental dendrite growth 𝑡𝐹 (𝑇𝐸) due to high

humid environment is given in (6.28), where 𝑅𝐻0 is the ambient relative humidity, 𝑉0

the maximum electric field experienced between PCB tracks, and 𝐷0 is the average

distance between PCB tracks.

𝑡𝐹 (𝑇𝐸) = 𝑡𝐹 (𝑇𝐸)(
𝑅𝐻𝑎

𝑅𝐻0

)(
𝑉𝑎

𝑉0

)(
𝐷0

𝐷𝑎

)𝑒
𝐸
𝑘𝐵

( 1
𝑇0

− 1
𝑇𝑎

) (6.28)

Using the estimated 𝑚𝑡𝑡𝑓 the reliability computed in (6.24) and (6.25) is modified as

(6.29) where 𝑡𝐹 = min{𝑡𝐹 (𝑇𝑀), 𝑡𝐹 (𝐸𝐿), 𝑡𝐹 (𝑇𝐸)}

𝑅(𝑡)𝑛𝑒𝑡 = 𝑒−𝑡/𝑡𝐹𝑅(𝑡) (6.29)

The combinatorial term (𝑁𝑚) can be avoided using the 𝐿𝑜𝑐𝑎𝑙 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑜𝑓 𝐷𝑒𝑀𝑜𝑖𝑣𝑟𝑒−

𝐿𝑎𝑝𝑙𝑎𝑐𝑒, which defines the probability of 𝑚 instances of 𝑁 events as follows.

lim
𝑁→∞

√︀
𝑝𝑞𝑁 𝑃𝑁(𝑚) =

1√
2𝜋

𝑒(−𝛼2/2),

𝛼 =
𝑚− 𝑝𝑁√

𝑝𝑞𝑁
, {0 < 𝛼 ≪ ∞} (6.30)

where 𝑝 = 𝑒−𝜀𝑘𝑡 is the probability of functioning of a unit, 𝑞 = (1 − 𝑝). and 𝑃𝑁(𝑚)

is the probability that 𝑚 instance of 𝑁 units function correctly. Using (6.30) the

reliability of the redundant routing network can be expressed as (6.31).

𝑅(𝑡)𝑛𝑒𝑡 ≈ 𝑒−𝑡/𝑡𝐹
∏︁

𝑘∈R(𝑏)

1√
2𝜋𝑝𝑞𝑁

𝑁∑︁
𝑚=𝑀

𝑒−
(𝑚−𝑝𝑁)2

2𝑝𝑞𝑁 (6.31)

For a simple multipath network with 9 nodes, one source, one sink and 7 routing

nodes with 2 out of 3 redundancy, the reliability expression is computed as (6.32) and
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is shown in figure 6-9.

𝑅(𝑡)𝑛𝑒𝑡 ≈ 𝑒−𝑡/𝑡𝐹
1√
6𝜋𝑝𝑞

3∑︁
𝑚=2

𝑒−
(𝑚−3𝑝)2

6𝑝𝑞 (6.32)

The figure also shows the computed reliability value from DeMoivre-Laplace theo-

rem and the value obtained from the binomial theorem; for estimation purpose the

reliability can be computed using (6.31). It is observed from figure 6-9 that as the

design constraint for the node becomes stringent (higher 𝑡𝐹 values), the reliability

of the network increases. The reliability of the network during initial 7 year period

of operation is > 0.75. The low-cost IoT processor based devices can be used for

parameter monitoring, if it is planned to be replaced in every 3 to 4 years, to have

reasonably high confidence level on the WSN. Even if high reliable components are

used in the fabrication of these devices, as long as these devices are left outside they

will degrade. Hence it is logical to use low cost IoT processors based WSN devices

with a plan for regular replacement or additions, also, considering the cost of the

plant maintenance the cost involved in the short time usage of low cost IoT based

devices for sensor network will be negligible.

6.3.8 System Evaluation

The features of IoT platform processor considered are the cost, availability of de-

velopment environments, OS and file system support, programming modularity and

availability. The WSN nodes with compression features are created using TI CC3200

WiFi processor based boards with transmitter power 𝑃𝑚𝑎𝑥 = 17.3𝑑𝐵𝑚 and receiv-

er sensitivity 𝑃𝑠𝑒𝑛 = −90𝑑𝐵𝑚. The minimum transmitter power for this node is

𝑃𝑇𝑚𝑖𝑛 = −72.7𝑑𝐵𝑚− (𝑃𝑆(𝑖)𝑑𝐵𝑚). The data acquisition node with routing feature is

implemented using TI AM3358 ARM processor based board. The analysis of network

realtime capability of this board is presented in Chapter 5. The link weight (6.11)

is not computed in realtime, but, stored as 3 function table for the variables 𝑑𝐺𝐼 , 𝑃𝑆

and 𝑏. A simple WSN is established using 1 sink node, 3 data acquisition and routing

(APQ) nodes and 1 data acquisition (AQ) node. The nodes uses RCAMR algorithm
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Figure 6-9: The analytical value of the reliability and estimated depletion of the
residual energy.

Note: (a)The analytical value of reliability obtained from DeMoivre-Laplace theorem
(6.31) and binomial theorem (6.24). The system designed with 𝑚𝑡𝑡𝑓 𝑡𝐹 > 25 years
has reliability ≥ 0.75 for an initial period of 4.5 years. (b) The depletion in residual
energy of the network after 1000 simulated routing cycles for various algorithms.
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(a) (b)

(c) (d)

Figure 6-10: The frame loss in the data acquisition node established using the R-
CAMR algorithm for various inter frame delays.

Note: Number of frame received to number of frames transmitted for various inter
frame delay, 10 units of TI CC3200 WiFi processor based data acquisition units are
programmed to transmit data frame continuously with inter frame delay of 0.5, 1.0,
2.0 and 2.5𝑚𝑠. The TI AM3358 ARM processor based beaglebone black (BBB) board
is programmed to receive the data frame using RCAMR algorithm. The loss less
reception of data is achieved when there is a minimum inter frame interval of 2.5𝑚𝑠
for every data transmission nodes.
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and are programmed to generate 256 bytes of data and transmit in every fixed in-

terval. The data handling capacity for various frame to frame delays is tested and is

shown figure 6-10. 100% data delivery is obtained when there is minimum interframe

delay of 700𝜇 sec. The corresponding power dissipation is also shown in the figure

6-10.

6.4 Chapter summary

This chapter discusses about the resource constrained wireless sensor networking sys-

tem for distributed parameter measurement using autonomous routing capability and

link fault tolerance. The data processing unit of the sensor node is implemented us-

ing low cost IoT platform and the sparse measurement is used for transient voltage

acquisition. The sparse measurement based acquisition system gives the advantage

of having high transient signal sampling capability at reduced data bandwidth. The

high sampling is needed for capturing transient changes in the signal. And the low

bandwidth is a desirable feature for the autonomous data routing network implement-

ed using low power WiFi enabled devices. The relaxation based recovery algorithm

is used for reconstruction of the transient signal at the data processing station. To

make the signal sparse, the thresholding of the signal is done prior to acquisition.

The ground potential voltage acquired is transmitted to the central data processing

system through a network of wireless sensors nodes, which also function as the routing

nodes. Computationally minimalistic routing algorithm is designed and incorporated

into IoT based wireless sensor network nodes. The power dissipation is minimized

by exploring possible options like adaptive RF power, considering the next routing

node’s sensitivity, routing to node with higher energy backup and data compression

capabilities. The link weight computation is stored as look-up table. This adaptive

wireless sensor networks can be deployed randomly or orderly in vast area to gather s-

pacial and temporal information. The routing algorithm presented here has fast route

discovery and adaptive capabilities. From the analysis it is found that the optimal

connection node is 3-5 links away from the data processing node. The WSN scheme
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for ground potential monitoring presented here has the following advantages (1) lower

computational requirement, (2) compatible with low profile IoT platforms, (3) easily

deployable, scalable and expendable, (4) failure tolerant autonomous routing capa-

bility, (5) reliable and (6) maintains node distribution even in power depleted phase.

A general model for evaluating the reliability of the multipath resource constrained

routing algorithm is also presented. The actual reliability value are calculated from

mean time to failure 𝑡𝐹 determined from accelerated degradation testing of a node.

A reliability model for heterogeneous redundant routing network is also discussed.

To summarize, the chapter presents a lightweight routing algorithm for IoT based

wireless sensor network established for distributed sparse measurement of transients

in ground voltage potential.
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Chapter 7

Research Summary

The compressed sensing is a data acquisition method which supports low frequency

sampling of sparse signals. As the compressed sensed signals are not direct time do-

main representations, the signals need to be reconstructed to its original form using

reconstruction algorithms. Large numbers of sparse signal reconstruction algorithms

are developed in the recent time. These algorithms are presented with their unique

merits. The plethora of sparse recovery algorithms with different characteristics cre-

ates a dilemma while choosing the suitable one for the given application. The con-

ventional metric used to compare the sparse signal recovery algorithms are relative

𝑀𝑆𝐸 and probability of support recovery. These two metrics need to be analysed

together. A method to evaluate the performance of the algorithms by using these two

metrics to compute a signal similarity measure between the original signal and the

reconstructed signal is proposed. Two performance characterization functions namely

signal similarity measure 𝑆𝑚(x̂,x) and sparse recovery limit 𝜉 are proposed. This

measure use the relative 𝑀𝑆𝐸, the probability of exact support recovery, the (K/M)

ratio and the (M/N) ratio to generate a numerical figure of merit. This new metric is

evaluated for 24 algorithms from 8 different categories and is experimentally shown

that the proposed method gives a quantifiable performance comparison.

There is a fundamental constraint in the sparse reconstruction problem. The s-

parse measurement matrix is analytically non invertible, hence other methods like

iteration, thresholding and function minimization are adopted for signal reconstruc-
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tion. This includes function minimization of ℓ0 or ℓ1 or ℓ𝑝 based objective functions.

An inverse operator for the measurement matrix A is also needed. Many of the current

algorithms use 𝐴† or 𝐴𝑇 as this inverse operator. A general framework using arbi-

trary inverse matrix Q for the development of sparse recovery algorithms is proposed.

This algorithm framework enable the developers to simulate the signal reconstruction

using various pseudo inverse matrices and improve the reconstruction performance.

The method is used in the development of two improved algorithms based on ℓ1 and ℓ0

minimization. The former is based on iterative segmented thresholding of ℓ1 residue

with the inverse operation. The later is based on segmented thresholding of poly-

nomial approximation of ℓ0 function. The logic for selecting residue and minimizing

it for arriving at optimal sparse solution is described. A range alterable segmented

thresholding function is proposed and used in the final stage of the iteration.

The ℓ0 minimization based sparse signal recovery method STXEL0 is reconfigured

to a cascaded computational network, to enable the algorithm implementation on low

profile computing platforms for real time use. The gradient minimization functions

are evaluated for various values of the algorithm parameter and are stored in RAM as

a library of polynomial function tables, to reduce processing load. The computational

complexity of the hardware implementation is described in terms of the basic MAC

units. The computational precision of the algorithm is evaluated and the optimal

value of the algorithm regularization parameters are estimated experimentally. The

convergence of the iteration is verified by the continuous reduction in the internal error

estimates of the algorithm. Experimental evaluation of the algorithms are carried out

and the results are compared with the seven different classes of methods. The analysis

of the results shows that the ℓ0 minimization based STXEL0 algorithm gives better

SNR in the reconstruction of images with lesser processing time. The theoretical

analysis of convergence guarantee for any arbitrary inverse matrix is not discussed.

However, if arbitrary matrix is selected as the inverse, the convergence is influenced by

the value of the regularization parameter. The proposed architecture of the algorithm

supports the implementation of the STXEL0 algorithm with basic MAC units and

function tables, for real time sparse recovery.
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To evaluate the sparse recovery algorithm in real time application a distributed

data acquisition system for the measurement and recovery of the sparse signals using

IoT based processing board is envisaged. To implement this system the AM3358

processor based beagle board is selected and evaluated to confirm that it meets the

computational requirements of the algorithm. The computing platform is evaluated

under various network configurations and the results are analyzed. It is found from

the evaluation that this ARM processor AM3358 based platform has predictable per-

formance and can handle real time data acquisition process if the throughput latency

requirement is > 20𝑚𝑠. The performance remains consistent if the data acquisition

and transmission bandwidth is < 4.5223 𝑀𝑏𝑝𝑠 and the data receive speed is < 4.096

𝑀𝑏𝑝𝑠. Also, for a distributed data acquisition system with 32 nodes designed with

this board, the node control-command latency requirement should be > 2 𝑚𝑠 if the

command frame size is ≤ 1024 bytes. The use of software threading do not improve

the data throughput and if higher communication bandwidth is required, the network

interface chip or module should be replaced to 1𝐺𝑏𝑝𝑠 capable device. In short the

networked data acquisition system implemented using AM3358 processor based bea-

gle board can work in 20 𝑚𝑠 realtime periodicity and with 10𝐻𝑧 output bandwidth

if the number nodes are < 32.

The evaluated computing platform is then used in the development of a distribut-

ed data acquisition system for the measurement and recovery of transients in ground

potential. The sparse measurement method is used for transient voltage acquisition.

To make the signal sparse, the thresholding of the signal is done prior to acquisition.

The inadvertent rise in ground potential with respect to the measurement ground

can damage the system hence it is designed to be expendable and the low cost IoT

platform is selected for this system implementation. The data processing unit of the

sensor node is implemented using the evaluated board. The higher sampling is nec-

essary for capturing the transients changes in the signal and the low bandwidth is a

desirable for the data routing network. The sparse measurement based acquisition

system gives the advantage of having high transient signal sampling capability at

reduced data bandwidth. To establish reliable data communication a resource con-
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strained wireless sensor networking system with autonomous routing capability and

link fault tolerance is developed. The proposed STXEL0 algorithm is used in the

recovery of the transient signal from compressed sensed data. The acquired data is

transmitted to the central data processing system through a network of wireless sen-

sors nodes, which also function as the routing nodes. A computationally minimalistic

routing algorithm is also designed and incorporated into the IoT based wireless sen-

sor network nodes. The power dissipation is minimized by exploring possible options

like adaptive RF power, routing through node with higher energy backup and data

compression capabilities. The link weight computation function is stored as look-up

table, minimize computation. This adaptive wireless sensor networks can be deployed

randomly or orderly in vast area to gather spacial and temporal information. The

routing algorithm developed has fast route discovery and adaptive capabilities. A

general scheme for evaluating the reliability of multipath resource constrained rout-

ing is also presented. In short a lightweight routing algorithm for IoT based wireless

sensor network established for distributed sparse measurement of transients in ground

voltage potential is illustrated.

In summary this thesis introduces a novel metric for sparse signal recovery al-

gorithm evaluation and presents a framework for developing better sparse recovery

algorithms. The proposed ℓ0 norm based sparse signal recovery method is then used in

a distributed system for acquisition of naturally sparse signals. To enable the imple-

mentation of the system a low cost IoT device is selected and evaluated to determine

its capabilities. Additionally a low power optimal routing algorithm is proposed for

establishing this distributed sparse signal sensor network.
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Chapter 8

Future Directions

The proposed framework for the development of sparse signal recovery algorithm is

used for developing two new algorithms based on ℓ0 and ℓ1 minimization. However

many different variations of ℓ𝑝 norm based algorithms can be tried using this frame-

work. Similarly, the framework supports evaluation of sparse recovery algorithm with

any empirical approximation of the inverse of the measurement matrix. The selec-

tion of inverse of the measurement matrix is limited only by the imagination of the

user. The segmented thresholding function can be further improved. From the eval-

uation of may sparse recovery algorithms it is observed that the residue projection

and thresholding based methods shows better signal reconstruction. Further scope

for improvements exists in the estimation of residue, projection of residue and thresh-

olding. These area can be explored further. In the implementations side various

computing modules and networking schemes can be adopted. This work involve anal-

ysis, theoretical development, experimental evaluation and networking, the further

improvement can be directed towards the latest development in any of this fields.
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