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Abstract 

 

Forecasting extreme weather events using Numerical Weather Prediction (NWP) 

model is challenging due to the uncertainties associated with the growth of initial 

errors under chaotic dynamics. Therefore, it is essential to initialize a model with 

the best estimate of the atmosphere and understand how errors in this initial 

condition will affect the subsequent forecast. Statistically reliable ensemble 

predictions from the different realization of initial conditions of the atmosphere 

are found to be robust in forecasting extreme weather events.  The predictability 

of weather events can be quantified through sensitivity analysis, which 

essentially indicates how forecast from an NWP system responds to changes in 

initial conditions. Ensemble sensitivity analysis (ESA) is a linear approach to 

sensitivity analysis that uses sample statistics to estimate how a scalar forecast 

function changes with respect to initial conditions. In this research work, ESA is 

applied to understand the nature and predictability of extreme weather events 

over the Indian subcontinent by using ensemble analyses and forecasts from an 

Ensemble Kalman filter (EnKF) data assimilation system. The Weather 

Research and Forecasting (WRF) is used as the NWP model in this study. In 

addition, the ensembles from TIGGE European Centre for Medium-Range 

Weather Forecasts and National Centers for Environmental Prediction Ensemble 

Prediction Systems have also been employed.  

ESA often uses a diagonal approximation to the multivariate regression, 

leading it to a simple univariate regression, and it is often referred to as univariate 

ensemble sensitivity analysis. Univariate ESA applied to extreme rainfall event 

over the Uttarakhand state located in the Western Himalayas indicates that the 

heavy precipitation is sensitive to the mid-tropospheric trough and moisture 

fields from the Arabian Sea and the Bay of Bengal. Perturbed initial condition 

experiments reveal that the initial condition perturbations in the maximum 

sensitive region can have a large impact on the rainfall.  Further, two extreme 

rainfall events over Kerala in August 2018 (KF18) and 2019 (KF19) are analysed 

using univariate ESA. In the case of Kerala rainfall in 2018, the results show that 

the circulations positioned farther east of its mean position over the Western
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North Pacific (WNP) are related to stronger precipitation over the response 

function region. However, in the case of Kerala rainfall in 2019, the moisture-

laden low-level flow was more substantial, which favored the development of 

deep convective clouds and caused extreme rain. 

 The presence of sampling error can cause the univariate ESA to 

overestimate the response of a forecast metric to initial conditions. Therefore, 

univariate ESA is extended to multivariate ESA that utilizes the full covariance 

matrix. The performance of multivariate ESA over univariate is examined by 

applying the method to a heavy rainfall event that happened over Chennai in 

December 2015. The multivariate ESA shows more organized sensitive patterns, 

unlike univariate sensitivity in which the sensitivity patterns are broadly 

distributed. Both methods are validated using the perturbed initial condition 

approach, and it is found that multivariate is more effective in predicting the 

forecast response closest to the actual model response compared to the univariate 

ESA.  

Further experiments were performed using the multivariate ESA to 

investigate the general predictability characteristics of tropical cyclones over the 

Bay of Bengal. Results show that intense, fast-moving, and north-landfalling 

tropical cyclones exhibit low predictability in its intensity forecast. Intense 

storms exhibit large initial condition sensitivity than the analysis spread 

indicating that the low predictability of intense cyclones is likely due to large 

dynamical perturbation growth. The results of the perturbed initial condition 

experiment show that the dynamical error growth is faster if the perturbations 

are smaller in magnitude. It is also found that the error growth associated with 

moist perturbations is higher for the less predictable tropical cyclones.  

Towards the end, we have determined the climatological ensemble 

sensitivity to identify the optimal locations for deploying the observation 

network during the Indian summer monsoon. Results show that the precipitation 

forecasts during the Indian summer monsoon season benefit from the 

assimilation of observations located over the upstream regions of the forecast 

metric box.  
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          forecast metric and the brown line indicates ensemble mean ETS. The best 

fit line is represented by the black line. ........................................................ 57 

3. 26  The distribution of 5-day accumulated rainfall in KF18 for (a) GOOD and (b) 

BAD. ............................................................................................................. 57 

3. 27  (a) Comparison between the GOOD (blue contours, every 10 gpm) and BAD 

(red contours, every 10 gpm) members for 500-hPa geopotential heights; (b) 

the maximum relative vorticity location at 850 hPa in each ensemble 

members at 0000 UTC 15 August 2018; blue (red) filled circles indicate good 

(bad) members and grey filled circles represents all the other members. 

Shading indicates relative vorticity at 850 hPa. ........................................... 58 

3. 28 Comparison between the composite moisture flux at 500-hPa of (a), (c) 

GOOD and (b), (d) BAD at 0000 UTC 15 August 2018 for (a), (b) KF18 and 

(c), (d) KF19. ................................................................................................ 59 

3. 29  (a) The sensitivity of 5-day accumulated precipitation with time-averaged 24-

h to 144-h forecast 500 hPa geopotential height (shaded) and (b) scatterplot 

of the 50 ensemble members (indicated by filled circles), with forecast 24-h 

to 144-h 500 hPa geopotential height at the point of maximum precipitation 

along the abscissa and forecast metric along the ordinate for KF19. The linear 

least-squares fit line is also shown. .............................................................. 59 

3. 30  The sensitivity of the 5-day accumulated precipitation averaged over the box 

in Fig. 1 to the 500 hPa geopotential heights (shading, every 2 mm) at 0000 

UTC 9 August 2019. The black contours (every 10 m) are the ensemble mean 

geopotential heights at the appropriate time. ................................................ 62 

3. 31  The sensitivity of the 5-day accumulated precipitation averaged over the box 

in Fig. 1 to 500 hPa moisture flux (shading) at (a) 0000 UTC 7 August 2019, 

(b) 0000 UTC 8 August 2019 and (c) 0000 UTC 9 August 2019; (d)-(f) similar 

to (a)-(c) but for 850 hPa moisture flux and (g)-(i) for Total Colum Water 

(TCW). The black vectors represent the ensemble mean wind at the 

appropriate pressure level and time. ............................................................. 62 

3. 32  The sensitivity (shading) of 5day area-averaged accumulated precipitation to 

(a) 500 hPa wind and (b) 850 hPa wind for KF18; (c) and (d) similar to (a) 

and (b) but for KF19. The vectors represent ensemble mean wind. ............ 64 

3. 33 Vertical distribution of moisture flux averaged between the longitude 

(74.5°E − 77.0°E) at (a) 0000 UTC 15 August 2018 and (b) 0000 UTC 9 
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3. 34 INSAT-3D satellite imagery for brightness temperature at 0800 UTC 14 
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4. 1  Difference between the wet and dry ensemble members on analysis (a) 850 

hPa geopotential heights and (b) 300 hPa geopotential height. Contours of          

analysis (c) sea level pressure for wet (blue) and dry (red) ensemble members. 

(d) Spaghetti plot showing the predicted 100 mm rainfall contour valid at 

0000 UTC 2 December 2015 from the 90 ensemble members. The ensemble-

mean 100 mm contour is shown in thick black line. The blue contours 

represent the wet ensemble members and the red contours represent the dry 

ensemble members.  Black contours in (a) and (b) are the ensemble mean 

geopotential heights for the respective pressure levels. ............................... 76 

4. 2   Sensitivity of 24-h accumulated area-averaged precipitation valid at 72-h lead 

time to analysis sea level pressure for (a) univariate and (b) multivariate. 

Contours (every 2 hPa) are the ensemble mean sea level pressure. The black 

box represents the response region. .............................................................. 77 

4. 3   Shading (mm) indicates (a-c) the univariate ensemble sensitivity and (d-f) the 

multivariate ensemble sensitivity of 24-h accumulated area-averaged 

precipitation valid at 72-h lead time to analysis geopotential heights at 850 

hPa (bottom), 500 hPa (middle) and 300 hPa (top). Contours (every 10 gpm) 

are geopotenial heights from ensemble mean.  ............................................ 78 

4. 4   Actual response obtained from perturbation versus predicted response from 

(a) univariate ensemble sensitivity analysis and (b) multivariate ensemble 

sensitivity analysis for 72-h lead time. The black line indicates the least 

squares best-fit line. ...................................................................................... 81 

4. 5    Sensitivity of 24-h accumulated area-averaged precipitation valid at 72-h lead 

time to analysis sea level pressure from univariate (top panel) and 

multivariate (bottom panel) methods for SKEBS and no SKEBS ensembles. 

Contours (every 2 hPa) are mean sea level pressure from ensemble mean. 81 

4. 6  Ensemble spread of 72-h accumulated precipitation valid at 0000 UTC 2 

December 2015 with (a) NoSKEBS and (b) SKEBS. The black box represents 

the response region. ...................................................................................... 83 

4. 7 Actual response versus predicted response from (a) univariate ensemble 

sensitivity analysis and (b) multivariate ensemble sensitivity analysis for 72-

h ensemble forecasts with SKEBS. The black line indicates the least squares 

best-fit line. ................................................................................................... 83 

4. 8    Sensitivity (left) of 24-h accumulated area-averaged precipitation valid at 72-

h lead time to analysis sea level pressure and perturbation experiment results 

(right) for different localization cut off radius (a & d)1200 km, (b & e) 800 

km and (c & f) 400 km. Contours (every 2 hPa) are mean sea level pressure 

from ensemble mean. The black box represents the response region. ......... 84 
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4. 9    Sensitivity (left) of 24-h accumulated area-averaged precipitation valid at 72-

h lead time to analysis sea level pressure and perturbation experiment results          

(right) for different localization distances (a), (b) 2800 km, (c), (d)2400 km, 

and (g), (h) 2000 km. Contours are the ensemble mean sea level pressure. The 

black box represents the response region. The black dot represents the 

location of Chennai. ..................................................................................... 86 

4. 10 Shading (mm) represents the univariate (top) and multivariate (bottom) 

ensemble sensitivity of 24-h accumulated area-averaged precipitation w.r.t 

sea level pressure for (a & d) 72-h, (b & e) 48-h and (c & f) 24-h lead times. 

Contours (every 2 hPa) are mean sea level pressure from ensemble mean. 87 

4. 11 Actual response versus predicted response from univariate ensemble 

sensitivity (top panel) analysis and multivariate ensemble sensitivity analysis 

(bottom panel) for (a & d) 72-h, (b & e) 48-h and (c & f) 24-h lead times. The 

black line indicates the least squares best-fit line. ........................................ 87 

4. 12 Shading (dBZ) represents the sensitivity of area-averaged maximum 

simulated reflectivity valid at 0000 UTC 2 December 2015 to analysis water 

vapor mixing ratio at 700 hPa (top panel) and 850 hPa (bottom panel) for 

univariate (left) and multivariate (right). Vectors are the wind vectors at the 

appropriate pressure level from ensemble mean. The black box represents the 

response region. ............................................................................................ 88 

4. 13 Actual response versus predicted response from (a) univariate ensemble 

sensitivity analysis and (b) multivariate ensemble sensitivity analysis for 24-

h convective ensemble forecasts. The black line indicates the least squares 

best-fit line. ................................................................................................... 88 

5. 1   Shading (dBZ) represents the sensitivity of area-averaged maximum simulated 

reflectivity valid at 0000 UTC 2 December 2015 to analysis water vapor 

mixing ratio at 700 hPa (top panel) and 850 hPa (bottom panel) for univariate 

(left) and multivariate (right). Vectors are the wind vectors at the appropriate 

pressure level from ensemble mean. The black box represents the response 

region. ........................................................................................................... 96 

5. 2   Ensemble spread in MSLP error (left panel) and position error (right panel) at 

24 h (top panel) and 48 h (bottom panel) for the different categories of 

cyclones. The top and bottom end of each box represents the upper and lower 

quartile, respectively. The vertical lines represent the range between the 

extreme values of each group. The two-colour squares at the bottom indicate 

significantly different pairs of the respective group. The red horizontal line 

represents the mean and the black horizontal line indicates mode of each 

group. ............................................................................................................ 98 
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5. 3   Analysis spread in SLP and maximum absolute ensemble sensitivity of MSLP 

error to SLP (top panel); analysis spread in track and maximum absolute          

ensemble sensitivity of position error to SLP (bottom panel) for the different 

categories of cyclone. The bars represent the mean ensemble sensitivity 

corresponding to each group and the vertical lines are the ranges between the 

upper and lower quartiles of each group. The small black box at the bottom 

indicates significantly different pairs. .......................................................... 99 

5. 4   The maximum absolute ensemble sensitivity of MSLP error (top panel) and 

position error (bottom panel) to DVWS, SVWS, 925RH and 600RH for the 

different categories of cyclone. The bars represent the mean ensemble 

sensitivity corresponding to each group and the vertical lines are the ranges 

between the upper and lower quartiles of each group. The small coloured 

boxes at the right end indicates significantly different pairs. ..................... 100 

5. 5   Mean (a) DVWS, (b) SVWS, (c) 925RH (d) 600RH at different forecast hours 

for low and high predictability cyclone classification based on TC intensity 

error spread at forecast hour 48. The vertical lines are the ranges between the 

upper and lower quartiles of each group. The two-colour squares at the bottom 

indicate significantly different pairs at that time. ....................................... 101 

5. 6   Similar to Figure 5.5, but for track error spread. ........................................ 102 

5. 7   Analysis spread in SLP and maximum absolute ensemble sensitivity of MSLP 

error to SLP, DVWS, SVWS, 925RH and 600RH (top panel); analysis spread 

in track and maximum absolute ensemble sensitivity of position error to SLP, 

DVWS, SVWS, 925RH and 600RH (bottom panel). The bars represent the 

mean value corresponding to each group and the vertical lines are the ranges 

between the upper and lower quartiles of each group. The small black box at 

the bottom and the coloured box at the right end indicates significantly 

different pairs. ............................................................................................ 104 

5. 8  Time series of domain integrated difference total energy for the perturbation 

experiments. DTE time series for the various categories such as (a) weak 

(solid line) and intense (dashed line), (b) slow (solid line) and fast moving 

(dashed line), and (c) south (solid line) and north (dashed line) falling 

cyclones. ..................................................................................................... 105 

5. 9    Time evolution of the track of TC Sidr. The JTWC best track is denoted in 

black line and the ensemble forecasts in blue lines. ................................... 106 

5. 10 Forecast spread in central pressure and maximum absolute ensemble 

sensitivity of MSLP error to SLP, DVWS, SVWS, 925RH and 600RH (top 

panel); forecast spread in track and maximum absolute ensemble sensitivity 
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CHAPTER 1 

INTRODUCTION 

The evolution of the atmosphere, being a nonlinear dynamical process, is 

inherently unpredictable as the non-linear equations have no analytical solution. 

Numerical Weather Prediction (NWP) is an initial-value problem, and its ability to 

determine the future state of the atmosphere depends on the accuracy of the initial 

state. The uncertainties in the initial condition and model formulations limit the 

predictability of weather using NWP models. Therefore, quantifying these 

uncertainties in the forecasts is crucial in understanding the relevant dynamics and 

the predictability of the weather event. The uncertainties associated with the initial 

conditions for the forecast of weather events can be quantified using deterministic 

and probabilistic approaches. This thesis employs a probabilistic approach 

(ensemble-based techniques) to understand the predictability and dynamics of 

extreme weather events over the Indian subcontinent.  

1.1 Forecast uncertainty and ensemble forecasting 

Though the nonlinear differential equations that describe the atmosphere have no 

analytical solution, they can be solved using numerical methods. During the 1950s, 

Charney, FjÖrtoft and Neumann used a two dimensional barotropic model to obtain 

a numerical solution to the barotropic vorticity equation. In the early 1970s, the 

global circulation models based on a set of nonlinear differential equations emerged 

(Lynch, 2008). Later, during the 1980s, increase in computer resources and 

observational networks led to the development of the regional and mesoscale 

numerical weather prediction models. This further widened the knowledge on the 

microphysical processes and dynamics of the atmosphere (Anthes and Warner, 

1978). In the 1990s, advanced diagnostic techniques emerged for weather 

forecasting with the development of high-resolution models and coupled models. 

However, inaccurate representation of the initial state of the atmosphere, imperfect 

data assimilation systems, and the parameterization of microphysical processes and 

non-microphysical processes such as turbulence, surface orography and radiation 

in the models reduces the accuracy of forecast. Therefore, determining a realistic 
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initial state of the atmosphere becomes impossible (Daley, 1991). Lorenz (1963) 

showed that the predictability of the atmosphere is limited in time and the error in 

the initial condition grows with forecast period. Accordingly, the nonlinear 

behaviour of the atmosphere may be treated in a probabilistic way to quantify the 

forecast uncertainty. Historically, it was Epstein (1969), who introduced the idea of 

stochastic-dynamic prediction to acknowledge the uncertainty in the meteorological 

model forecasts. He used a probabilistic continuity equation to integrate the analysis 

probability density function (PDF) forward in time, however, this method was 

computationally expensive even for low-order models. Later, Leith (1974) 

suggested using multiple forecasts generated from slightly different but equally 

probable initial atmospheric states to characterize the uncertainty of the prediction. 

He used an analytical turbulence model to show that Monte Carlo forecasting 

procedure provides better approximation to stochastic dynamic prediction method 

in the limit of a smaller number of ensemble members. Hoffmann and Kalnay 

(1983) combined the forecasts initialized at the initial time and previous times to 

produce initial ensembles and proposed the idea of lagged average forecasting 

(LAF). The advantage of LAF over Monte Carlo forecasting is that the initial 

condition perturbation generated using LAF included the information of dynamics 

and therefore contained “errors of the day”. Furthermore, the method is 

straightforward and does not require us to compute perturbations separately.  

However, LAF requires to estimate the weights of the ensemble members based on 

their “age”. Ebisuzaki and Kalnay (1991) introduced the scaled lagged average 

forecasting (SLAF) as a variant of LAF to overcome the disadvantages of LAF. In 

this approach the perturbations are obtained from the forecast error of forecasts 

initialized at different initial time. The advantage is that the initial perturbations of 

ensemble members are of similar size. Pairs of initial perturbations with opposite 

sign are used in SLAF for better ensemble forecasts.   

The advantages of ensemble forecasting include providing ensemble mean 

forecasts which are found to be more accurate than the deterministic forecasts even 

beyond first few days, providing guidance on the reliability of the forecasts and 

providing quantitative basis for probabilistic forecasting (Kalnay, 2002). Ensemble 

Prediction Systems (EPS) varies mostly in the way the initial perturbations are 
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generated. Broadly, EPS can be classified into two categories- the one with random 

initial perturbations and the one with initial perturbations that contains information 

of the underlying dynamic flow. Operational weather forecast centres such as 

European Centre for Medium Range Weather Forecasting (ECMWF) and National 

Centres for Environmental Prediction (NCEP) uses ensemble forecasts (Toth and 

Kalnay, 1993, 1997; Tracton and Kalnay, 1993), which are found to be extremely 

useful for decision making purposes. Different EPS uses different methods for 

generating ensembles. For example, at ECMWF, the initial perturbations are 

obtained using the singular vector approach (Molteni and Palmer, 1993) while at 

NCEP breeding vectors (Toth and Kalnay, 1997) are used for generating initial 

perturbations for ensembles. Since 2010, the 50 ensemble members at ECMWF are 

generated by a combination of singular vectors and ensemble data assimilation 

(EDA) methods (Isaksen et al., 2010). Forecast ensembles can also be generated by 

varying model parameterization schemes (Andersson, 1998; Houtekamer and 

Mitchell, 1998; Stensrud et al., 1999) or stochastic physics schemes in each model 

forecast  (Buizza, Miller and Palmer, 1999). Another strategy is to combine the 

model integrations from multiple NWP model initialized from perturbed sets of  

initial conditions (Hou, Kalnay and Droegemeier, 2001; Palmer et al., 2012). 

Finally, operational forecasts from various centres are considered as initial 

conditions to produce ensemble forecasts (Wobus and Kalnay, 1995; Krishnamurti 

et al., 1999; Evans et al., 2000). Ensemble forecasts also paved way for 

developments in targeted observing systems which identifies regions where 

additional observations would be useful to reduce forecast errors. An ideal 

ensemble system should enable identification of biases in the system, account for 

sources of errors, and carry initial condition perturbations that are consistent with 

the “errors of the day”. Several of such properties can be achieved by designing an 

ensemble system that employs ensemble-based data assimilation. The ensembles 

from such a system may follow equal likelihood, where the forecast from all the 

ensemble members have equal probability of representing the true state of the 

atmosphere.  
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1.2    Ensemble data assimilation 

Data assimilation (DA) is a powerful method with wide range of applications in the 

field of atmosphere, ocean and land surface. It combines observational information 

with the dynamical equations governing the atmosphere to obtain the state of the 

atmosphere that would  better describe the system than a model or observation alone 

would do (Daley, 1991).   

 Evensen (1994) proposed the ensemble-based data assimilation based on a 

Monte Carlo approximation of the traditional Kalman Filter. In ensemble-based 

data assimilation method, the flow-dependent background error covariances are 

estimated from an ensemble of forecasts to adjust the background forecast optimally 

to the newly available observations. As a result, unlike data assimilation techniques 

that assumes a time invariant background error, the ensemble-based data 

assimilation methods produce much more accurate analyses and forecasts.  

Generally, the ensemble filters are classified into two: stochastic and 

deterministic. In both classes the ensemble analyses are integrated forward using 

non-linear forecast models and the key difference between the two classes depends 

on whether or not random perturbations are added during the update step. Ensemble 

Kalman Filter (EnKF) is a stochastic ensemble data assimilation algorithm that 

updates each background ensemble member by introducing random noise to 

observations at every assimilation cycle. In deterministic filters the observations are 

not perturbed randomly and it is assumed that an optimal gain exists so that the 

analysis error covariance can be determined from a modified Kalman gain matrix. 

The commonly known deterministic filters are the ensemble square root filter 

(EnSRF, Whitaker and Hamill, (2002)), the ensemble adjustment Kalman Filter 

(EAKF, Anderson, (2001)) and the ensemble transform Kalman Filter (ETKF, 

Bishop, Etherton and Majumdar, (2001)). The EAKF data assimilation method is 

easily available from the Data Assimilation Research Testbed (DART, Anderson et 

al., (2009)) and is one of the most widely used EnKF algorithm (Singh, Mitta and 

Upadhyaya, 2015; Hill, Weiss and Ancell, 2016; Kerr, Stensrud and Wang, 2017).  

Several studies have applied the ensemble data assimilation systems to 

various weather systems and found them to be more efficient than other DA 

systems. Hamill and Snyder (2000) used a hybrid EnKF-three-dimensional 
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variational (3DVAR) analysis scheme to study the contributions of the static and 

ensemble-based background covariances. They found that giving more weight to 

ensemble-based covariances improved the initial conditions, particularly in data 

void regions. Whitaker et al. (2004) used surface pressure observations and showed 

that the ensemble-based data assimilation systems are computationally efficient and 

more accurate than other assimilation schemes when the observation network is 

sparse. Studies by Whitaker et al., (2008), Tong and Xue (2008), and Buehner et 

al., (2010) showed that the ensemble-based data assimilation systems are effective 

in operational weather prediction models. Whitaker et al., (2008) compared the 

ensemble data assimilation system implemented in the NCEP Global Forecast 

System (GFS) with the NCEP Global Data Assimilation System (GDAS). The 

ensemble data assimilation analyses were found to improve the skill of 24-h 

forecasts over the Southern Hemisphere extratropical regions. Dowell et al., (2011) 

used EnKF to produce realistic convective-scale analyses by assimilating ground-

based radar reflectivity observations. Thus, EnKF has been applied for various 

weather system at the global (Houtekamer et al., 2005; Szunyogh et al., 2008; 

Miyoshi, Sato and Kadowaki, 2010) and the convective scales (Zhang, Snyder and 

Sun, 2004; Aksoy, Dowell and Snyder, 2010; Houtekamer and Zhang, 2016).  

Dirren, Torn and Hakim (2007) used the Weather Research and Forecasting 

(WRF) model to conduct experiments with the EnKF data assimilation system on a 

limited area domain over the Pacific Northwest region of the United States. They 

found reduction in the ensemble-mean analysis error and ensemble spread in both 

observed and unobserved variables with the assimilation of single type of 

observation using EnKF data assimilation system. Torn and Hakim (2008b) studied 

the performance of a pseudo-operational limited-area EnKF system over a 2-year 

period based on the WRF model. They used the University of Washington EnKF 

system and mentioned that the gridded datasets from the ensemble system may be 

useful for understanding the predictability and dynamics of weather systems where 

flow-dependent analysis errors are important. Torn and Hakim (2008a) used the 

analyses ensembles from the EnKF system to demonstrate the application of 

ensemble sensitivity analysis in determining the sensitivity of ensemble forecasts 

to observations. 
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Thus, EnKF uses an ensemble of short-term forecasts to approximate the 

forecast-error statistics and performs parallel data assimilation cycles on these 

short-term ensemble forecasts to produce an ensemble of analyses (Hamill, 2006). 

The analyses thus produced are consistent with the analysis-error statistics and can 

be used as optimal initial conditions for ensemble forecasting. Because of these 

advantages, EnKF have achieved considerable attention for generating the best 

estimate of the atmospheric state given the background and the observations. In this 

thesis, the DART-EAKF data assimilation system is used to produce optimal initial 

conditions to obtain the relationship between the ensemble forecasts and the initial 

conditions. 

1.3     Ensemble Sensitivity Analysis 

Sensitivity analysis (SA) is a reliable method that is employed to quantify the 

uncertainties imposed by chaos in the forecast of weather events. It identifies the 

regions where small perturbations in the initial conditions can produce significant 

impact on the forecast. Therefore, sensitivity regions are geographical locations 

where initial perturbations will grow rapidly producing uncertainties in the 

forecasts. Sensitivity analysis is applied to identify potential locations for targeting 

observations (Snyder, 1996) and to understand the dynamics of forecast errors 

(Fujii et al., 2008). Earlier studies used adjoint (Rabier et al., 1996; Langland, 

Shapiro and Gelaro, 2002) or singular vector methods (Gelaro et al., 1998; Palmer 

et al., 1998; Buizza and Montani, 1999; Palmer and Zanna, 2013) to compute the 

sensitivity analysis, however these methods require tangent-linear or adjoint models 

which requires large volume of computational resources.  

Alternatively, Torn and Hakim, (2008a) proposed that sensitivity analysis 

can also be obtained from ensemble-based methods, referred as ensemble 

sensitivity analysis (ESA). Ensemble sensitivity analysis uses sample statistics to 

obtain a linear relationship between the initial conditions and the forecast metrics. 

It was Anderson, (2001) who used ensembles to construct an adaptive observing 

system to obtain the  connection between model states at earlier times and present 

time. Later, Ancell and Hakim, (2007) made a comparative study between adjoint 

sensitivity analysis and ESA for a wintertime flow pattern over North America. 

Their study suggests that compared to adjoint sensitivity, ESA provides accurate 
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estimates of forecast response due to changes in initial conditions. They further 

showed that ensemble sensitivity is connected to adjoint sensitivity by the analysis 

error covariance matrix. Torn and Hakim (2009) formally applied ESA to an 

extratropical cyclone over the Western Pacific. They found a 50% reduction in 

forecast error associated with the minimum sea level pressure of the storm with the 

introduction of perturbations to initial conditions based on ESA. Torn, (2010) used 

ESA to evaluate the impact of initial condition errors on the amplitude and position 

forecasts of African easterly waves. Zack et al., (2010) applied ESA to the short-

range forecasts of wind speed in the Tehachapi Pass of California to identify the 

locations and variables that affects the accuracy of wind forecasts. Each of these 

studies highlight the importance of ESA in revealing the atmospheric flow features 

that are relevant to the predictability of the specific atmospheric event under 

consideration. ESA has been not only applied to large-scale and mesoscale events 

(Li et al., 2014; Hill, Weiss and Ancell, 2016), but also to several convective events 

(Hanley et al., 2013; Bednarczyk and Ancell, 2015; Berman et al., 2017). Thus, 

ESA reveals the coherent flow features related to the dynamically sensitive 

locations. It also overcomes the limitations imposed by purely linear methods in 

obtaining the flow features. Though ESA has been widely applied to reveal the flow 

features over extratropical regions, its application to tropical regions is limited. 

Therefore, in this thesis ESA has been applied to extreme weather events that 

happened over the Indian subcontinent. 

1.4   Motivation and thesis objectives 

Over the past few decades, the occurrence of extreme weather events has increased 

drastically all over the world. People across the globe experience the impacts of 

climate change in the form of extreme weather events. Extreme events occur 

abruptly in the present and are highly visible, in contrast to the long-term climate 

change trends which are distant, abstract, complicated and gradual. Weather 

extremes such as extreme rainfalls, tropical cyclones, heat waves etc are becoming 

more intense and frequent in many regions of the globe.  

According to the most recent ranking by Climate Risk Index, India was 

ranked the fifth country that is most vulnerable to weather and climate extremes 



8 
 

(Mohanty, 2021). During 2017-2018, extreme climate events has resulted in the 

displacement of over seven million people in India, Nepal and Bangladesh 

(Goswami et al., 2006). This suggests that the frequency and amplitude of extreme 

weather events have increased rapidly in India. For example, in the year 2019, about 

73 spells of heatwave were reported and the excess rainfall during the second half 

of Indian summer monsoon led to floods in the central parts of India. Moreover, the 

north Indian Ocean witnessed the development of 11 tropical cyclones against a 

normal of 2 (Ray et al., 2021). At the end of the year, during December there were 

extreme cold wave spells towards northern India. Studies have recorded an 18% 

increase of annual extreme weather events from 2007 to 2016 compared to the 

records from 1997 to 2006 (Ray, Arora and Srivastav, 2019). Some of the recent 

disastrous extreme rainfall events include the heavy rainfall over Uttarakhand in 

2013, Srinagar in 2014, Chennai in 2015, Gujarat in 2017, and Kerala in 2018 and 

2019. These heavy rainfall events result in landslides, floods and crop damage with 

major impacts on the economy, society and the environment. Predicting extreme 

weather events using the NWP models is still fraught with uncertainties and 

therefore, statistically reliable ensemble predictions from different realization of 

initial conditions are found to be robust in forecasting heavy rainfall events (Zhang, 

Snyder and Rotunno, 2003; Schumacher et al., 2013; Mittermaier and Csima, 2017; 

Klasa et al., 2018). 

Timely monitoring and accurate forecasts of extreme events such as heavy 

rainfall, cloudburst, tropical cyclones and thunderstorms are necessary to respond 

effectively to such events. Hence it is important to advance our understanding of 

the key processes that lead to such events and quantify their predictability 

characteristics. Several studies have used ensemble analysis and forecasts in 

investigating extreme weather systems (Yu and Meng, 2016). Torn and Hakim 

(2008) showed that ESA can be employed as a tool to understand the dynamics and 

predictability associated with severe weather events. Moreover, there are hardly any 

studies available in the literature on the application of ESA to extreme weather 

events over the Indian Subcontinent.  
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This study aims to address the predictability aspects of extreme weather 

events over the Indian subcontinent by applying ESA in EnKF data assimilation 

system. The main objectives of the study are as follows: 

• To understand the predictability and dynamics of extreme rainfall events over 

the Indian subcontinent by applying univariate ensemble sensitivity analysis. 

• Extending univariate to multivariate ensemble sensitivity that incorporates the 

contribution from the full covariance matrix in its calculations and quantify the 

performance of multivariate ensemble sensitivity 

• Quantifying the general predictability characteristics of landfalling tropical 

cyclones over the Bay of Bengal using multivariate ensemble sensitivity 

analysis. 

• Applying ensemble sensitivity analysis for identifying the optimal observation 

locations for targeted data assimilation during Indian summer monsoon.  
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CHAPTER 2 

DATA AND METHODS 

This chapter provides a detailed account of the data and methods used for the 

different experiments in the thesis. A brief description of data assimilation and the 

NWP model used in the thesis are also provided.  

2.1  Data Assimilation 

Numerical weather prediction (NWP) is an initial value problem, wherein the initial 

conditions should be as accurate as possible to produce better forecasts. Data 

assimilation (DA) techniques can be used to provide the best estimate of the initial 

state of the atmosphere to the NWP model.  

Basic concept 

The forecasts of a future state of the atmosphere using the fundamental equations 

governing the evolution of the atmosphere are in line with the laws of physics. 

However, the fundamental dynamical equations being nonlinear, forecasts are 

sensitive to the initial conditions. Hence, even with perfect model assumptions, 

accurate predictions are not possible if the initial states are inaccurate. Optimally 

combining the initial state with observations may improve its accuracy. Data 

assimilation is the process of combining an imperfect model with noisy 

observations to produce the best estimate of the state of the system. 

Early techniques of data assimilation involved empirical methods such as 

Cressman analysis and Newtonian nudging. Both methods are now not used 

because of their inherent issues in the formulation. The least-square approach 

attempts to solve the data assimilation problem in a statistically rigorous way by 

minimizing the difference between the analysis and the truth. Optimal interpolation 

(OI) data assimilation method is an extension of the least square approximation that 

has been used by operational forecasters from the 1970s to the 80s. Variational data 

assimilation methods such as 3DVAR and 4DVAR estimate analysis by minimizing 

a scalar function called the cost function, which is the weighted distance between 
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the background and the observation.  Kalman filter data assimilation approach is a 

least square problem that finds the best state by estimating optimal weight. For high 

dimensional systems, an ensemble Kalman filter (EnKF) data assimilation system 

can be employed that uses sample statistics to estimate the background error 

covariances.   

2.1.1 Ensemble Kalman Filter 

Ensemble Kalman filter determines the probability density function (PDF) 

accurately for the current state of the atmosphere, given all current and past 

observations. Although computationally prohibitive, Bayesian statistical estimation 

theory can be used to understand the concepts from the Kalman filter to the 

ensemble Kalman filter. Bayesian data assimilation consists of two steps: assuming 

that the pdf of the current state of the atmosphere is available, the first step includes 

assimilation of recent observations, and the second step includes the propagation of 

the pdf forward in time until new observations are available. Therefore, given all 

the current and previous observations, the PDF of the current state of the 

atmosphere can be expressed as the product of the probability distribution for the 

current observations and the background. Mathematically, Bayes’ rule is given by 

the equation, 

 𝑃(𝒙𝑡
𝑡 | 𝜓𝑡) ∝ 𝑃(𝒚𝑡 | 𝒙𝑡

𝑡) 𝑃(𝒙𝑡
𝑡 | 𝜓𝑡−1) (2.1) 

Here,  𝒙𝑡
𝑡 represents the n-dimensional true state of the model at time 𝑡 and  𝜓𝑡 

indicates a collection of observations. The vector  𝜓𝑡 consists of observations 𝒚𝑡 at 

the most recent time and all the past observations. Given all the past observations 

up to the time 𝑡 − 1, the background or the prior PDF is obtained by integrating the 

analysis PDF forward in time from the analysis at 𝑡 − 1 by using the continuity 

equation.  However, the Bayesian data assimilation becomes complicated and 

computationally expensive for model states of the 𝑂(107) (Hamill, 2006). 

The Extended Kalman filter (EKF) is an approximation to Bayesian 

statistical estimation theory which assumes the error growth to be linear and error 

distributions to be normal. The two components of the EKF include an update step 

and a forecast step. In the update step, the estimates of state and forecast uncertainty 
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are adjusted to the new measurements. In the forecast step, the updated state and 

analysis uncertainty estimate is integrated forward in time until the next set of 

measurements are available.  

Let us consider the background and analysis as 𝒙𝑡
𝑏 and 𝒙𝑡

𝑎, respectively and the 

measurements or observations are contained in 𝒚. Further, 𝑷𝑡
𝑏, 𝑷𝑡

𝑎, and 𝑹 are used 

to indicate the respective covariances for background, analysis, and observations 

with the assumption that background and observation error distributions are 

Gaussian. The analysis equation is a linear combination of the observations and the 

background to minimize the variance in the analysis and is given by, 

 𝒙𝑡
𝑎 = 𝒙𝑡

𝑏 + 𝑲 (𝒚𝑡 − 𝓗(𝒙𝑡
𝑏)) (2.2) 

Here, the forward observational operator 𝓗 maps background fields to the 

observation space. Let the matrix 𝑯 denote the linear observation operator with 

𝑯 =
𝜕𝓗

𝜕𝒙
 . The Kalman gain matrix 𝑲 is given by 

 𝑲 = 𝑷𝑡
𝑏𝑯𝑇(𝑯𝑷𝑡

𝑏𝑯𝑇 + 𝑹)
−1

 (2.3) 

Thus, Kalman gain is a function of the background error covariance matrix, the 

observation error covariance matrix, and the observation matrix. The Kalman gain 

𝑲 is the weight given to the new observation information to correct the background 

at the relevant model grid points. In the case of a single observation, 𝑹 in the above 

equation becomes scalar. Consequently, the variance  𝑯𝑷𝑡
𝑏𝑯𝑇 reduces to a scalar 

and the covariance between each model state variable and the model estimate of the 

observation becomes 𝑷𝑡
𝑏𝑯𝑇 = (𝒙𝑡

𝑏 − 𝒙𝑡
𝑏̅̅ ̅)(𝑯𝒙𝑡

𝑏 − 𝑯𝒙𝑡
𝑏̅̅ ̅̅ ̅̅ )

𝑇
. Under such conditions, 

𝑲 becomes the linear regression coefficient between the model state variable and 

observation with the independent variable being the new observation information 

and the dependent variable being the analysis. 

Assuming no representation errors in the observation forward operator, the true 

model state and true observations are related through the equation given by, 

 𝒚𝑡 = 𝓗(𝒙𝑡
𝑡)  (2.4) 
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However, in the presence of observation or measurement errors 𝜖, the actual 

measurements are defined by the relation 

 𝒚 = 𝓗(𝒙𝑡
𝑡) + 𝜖  (2.5) 

Therefore, the observation error covariance matrix is given by, 

 𝑹 = 𝜖𝜖⊤̅̅ ̅̅ ̅   

  = (𝒚 − 𝓗(𝒙𝑡
𝑡))(𝒚 − 𝓗(𝒙𝑡

𝑡))
𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 

 = (𝒚 − 𝒚𝒕)(𝒚 − 𝒚𝒕)𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (2.6) 

where an overbar indicates the expectation value. Finally, assuming that there is no 

correlation between the observation and background, the error covariance of the 

analysis state vector is reduced with respect to the forecast error covariance as 

𝑷𝑡
𝑎 = (𝒙𝑡

𝑎 − 𝒙𝑡
𝑡)(𝒙𝑡

𝑎 − 𝒙𝑡
𝑡)𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=
[𝒙𝑡

𝑏 − 𝒙𝑡
𝑡 + 𝑲 (𝒚 − 𝒚𝒕 − 𝓗(𝒙𝑡

𝑏) + 𝓗(𝒙𝑡
𝑡))]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

[𝒙𝑡
𝑏 − 𝒙𝑡

𝑡 + 𝑲 (𝒚 − 𝒚𝒕 − 𝓗(𝒙𝑡
𝑏) + 𝓗(𝒙𝑡

𝑡))]
𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

= (𝑰 − 𝑲𝑯)(𝒙𝑡
𝑏 − 𝒙𝑡

𝑡)(𝒙𝑡
𝑏 − 𝒙𝑡

𝑡)
𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝑰 − 𝑲𝑯)𝑇 + 𝑲(𝒚 − 𝒚𝒕)(𝒚 − 𝒚𝒕)𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑲𝑇 

 

= (𝑰 − 𝑲𝑯)𝑷𝑡
𝑏(𝑰 − 𝑯𝑇𝑲𝑇) + 𝑲𝑹𝑲𝑇 

 

= 𝑷𝑡
𝑏 − 𝑲𝑯𝑷𝑡

𝑏 − 𝑷𝑡
𝑏𝑯𝑇𝑲𝑇 + 𝑲(𝑯𝑷𝑡

𝑏𝑯𝑇 + 𝑹)𝑲𝑇 

 

= (𝑰 − 𝑲𝑯)𝑷𝑡
𝑏 

 

(2.7) 

The background is then updated from the previous analysis time to the next time 

when the observations are available at 𝑡 + 1. The analysis at time 𝑡 is integrated 

forward using a model and is represented as 
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 𝒙𝑡+1
𝑏 = ℳ(𝒙𝑡

𝑎)  (2.8) 

where ℳ is the nonlinear forecast model. Considering 𝑴 =
𝜕ℳ

𝜕𝒙
, the linear tangent 

model, the background error covariance matrix at time 𝑡 + 1 is determined by the 

equation, 

 𝑷𝑡+1
𝑏 =  𝑴𝑷𝑡

𝑎𝑴𝑇 + 𝑸  (2.9) 

where 𝑸 =  𝜂𝜂𝑇̅̅ ̅̅ ̅ is the model error covariance matrix with 𝜂 being the stochastic 

forcing representing model errors. Thus, the formulation favours the propagation of 

error covariances along with the nonlinear model itself and provides flow-

dependent forecast error covariance with the observation information spread 

optimally during data assimilation.  

The above equation is computationally expensive as it estimates the 

background error covariance which is of the order of 107 × 107. Additionally, in 

situations where non-linearity is prominent, the EKF may not provide accurate 

estimates of analysis as the error covariance matrix is propagated in time employing 

a tangent linear model. Therefore, Evensen (1994) proposed the ensemble Kalman 

filter (EnKF) which is a Monte Carlo alternative to EKF. In the EnKF, background 

and forecast error covariances are estimated from a finite set of ensemble members 

through parallel data assimilation and forecast cycles. A set of ensemble forecasts 

are used to estimate background error covariances and after that analysis ensembles 

are produced. The ensemble of analyses is then used to generate an ensemble of 

short-term forecasts until the next time when the observations are available. Let us 

assume 𝑿𝑏 to be an ensemble of forecasts at time 𝑡 that randomly sample the model 

background errors. That is,  

 𝑿𝑏 = (𝒙1
𝑏 , … , 𝒙𝑚

𝑏  )  (2.10) 

Here, the subscript represents the ensemble member. With the ensemble mean 

defined as, 

 
𝒙𝑏 =

1

𝑚
∑ 𝒙𝑖

𝑏

𝑚

𝑖=1

 
 (2.11) 
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and perturbation from mean as 𝒙𝑖
′𝑏 = 𝒙𝑖

𝑏 − 𝒙𝑏, the flow-dependent background 

error covariance estimated from a finite number of ensembles is given by 

 
�̂�𝑏 =

1

𝑚 − 1
𝑿′𝑏𝑿′𝑏𝑇

 
 (2.12) 

Where 𝑿′𝑏 = (𝒙1
′𝑏 , … , 𝒙𝑚

′𝑏 )  is a matrix formed from a finite ensemble of 

perturbations and �̂�𝑏 approach 𝑷𝑏 as the number of members approaches infinity. 

2.1.2 DART EAKF 

The Data Assimilation Research Testbed (DART) is an open-source community 

facility that delivers software tools for research, development, and education in 

ensemble data assimilation (Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, 

2009). Atmospheric scientists, oceanographers, hydrologists, chemists, and 

geophysicists depend on the DART’s ensemble data assimilation algorithms and 

diagnostic tools for research and operational forecast purposes. The forward 

operators required to assimilate non-conventional observations such as Global 

Positioning System (GPS) radio occultation soundings are available in DART data 

assimilation system. DART also carries codes for applications such as parameter 

estimation, sensitivity analysis, observing system design and smoothing. 

DART assimilates observations using sequential ensemble data 

assimilation.  The ensemble members required for the DART EnKF data 

assimilation are provided by an ensemble of forecasts obtained randomly from the 

probability distribution of the model’s state. The assimilation process and 

algorithms used in DART by considering three ensemble members at time 𝑡𝑘 is 

illustrated in Fig. 2.1.  The model is integrated forward in time from 𝑡𝑘 to 𝑡𝑘+1, 

when the next observations are available. The prior estimates of the observation 𝑦 

are then estimated by applying a forward observation operator ℎ to each model state 

vector. While the instrument gives the observed value, the instrument error gives 

observation likelihood. An updated ensemble is then estimated by an ensemble 

filter which combines the observation, the prior ensemble and the likelihood. DART 

uses algorithms such as the ensemble Kalman filter (EnKF) and the ensemble 

adjustment Kalman filter (EAKF) for computing the updated ensemble. EAKF is a 
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deterministic square root filter that has the ability to assimilate observations in the 

presence of complex nonlinear dynamics. Compared to EnKF, EAKF uses a 

different algorithm to update the ensemble members using the available 

observations. In EAKF, the updated ensemble is obtained by the application of a 

linear operator, 𝐀, to the prior ensemble or the background. Based on the EnKF Eq. 

2.2, the deviation of the 𝑖th member from the mean can be written as 

 𝒙𝑡
′𝑎 = 𝒙𝑡

′𝑏 + �̃� (𝒚𝑡
′ − 𝓗(𝒙𝑡

′𝑏))  (2.13) 

However, if there is no necessity to perturb the observations, then the above 

equation simplifies to  

 𝒙𝑡
′𝑎 = 𝒙𝑡

′𝑏 + �̃�𝓗(𝒙𝑡
′𝑏) = (𝑰 − �̃�𝓗)𝒙𝑡

′𝑏  (2.14) 

Figure 2. 1. Idealized assimilation process of an EnKF with errors. The blue asterisk 

indicates three ensemble members at time 𝑡𝑘 which are then integrated to time 𝑡𝑘+1 by 

a forecast model indicated by green vectors. The letter h represents the forward 

operator and green ticks on the upper left axes indicate observation estimates. The 

observed value is represented as a red tick while the red curve shows the likelihood. 

The updated ensemble estimate is represented by blue ticks and increments by blue 

vectors on the upper right axes.  Blue vectors at time 𝑡𝑘+1 are used to represent the 

updated ensemble estimates. 



18 
 

where  �̃� is the reduced Kalman gain which is used to update the deviations from 

the ensemble mean.  Therefore, if observations are processed independently, 

𝑯𝑷𝑡
𝑏𝑯𝑇 and 𝑹 become scalars then the reduced Kalman gain is given by, 

 

�̃� = (1 + √
𝑹

𝑯𝑷𝑡
𝑏𝑯𝑇 + 𝑹

)

−1

𝑲 

 (2.15) 

Here, 𝑲, �̃�, 𝑯𝑷𝑡
𝑏, and 𝑷𝑡

𝑏𝑯𝑇 are all 𝑛-dimensional vectors and the quantity in the 

bracket is a scalar with values between 0 and 1. In the EAKF, the linear operator 

becomes 𝐀 = 𝑰 − 𝑲�̃� and the updated ensemble has error covariance identical to 

Eq. 2.7. 

2.2 Data Assimilation for Ensemble Generation  

Evensen (2003) proposed a method in which ensemble members are generated by 

adding perturbations in the form of random fields from a specified distribution to 

an initial best guess of the model states. The ensemble is then integrated over a time 

interval covering a few characteristic time scales of the dynamical system (Evensen, 

2003). This is to make certain that the system is in dynamic balance and achieved 

appropriate multivariate correlations. Evensen ( 2004) also proposed an improved 

sampling scheme that uses randomly generated ensembles, spatially correlated 

fields, and Singular Value Decomposition (SVD) method to obtain independent 

perturbations. Above mentioned methods have the disadvantage that they are 

applied before the assimilation period and therefore, require to spin-up to attain 

dynamic balance by which time the model equations may alter the prescribed error 

distribution. 

The breeder method and optimal perturbations (singular vectors) are the 

other two methods for generating ensembles that have been used in operational 

ensemble forecasting. Both of these methods involve the generation of a set of 

fastest growing errors. Though these methods can be used for ensemble 

initialization in certain cases, they are not recommended as a generic approach. The 

singular vector method generates the fastest growing errors by using an adjoint 

model, which needs to be developed specifically. Therefore, though the singular 
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vector method has obvious benefits, its use is impractical. On the other hand, the 

breeder method is simple to apply, however, its ability to estimate forecast error 

variance with accuracy is questionable.  

If the ensemble forecast has a large spread, then the error covariance matrix 

�̂�𝑏 in Eq. 2.12 will be overestimated and the analysis will tend to overfit the 

observations. On the contrary, if the ensemble forecast has a smaller spread, then 

the error covariance matrix �̂�𝑏 will be underestimated and the analysis will tend to 

underfit the observations. If the forecast error is represented improperly by the 

ensembles, it will result in a sub-optimal filter. Therefore, while using the EnKF 

data assimilation technique, it is essential to generate and propagate the ensembles 

with reasonable variance. The EnKF analysis Eq. 2.2 can be written as a linear 

combination of the deviations in ensembles and therefore, the independent 

ensemble deviations make the analysis more efficient. Hence, if the ensembles with 

linearly independent deviations can be generated then it results in a more efficient 

assimilation filter.  

The nonlinear filtering theory that estimates the probability distribution of a 

state of the NWP model given a set of observations unifies DA and ensemble 

generation problem. The continuously cycling EnKF data assimilation will yield 

flow-dependent initial condition perturbations drawn from an equally likely state.  

Therefore, the ensembles used in this study conform to the principle of equal 

likelihood.   

2.3 Regional Model WRF 

The Weather Research and Forecasting (WRF) model is an atmospheric simulation 

system and mesoscale non-hydrostatic NWP model designed for operational and 

research purposes. The WRF model is developed jointly by the National Centre for 

Atmospheric Research (NCAR), the National Oceanic and Atmospheric 

Administration (NOAA), the Naval Research Laboratory (NRL), the University of 

Oklahoma, the Air Force Weather Agency (AFWA) and the Federal Aviation 

Administration (FAA). The model is suitable for a wide range of applications such 

as real-time NWP, data assimilation, parameterization schemes, regional climate 
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simulations, atmosphere-ocean coupling, air quality modeling and idealized 

simulations across scales ranging from convective scales to synoptic scales. The 

WRF Software Framework (WSF) involves two dynamics solvers: the Advanced 

Research WRF (ARW) solver and the Nonhydrostatic mesoscale model (NMM) 

solver which are maintained by NCAR and NCEP respectively. Additionally, the 

WSF includes physics packages, initialization programs, WRF-Var and WRF-

Chem.   

The present study uses the WRF-ARW dynamical solver and the   corresponding 

WRF system components are shown in Fig. 2.2. 

2.3.1 ARW Equations 

The ARW dynamic solver integrates the non-hydrostatic and compressible Euler 

equations which are presented in the flux form. A terrain-following mass vertical 

coordinate 𝜂 is used in the formulation of the ARW equations and it is defined as  

 
𝜂 =

(𝑝ℎ − 𝑝𝑡)

𝜇
 

 (2.16) 

where 𝜇 = 𝑝𝑠 − 𝑝𝑡.  Here, 𝑝ℎ refers to the hydrostatic component of the pressure 

whereas 𝑝𝑠 and 𝑝𝑡 represent the pressure values along the surface and top 

boundaries of the model, respectively. The vertical coordinate 𝜂 varies from a value 

of 1 at the surface to 0 at the top boundary. Therefore, at any grid point (𝑥, 𝑦), the 

variables are represented in the flux form as 𝐕 = 𝜇𝐯 = (𝑈, 𝑉, 𝑊), Ω = 𝜇�̇�, Θ = 𝜇𝜃 

Figure 2. 2. WRF System Components 
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with 𝜇(𝑥, 𝑦) being the mass per unit area within the vertical column. 𝐯 = (𝑢, 𝑣, 𝑤) 

indicate the covariant velocities in the two horizontal and vertical directions, 

respectively whereas 𝜔 = �̇� represents the contravariant vertical velocity. The 

equations also contain variables such as the potential temperature (𝜃), the non-

conserved geopotential 𝜙 = 𝑔𝑧, pressure (𝑝), and the inverse density 𝛼 = 1/𝜌.  

Using these variables, Euler equations in the flux-form can be written as: 

 𝜕𝑡𝑈 + (𝛁. 𝐕𝑢) − 𝜕𝑥(𝑝𝜕𝜂𝜙) + 𝜕𝜂(𝑝𝜕𝑥𝜙) = 𝐹𝑈  (2.17) 

 𝜕𝑡𝑉 + (𝛁. 𝐕𝑣) − 𝜕𝑦(𝑝𝜕𝜂𝜙) + 𝜕𝜂(𝑝𝜕𝑦𝜙) = 𝐹𝑉 (2.18) 

 𝜕𝑡𝑊 + (𝛁. 𝐕𝑤) − 𝑔(𝜕𝜂𝑝 − 𝜇) = 𝐹𝑊 (2.19) 

 𝜕𝑡Θ + (𝛁. 𝐕𝜃) = 𝐹Θ (2.20) 

 𝜕𝑡𝜇 + (𝛁. 𝐕) = 0 (2.21) 

 𝜕𝑡𝜙 + 𝜇−1[(𝐕. 𝛁𝜙) − 𝑔𝑊] = 0 (2.22) 

Here,  𝐹𝑈, 𝐹𝑉, 𝐹𝑊, and 𝐹Θ represent the forcing terms due to model physics, 

turbulent mixing, spherical projections and rotation of the Earth. 

Moreover, the diagnostic relation for the inverse density is given by 

 𝜕𝜂𝜙 = −𝛼𝜇  (2.23) 

with the equation of state being 𝑝 = 𝑝0(𝑅𝑑𝜃/𝑝0𝛼)𝛾, where 𝑝0 is the reference 

pressure, 𝑅𝑑 is the gas constant for dry air and 𝛾 = 𝑐𝑝/𝑐𝑣 = 1.4 is the ratio of 

specific heat capacities for dry air. The ARW solver supports four projections to 

the sphere such as Mercator, Lambert conformal, latitude-longitude and Lambert 

projections. In this thesis, we have used the Lambert projection for all the 

experiments. Further, the ARW solver uses a third-order Runge-Kutta scheme for 

the time integration of slow or low-frequency modes and integration over smaller 

time steps is performed for high-frequency modes. Finally, in the ARW solver, the 

variables are spatially discretized based on the Arakawa-C grid staggering. The 

ARW solver also supports horizontal nesting with different options such as two-

way nesting, one-way nesting and moving nests. Compared to other models, 
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ARW’s nesting infrastructure can perform nested simulations efficiently on 

distributed memory parallel computer systems.   

The WRF-ARW also offers several categories of physics parameterization schemes 

to simulate real atmospheric conditions and to perform coarser resolution 

simulations. They are microphysics, planetary boundary layer, cumulus 

parameterization, radiation and land-surface model.  

2.3.2 Post-processing using NCL 

NCL (NCAR Graphics Command Language) is an interpreted programming 

language with a wide variety of graphic capabilities and many useful functions and 

procedures. NCL has the advantage that it can read the WRF data directly, make 

simple plots quickly, and easy to make difference plots. Therefore, this study uses 

NCL for visualization and analysis purposes. 

2.4 Data Used 

Data for model initialization: The static data used by the geogrid program in the 

WPS is downloaded from the WRF page. Since the terrestrial data are time-

invariant, these data need to be downloaded only once. The present thesis uses high-

resolution geographical dataset in the geogrid program of the WPS. Data source 

https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html 

NCEP-GFS data: After interpolating the time-invariant geographical data, the 

time-varying meteorological data needs to be interpolated to initialize WRF and 

this data can be obtained from the NCEP-GFS. The NCEP-GFS uses a global 

spectral model with spherical harmonic functions and a horizontal resolution of 

approximately 13km at the equator for 0-10 days. In this study, we have used 6 

hourly NCEP-GFS data at 0.25° × 0.25° grided resolution to initialize the WRF 

model.  

Data source: https://rda.ucar.edu/datasets/ds084.3/ 

 

 

 

https://rda.ucar.edu/datasets/ds084.3/
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 Table 2. 1. TIGGE project partners 

 

 

 

 

 Centre Country Acronym 
Ensemble 

Size 

1 Bureau of Meteorology Australia BoM 17 

2 
China Meteorological 

Administration 
China CMA 30 

3 
Centro de Previsao de Tempo 

e Estudos Climaticos 
Brazil CTPEC 15 

4 Deutscher Wetterdienst Germany DWD 40 

5 
Environment and Climate 

Change Canada 
Canada ECCC 21 

6 
European Centre for Medium 

Range Weather Forecasts 
Europe ECMWF 51 

7 
Indian Meteorological 

Department 
India IMD 21 

8 
Japan Meteorological 

Administration 
Japan JMA 51 

9 
Korea Meteorological 

Administration 
Korea KMA 26 

10 Meteo-France France MF 35 

11 
National Centres for 

Environmental Prediction 

United 

States 
NCEP 31 

12 
National Centre for Medium 

Range Weather Forecasting 
India NCMRWF 12 

13 Met Office 
United 

Kingdom 
UKMO 18 
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Surface and upper-air Observations: All the data assimilation experiments in this 

thesis use NCEP surface and upper-air observations in PREPBUFR format to 

assimilate observations every 6 hours. The data includes conventional observations 

such as radiosonde, land surface, marine surface, pilot balloon and aircraft reports 

from the Global Telecommunication System (GTS). 

 Data source: https://rda.ucar.edu/datasets/ds337.0/ 

TIGGE: The Observing system Research and Predictability Experiment 

(THORPEX) Interactive Grand Global Ensemble (TIGGE) was launched to support 

the research activities of the THORPEX program by providing operational 

ensemble forecasts to the international research community. The key objectives of 

TIGGE are as follows: (1) enhancing international collaboration between 

universities and operational centers on ensemble prediction, (2) finding new 

methods to combine ensembles from various sources and correcting for errors such 

as biases and under/overestimation of spread, (3) understanding the contribution of 

uncertainties in the model, initial conditions and observations to forecast error, (4) 

exploring the benefit of ensemble systems to changing uncertainty and (5) 

development of a future Global Interactive Forecast System (GIFS). The TIGGE 

dataset consists of ensemble forecasts from 13 global NWP centers (Table 2.1), 

starting from October 2006 and is available to the research community through the 

ECMWF and CMA archive portals. Among the thirteen centers, three centers: 

NCMRWF, IMD and DWD started providing data in recent years. The present 

study uses ECMWF and NCEP ensemble forecasts at 0.5° × 0.5° grided resolution 

from TIGGE for the experiments with predictability assessments involving large-

scale flow structures. 

Data Source: https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/ 

2.5 Ensemble Sensitivity Analysis 

In this section, brief information about ensemble sensitivity analysis (ESA) and its 

relation to adjoint sensitivity analysis is presented. Sensitive regions are 

geographical locations where the error growth associated with initial perturbations 

influences the forecasts within a given region at the verification time. The purpose 

https://rda.ucar.edu/datasets/ds337.0/
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of sensitivity analysis is to locate the areas for adaptive observations and to 

understand dynamics. Typically, adjoint or singular-vector methods are used for 

sensitivity analysis, however, these methods require the tangent-linear or adjoint 

models which are computationally expensive. In this thesis, an ensemble approach 

is used to determine how the forecast metrics vary to changes in the initial 

conditions. Ancell and Hakim (2007) use linear regression and provide a 

comparison between ensemble and adjoint sensitivity analysis.  

Consider a discrete dynamical system, then its evolution with respect to time for 

the state vector  𝒙 is described by  

 𝑑𝒙

𝑑𝑡
= 𝑭(𝒙) 

 (2.24) 

where 𝑭(𝒙) indicates a nonlinear vector function. If 𝑭(𝒙) can be linearized about a 

reference trajectory, then the evolution of an initial perturbation is given by 

 𝛿𝒙𝑡 = 𝑹𝑡,𝑡0
𝛿𝒙0  (2.25) 

Here, 𝑡 and 𝑡0 denote the initial and final time, respectively. The resolvent matrix 

𝑹𝑡,𝑡0
 maps the perturbation vector 𝛿𝒙0 at the initial time into the perturbation vector 

𝛿𝒙𝑡 at forecast time. Let us consider the scalar metric 𝐽 as the forecast metric, which 

is a function of the model state at an earlier time 𝑡. Then the Taylor expansion can 

be used to estimate 𝐽, for small changes about the control solution 

 
𝐽(𝒙𝑡 + 𝛿𝒙𝑡) = 𝐽(𝒙𝑡) + [

𝜕𝐽

𝜕𝒙𝑡
]

𝑇

𝛿𝒙𝑡 + ⋯, 
 (2.26) 

Therefore, the change in the forecast metric 𝐽 is given by 

 
𝛿𝐽 = 𝐽(𝒙𝑡 + 𝛿𝒙𝑡) − 𝐽(𝒙𝑡) = [

𝜕𝐽

𝜕𝒙𝑡
]

𝑇

𝛿𝒙𝑡 
 (2.27) 

Substituting for 𝛿𝒙𝑡 from Eq. 2.25 the above expression becomes                                                                                                                                                                      

 
𝛿𝐽 = [

𝜕𝐽

𝜕𝒙𝑡
]

𝑇

𝑹𝑡,𝑡0
𝛿𝒙0 

 (2.28) 

Using the algebraic properties of transpose the change in 𝐽 becomes 

 
𝛿𝐽 = [𝑹𝑡,𝑡0

𝑇
𝜕𝐽

𝜕𝒙𝑡
]

𝑇

𝛿𝒙0 
 (2.29) 
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The transpose of the resolvent matrix represents the adjoint of a tangent linear 

model, that maps the sensitivity gradient at time 𝑡 backward obtaining the 

sensitivity gradient with respect to 𝒙0 at time 𝑡0. 

 
𝑹𝑡,𝑡0

𝑇
𝜕𝐽

𝜕𝒙𝑡
=

𝜕𝐽

𝜕𝒙0
 

 (2.30) 

Substituting the above equation back into Eq. 2.29 we obtain the change in the 

forecast metric at time 𝑡 due to changes in the initial condition as, 

 
𝛿𝐽 = [

𝜕𝐽

𝜕𝒙0
]

𝑇

𝛿𝒙0 
 (2.31) 

Here 
𝜕𝐽

𝜕𝒙0
 represents the adjoint sensitivity of the scalar forecast metric to initial 

conditions and if this quantity is large then it indicates the regions where the errors 

in the initial conditions grow rapidly during the forecast. However, the adjoint 

sensitivity is estimated by computing the adjoint of a tangent linear model which is 

computationally expensive. Therefore, as an alternative, an ensemble of 

independent samples is used statistically to obtain how the initial condition affects 

the forecast metric. To obtain the relationship between adjoint and ensemble 

sensitivity Eq. 2.31 is right multiplied by 𝛿𝒙0
𝑇 and by calculating the expected value  

 
𝐸 [𝛿𝐽𝛿𝒙0

𝑇 = [
𝜕𝐽

𝜕𝒙0
]

𝑇

𝛿𝒙0𝛿𝒙0
𝑇] 

 (2.32) 

Since [
𝜕𝐽

𝜕𝒙0
]

𝑇

is a deterministic quantity applying to the control trajectory (Ancell and 

Hakim, 2007), the above equation can be written as,  

 
𝑐𝑜𝑣(𝛿𝐽, 𝛿𝒙0) = [

𝜕𝐽

𝜕𝒙0
]

𝑇

𝐏𝑎 
 (2.33) 

where 𝐏𝑎 is the initial-time error covariance matrix and 𝑐𝑜𝑣 represents the 

covariance between the forecast metric and the initial conditions. It is to be noted 

that 𝛿𝐽 and 𝛿𝒙0 are assumed to have zero mean.  

The covariance alone is not enough to obtain the linear regression relationship 

between the forecast metric and the initial state. Right multiplying the above 

equation by 𝐏𝑎−1
 gives the multivariate linear regression that recovers the adjoint 

sensitivity within sampling error as 
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[

𝜕𝐽

𝜕𝒙0
]

𝑇

= 𝑐𝑜𝑣(𝛿𝐽, 𝛿𝒙0)𝐏𝑎−1
 

 (2.34) 

However, practically it is computationally difficult to invert the matrix 𝐏𝑎−1
 and is 

not unique if the number of ensemble members is small. Therefore, a univariate 

regression approach is used to obtain ensemble sensitivity by regressing to all the 

initial degrees of freedom  

 
[

𝜕𝐽𝑒

𝜕𝒙0
]

𝑇

= 𝑐𝑜𝑣(𝐽, 𝛿𝒙0)𝐃−1 
 (2.35) 

where 𝐃 is a diagonal matrix with the error variance at the initial time and 
𝜕𝐽𝑒

𝜕𝒙0
 is the 

ensemble sensitivity vector. The above equation can also be represented as 

 𝜕𝐽𝑒

𝜕𝑥
=

𝑐𝑜𝑣(𝑱, 𝒙)

𝑣𝑎𝑟(𝒙)
 

 (2.36) 

Here, 𝒙 and 𝑱 represents the 1 × 𝐾 ensemble estimates of the state variable and 

forecast metric, respectively calculated from 𝐾 ensemble members. If the diagonal 

elements are dominant over the off-diagonal elements then the difference between 

the two regression approaches can be considered to be small. Using Eqs. 2.34 and 

2.35, the relationship between adjoint and ensemble sensitivity analysis is obtained 

as 

 𝜕𝐽𝑒

𝜕𝑥
= 𝐃−1𝐏𝑎

𝜕𝐽

𝜕𝒙0
 

 (2.37) 

The advantage of using ensemble sensitivity is that the matrix 𝐃 is trivial to 

calculate and hence is computationally more efficient than adjoint sensitivity. If the 

right-hand side of Eq. 2.36 is multiplied by the ensemble standard deviation, then 

the ensemble sensitivity can be expressed in the units of the forecast metric.  Since 

ensemble sensitivity is estimated from a small set of ensemble members compared 

to the number of state variables, it is affected by sampling errors. The issues of 

sampling error in univariate ensemble sensitivity are addressed by testing for 

statistical significance similar to Torn and Hakim (2008a). According to their study, 

a state variable can produce a statistically significant change in the forecast metric 

if 



28 
 

|
𝜕𝐽

𝜕𝑥
| > 𝛿𝑠 

where 𝛿𝑠 indicates the confidence interval on the regression coefficient (Wilks, 

2007) which is 99% in this work. If the above equation is satisfied, the null 

hypothesis of no relationship between the forecast metric and the state variable can 

be rejected with 99% confidence.  

 

2.5.1     Initial Condition Perturbation 

The hypothesis based on ensemble sensitivity analysis is validated quantitatively 

by applying perturbations to the initial conditions in the most sensitive regions. The 

perturbed initial conditions thus obtained are then integrated forward by using a 

non-linear model. The resulting forecast metric is then compared to the change in 

the forecast metric predicted by ensemble sensitivities. In this work, perturbations 

are applied only to the initial conditions of one ensemble member. Therefore, the 

control forecast is considered as the forecast of the ensemble member whose 

forecast metric values are closest to the ensemble mean. The perturbed ith state 

variable 𝐱i
p
 when a change of α is applied to the state variable in the most sensitive 

region is given by 

 
𝐱i

p
= 𝐱i

a +  
∂𝑥i

a

∂𝑥s
α  

 (2.38) 

where 

 𝜕𝑥𝑖
𝑎

𝜕𝑥𝑠
=

𝑐𝑜𝑣(𝒙𝑖
𝑎, 𝒙𝑠)

𝑣𝑎𝑟(𝒙𝑠)
 

 (2.39) 

Here, 𝒙𝑠 and 𝒙𝑖
𝑎 are 1 × 𝐾 ensemble estimates of the perturbation state variable and 

𝑖th control analysis state variable, respectively. Thus, this experiment is similar to 

assimilating a hypothetical observation within the most sensitive grid point where 

the innovation is 𝛼 and the observation error covariance is assumed to be zero.   
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The content of Chapter 3 is taken from “George, B., Kutty, G., 2021. Ensemble sensitivity analysis 

of an extreme rainfall event over the Himalayas in June 2013. Dynamics of Atmospheres and Ocean. 

93 and “George, B., Kutty, G., 2022. Sensitivity analysis applied to two extreme rainfall events over 

Kerala using TIGGE ensembles. Meteorology and Atmospheric Physics 134, 1–14.  

CHAPTER 3 

UNIVARIATE ENSEMBLE SENSITIVITY 

ANALYSIS APPLIED TO EXTREME RAINFALL 

EVENTS OVER THE INDIAN SUBCONTINENT  

 

3.1 Introduction 

During the past few decades, the frequency of occurrence as well as the intensity of 

extreme rainfall events over the Indian subcontinent have been on the rise 

(Rajeevan, Bhate and Jaswal, 2008; Roxy et al., 2017). Recent heavy rainfall 

episodes over the Indian subcontinent such as the rainfall in Mumbai during July 

2005 (Sahany, Venugopal and Nanjundiah, 2010), in Uttarakhand during June 2013 

(Vellore et al., 2016; Houze et al., 2017), in Chennai during December 2015 

(Srinivas et al., 2018; Nikumbh et al., 2021) and in Kerala during 2018 (Mishra et 

al., 2018; Viswanadhapalli et al., 2019) and 2019 have resulted in huge damage to 

property and loss of life. Providing accurate predictions of such extreme events in 

advance can significantly reduce such losses. However, the prediction of extreme 

rainfall events using NWP models is challenging due to the uncertainties associated 

with the initial conditions and the models. Statistically reliable ensemble 

predictions from the different realization of initial conditions of the atmosphere are 

found to be robust in forecasting heavy rainfall events. Additionally, the forecast 

ensembles can be employed for understanding the predictability and dynamics of 

extreme weather events using sensitivity analysis.  

  Extreme precipitation events over and near the Himalayas are often 

associated with large-scale synoptic conditions such as the southward intrusion of 

the upper-level westerly trough and northward propagating moisture-laden low-

level circulation (Vellore et al., 2016). The heavy rainfall that occurred over the 

Uttarakhand state in June 2013 is one such event with strong synoptic forcing that 

caused massive destruction to life and properties. 
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  Although the key factors responsible for the Uttarakhand storm have been 

recognized in the literature, the uncertainties in the storm producing factors, their 

relative importance in the development of the storm, and the predictability aspects 

have not been investigated. In the context of climate change, it has been reported 

that the unprecedented extreme precipitation episodes and flooding events are on 

the rise over the Himalayas during the past few decades (Priya et al., 2017). Hence, 

it is important to advance our understanding of the key processes that lead to such 

events and quantify its predictability characteristics. Fig. 3.1 shows the spatial 

distribution of accumulated precipitation from the Tropical Rainfall Measuring 

Figure 3. 1. Rainfall distribution of TRMM and ensemble mean on the two days of the 

rainfall event (D1 and D2). Shading denotes the 24 h accumulated precipitation (a) TRMM 

and (b) WRF forecast for D1, while (c) TRMM and (d) WRF are for D2 precipitation. The 

black box denotes the location of the response function. The black dot represents the 

location of Uttarakhand. 
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Mission (TRMM) satellite and ensemble mean forecast using the WRF model valid 

at 1200UTC of 16 and 17, June 2013 (hereafter D1 and D2).  As can be seen from 

Fig. 3.1, the location and intensity errors associated with the forecasted 

precipitation are substantial and the location of precipitation maxima in the model 

forecast is shifted northward as compared to the TRMM observations, for both the 

days. Therefore, one objective of the present study is to identify the uncertainties in 

the factors that lead to errors in the location and intensity of precipitation maxima 

using an ensemble framework. Further, the study will also address the predictability 

aspects of the event in synoptic as well as in convective scales by applying ESA. 

Another objective of the present chapter is to identify the key synoptic features that 

lead to uncertainties in the rainfall forecasts of the heavy rainfall events happened 

over Kerala in 2018 and 2019 by employing the ESA method. 

Kerala, the southernmost Indian state, has experienced heavy rainfall and 

torrential flood episode in August 2018 (hereafter KF18), which produced extensive 

damages to human life and properties that worth around 3.8 billion US dollars. A 

similar event is repeated in the very next year in August 2019 (hereafter KF19) 

causing massive landslides and floods that took lives and left many homeless. The 

synoptic features that are in common for the two events include the formation of a 

depression over the Bay of Bengal, stronger LLJ (Low Level Jet) over the Arabian 

Sea, an off-shore trough over the west coast of the Indian subcontinent, and 

circulations over the Western North Pacific (WNP).  From June 1 to August 19 of 

the year 2018, Kerala received extensive rainfall of about 2347 mm in contrast to 

an expected climatological precipitation value of 1650 mm (Padma, 2018). 

Typically, during southwest monsoon the strong westerly winds from the Arabian 

Sea brings huge amount of moisture towards the west coast of India and heavy 

downpour occurs on the windward side of the Western Ghats barrier. If that is the 

case it needs to be questioned what made the rainfall in the years 2018 and 2019 

unique. Numerous studies have worked on the dynamics of KF18, however studies 

on KF19 are limited. Baisya and Pattnaik (2019) have shown that the synoptic-scale 

oscillations that favored the development of extreme rainfall over Kerala include 

the development of an anti-cyclonic circulation towards the northwest of India, a 

monsoon depression over the Bay of Bengal, and a Phase-6 Madden-Julian 
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Oscillation (MJO). Mohandas et al. (2020) found that the prevalence of a conveyor 

belt-like flow in the presence of remotely aligned intense tropical circulations is 

responsible for bringing additional moisture to the Kerala coast, which has resulted 

in the KF18 event. Viswanadhapalli et al. (2019) addressed the KF18 event using a 

very high-resolution mesoscale model that indicated the presence of convective 

instability, and strong wind shear has favored deep convection during the event. 

Kumar et al. (2020) found that in addition to the low-pressure system over the Bay 

of Bengal and the off-shore trough over the west coast, the inflow of dry air from 

the Middle East region is responsible for setting up an environment that is 

conducive for the heavy rainfall event. Ashrit et al. (2020) evaluated the forecast 

performance of high-resolution operational NCMRWF Unified Model (NCUM) 

simulation of KF18 rainfall. They found that at shorter lead times deterministic 

model forecasts are accurate while the ensemble forecasts are useful at longer lead 

times. Hunt and Menon (2020) provided a climate-change perspective to the KF18 

event using high-resolution models. Several studies addressed the role of reservoirs 

and dams on the flood associated with the heavy rainfall in 2018 (Mishra and Shah, 

2018; Mishra et al., 2018; Sudheer et al., 2019). Investigations are performed to-(i) 

identify the atmospheric flow features that are important to the predictability of the 

two heavy rainfall events over Kerala using ESA, (ii) determine the possible 

similarities and differences in the dynamics of the two events in an ensemble 

framework, and (iii) examine the importance of remotely aligned circulations in the 

formation of KF18 and KF19 heavy rainfall events using the ensemble-based 

approach. 

  This chapter uses ensemble-based approach to understand the predictability 

and dynamics of three major heavy rainfall events over the Indian subcontinent, in 

general. More specifically, the application of univariate ensemble sensitivity 

analysis to understand the atmospheric flow features that are important to the 

predictability of extreme rainfall events are discussed in this chapter.  
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3.2 Case Overview 

3.2.1 Uttarakhand rainfall 2013 

The state of Uttarakhand is located at the foothills of the Himalayas in the Indian 

subcontinent. This region comes under the influence of monsoonal as well as large-

scale extratropical circulation and hence vulnerable to the intense precipitation 

episodes. In the year 2013, the Indian Summer Monsoon advanced rapidly towards 

northern India and covered the entire country by June 16, after its onset over Kerala 

(Kumar and Krishnamurti, 2016). The Uttarakhand and its adjoining areas 

experienced a major rainstorm event from 14 to 17 June 2013 that resulted in 

massive destruction of life and properties due to flood and landslides associated 

with the rainfall. The India Meteorological Department (IMD) reported an excess 

anomaly in rainfall over the Uttarakhand that amounts to 847% in the rain rates over 

the week ending on 19 June 2013. Further, the accumulated 24-hourly rain rates 

depict an excess of 375% on 17 July 2013 over the Uttarakhand (Dube et al., 2014). 

Severe convection and associated precipitation are reported a few days before the 

main event, which has moistened the soil along the Himalayan escarpment and 

made the region vulnerable to landslides (Houze et al., 2017).  

The synoptic conditions that led to the massive rainfall event from 14 – 17 

June 2013 are associated with the presence of a mid-level trough in the westerlies 

and its anomalous extension towards the south. The trough further merged with a 

westward-moving low-pressure system that induced stronger winds in the south-

westerly direction. This flow pattern has supplied sufficient moisture from the 

Arabian Sea and the Bay of Bengal to the Uttarakhand region (Houze et al., 2017). 

In addition to the constant advection of moisture from the Arabian Sea and the Bay 

of Bengal, a stream of dry air aloft in the middle and upper troposphere made the 

environment over the Uttarakhand conducive for stormy weather (Krishnamurti et 

al., 2017). A study by Ranalkar et al. (2016) also mentions about the favourable 

synoptic conditions and the role of orography in modulating the rainfall over the 

Uttarakhand.  

 



34 
 

3.2.2 Kerala Rainfall 2018 

Kerala, the southwestern state of India, is bounded by the Western Ghats Mountain 

range to the east and the Arabian Sea towards the west. Around 47% of the Kerala 

state is occupied by the Western Ghats that extends to a height of about 2 km 

approximately (Fig. 3.2). The highest peak (Anaimudi Peak) of 2695 m in the 

Western Ghats is located in Kerala and therefore the orography of Western Ghats 

plays a vital role in the rainfall over the region. The state is influenced by two rainy 

seasons, the southwest monsoon and northeast monsoon. During southwest 

monsoon (July-September), the Western Ghats acts as a barrier to the moisture-

laden south-westerly monsoon winds from the Arabian Sea. These strong westerly 

winds along with rain-bearing clouds are forced to ascend at the Ghats and while 

doing so heavy downpours occur on the windward side. In August 2018, Kerala  

Figure 3. 2. The topographical elevation of the state Kerala. The location of Kerala is 

highlighted in red in the figure at the bottom left corner.  
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Figure 3.3. The distribution of 5-day accumulated rainfall for August 2018 (top panel) and 

2019 (bottom panel). Figures a) and d) represents IMD observation, b) and e) corresponds 

to TRMM, and c) and f) are the ensemble mean precipitation. The inner solid box represents 

the area used for rainfall average. 

Figure 3.4. The synoptic environment of KF18 using ERA-Interim. The 500-hPa 

geopotential heights (contoured every 20 gpm), 500-hPa wind (shading) and wind vectors 

at (a) 0000 UTC 14 August 2018 and (b) 0000 UTC 15 August 2018; 850-hPa geopotential 

height, moisture flux (𝑔𝑘𝑔−1𝑚𝑠−1) and wind vectors at (c) 0000 UTC 14 August 2018 

and (d) 0000 UTC 15 August 2018. 
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received exceptionally high rainfall in two spells centered over 8 – 10 August and 

15 – 17 August 2018. The second spell is more severe than the first one, and the 

incessant rainfall forced the authorities to open the shutters of nearly 33 reservoirs 

(Mohandas et al., 2020). This has led to devastating floods over many parts of 

Kerala, and nearly 433 people lost their lives and 5.4 million people are affected 

(Ashrit et al., 2020). The distribution of 5-day accumulated rainfall from 0000UTC 

12 August to 0000UTC 17 August for IMD and TRMM observations and ensemble 

mean are shown in Fig. 3.3. It can be seen that the amount of rainfall is 

underestimated in the global operational ensemble forecasts from ECMWF, which 

can be attributed to the coarser resolution model forecasts.  

The synoptic conditions that prevailed during this event are explained in 

detail in Mohandas et al. (2020). The study has shown that the coupled interactions 

of the intense low-pressure area over the Bay of Bengal and a set of cyclonic 

circulations over the Western North Pacific (WNP) resulted in an intense low-level 

wind convergence. Figure 3.4 shows the geopotential height and wind at two levels; 

viz 850 hPa and 500 hPa, during 14 August and 15 August 2018 from the ERA-

Interim analysis field, which indicates the existence of a low-pressure system (LPS) 

near the Head Bay and cyclonic circulations over WNP.  At 850 hPa a strong low-

level jet is seen extending from the Arabian Sea to WNP (Fig. 3.4c-d). In addition 

to that, the presence of an off-shore trough can be seen that enhances the wind 

convergence along the west coast of Kerala.  

3.2.3 Kerala Rainfall 2019 

Though the impact of the KF18 event is reported to be more severe than KF19, the 

intensity of rainfall is much stronger in the KF19 event. Since the cumulative 

rainfall received is lower in the preceding monsoon months of August 2019 as 

compared to August 2018, the impact of KF19 is not as substantial as KF18. After 

the onset of ISM in the year 2019, three spells occurred over Kerala, one each 

during July, August and September. Among these three spells the most intense 

rainfall happened between the 6th and 11th of August. On 8th August 2019, the 

Kerala state received above 150 mm rainfall on an average causing flooding over 

different parts of the state. The percentage departure of daily rainfall over Kerala 

on 8th August is around 998% of normal (Vijaykumar et al., 2021). Figure 3.5  
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Figure 3. 5. The synoptic environment of KF19 using ERA-Interim. The 500-hPa 

geopotential heights (contoured every 20 gpm), 500-hPa wind (shading) and wind vectors 

at (a) 0000 UTC 8 August 2019 and (b) 0000 UTC 9 August 2019; 850-hPa geopotential 

height, moisture flux (𝑔𝑘𝑔−1𝑚𝑠−1) and wind vectors at (c) 0000 UTC 8 August 2019 and 

(d) 0000 UTC 9 August 2019. 

Figure 3. 6. WRF Model domain. The outer (inner) box represents the extent of the 27- 

( 3- ) km domain for the nested forecasts. The black dot represents the location of 

Uttarakhand. 
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depicts the synoptic environment of the KF19 event from the ERA-Interim 

reanalysis.  

Broadly speaking, the key synoptic conditions of KF19 is similar to that in 

KF18 with depression over the Bay of Bengal, an offshore trough, and circulations 

over WNP. At 0000 UTC 8 August 2019, the depression is seen over the state 

Odisha (marked in Fig. 3.2) that moved west-northwestward towards central India 

in 24 hours. The closed contours indicate that the depression formed over the Bay 

of Bengal during KF19 is more intense than the KF18 depression. The circulations 

over WNP are more intense and can be seen located farther east in the WNP 

compared to the circulations of KF18. Furthermore, ERA reanalysis reveals that the 

intensity of LLJ is higher during KF19 as compared to that in KF18 (Fig. 3.5c, d). 

The perpendicular flow of this LLJ to the Western Ghats Mountain barrier enhances 

orographic rainfall over Kerala. 

3.3 Model and Data Assimilation System     

For the extreme rainfall over Uttarakhand in 2013 numerical experiments are 

performed using the ARW-WRF model (Skamarock WC, 2008) of version 3.8.1. 

The parameterization schemes used in this study are as follows: WRF-Single 

Moment five-class for microphysics (Hong, Dudhia and Chen, 2004), Kain-Fritsch 

for cumulus (Kain, 2004), Dudhia for shortwave radiation (Dudhia, 1989), Yonsei 

University (YSU) for the boundary layer (Hong, Noh and Dudhia, 2006), Rapid 

Radiative Transfer Model (RRTM) for long wave radiation (Mlawer et al., 1997), 

and Noah as the land surface model (Chen and Dudhia, 2001). The initial and lateral 

boundary conditions are generated from the NCEP-GFS data available at 0.50 x 0.50 

horizontal resolution.  

The random perturbations for initializing 80 member ensembles are drawn 

from the background error covariance with the "cv3" option in the WRFVAR 

system (Barker et al., 2012), and initial ensembles are integrated for 24 h before the 

first data assimilation cycle. The DART  (Anderson et al., 2009) EAKF (Anderson, 

2001) system is employed to assimilate observations. Covariance localization and 

inflation are applied to maintain sufficient ensemble spread and to avoid spurious 

correlations. Gaspari and Cohn (1999) localization function is used to control the 
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effect of observations with a half-width radius of approximately 950 km. Initial 

inflation is applied by multiplying the perturbation of 1.02 to inflate the standard 

deviations of ensembles using the adaptive inflation scheme of Anderson (2009). 

Further, to investigate the convective-scale characteristics of the Uttarakhand event, 

a triple-nested forecast is initialized from the analysis of the last data assimilation 

cycle using a two-way nested approach. The domain is configured with a horizontal 

grid spacing of 27 km, 9 km, and 3 km (Fig. 3.6). Each domain has 31 levels in the 

vertical and a model top of 50-hPa. It is to be noted that the cumulus 

parameterization is turned off at 3 km. 

For the extreme rainfall cases over Kerala in 2018 and 2019, the ensemble 

forecasts are obtained from the ECMWF Observing System Research and 

Predictability Experiment (THORPEX) Interactive Grand Global Ensemble 

(TIGGE) data archive. We used global ensemble forecasts for this study, because 

there were synoptic conditions (extending from WNP to the Arabian Sea) involved 

in the extreme rainfall over Kerala which could not be studied using a regional 

model. This study also uses the rainfall observations provided by India 

Meteorological Department (IMD) (Pai et al., 2014) and TRMM. The 144-h 

ensemble forecasts are initialized at 0000 UTC 11 August and 0000 UTC 05 August 

for the years 2018 and 2019, respectively. 

3.4 Experimental Design  

For the extreme rainfall over Uttarakhand on June 2013, the ensemble members are 

initialized at 0000 UTC 13 June 2013 by adding random perturbation drawn from 

a given distribution (Barker et al., 2012). Further, a 24 h hour model forecast is 

launched from each ensemble member to the first analysis time at 0000 UTC 14 

June 2013. Assimilation is performed from 0000 UTC 14 June 2013 to 1200 UTC 

15 June 2013, at a 6 h interval on the outer 27 km domain. Subsequently, a 48 h 

ensemble forecast is launched from the 80 member ensemble analysis. 

Conventional observation from various sources such as surface synoptic, upper air 

radiosonde, ship, buoy, aircraft platforms, and satellite-tracked wind observations 

from NCEP Global Data Assimilation System (GDAS) are used for assimilation. 

The study uses 24-h accumulated precipitation valid at 1200 UTC of 16 and 17 June 
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2013 as the forecast metric. The response function is computed for each ensemble 

member by finding the spatial average over a box of dimension 4° × 4.5° over the 

Uttarakhand as shown in Fig. 3.1. In this study, the sensitivity of forecast metric 

with respect to geopotential heights, precipitable water, and horizontal wind 

components will be explored.  

For the extreme rainfall events over Kerala in 2018 and 2019, ESA is used to 

establish a linear relationship between 5-day area-averaged precipitation and 

various atmospheric variables of interest at each grid point and forecast hour 

through ensemble statistics. The forecast metric used is the accumulated 

precipitation between 24 h to 144 h forecast for both KF18 and KF19, averaged in 

a box over Kerala as shown in Fig. 3.3. Here the ensemble members are assumed 

to be equally likely beyond the 24 h forecast.  

3.5 Results and Discussions 

3.5.1 Uttarakhand rainfall 2013 

This section investigates the synoptic and convective scale features associated with 

the Uttarakhand heavy rainfall using the ESA approach.   

3.5.1.1 Features of ensemble sensitivity in synoptic scale 

The 24-h accumulated D1 precipitation forecast valid at 1200 UTC 16 June 2013 is 

used as the response function and the sensitivity with respect to various model 

variables is evaluated using Eq. 2.36. Fig. 3.7 illustrates the sensitivity of the D1 

precipitation to the geopotential heights at 500hPa, which shows broad negative 

values over the upstream regions of storm location during the initial hours of the 

forecast. Further, the north-eastward progression of the sensitive region can be 

observed with an increase in lead time.  The area of strongest negative sensitivity 

is found over the western region of the response function box with a maximum 

value of approximately 5 mm at 6-h forecast (Fig. 3.7a).  It is to be noted that the 

magnitude of forecast response function increases (decreases) as the state variable 

increases over a region of positive (negative) sensitivity. This indicates that 

precipitation in the box is increased by 5 mm per each standard deviation fall in the 
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geopotential height over the western region of the box.  An east-west oriented weak 

dipole develops over the north of the domain starting from 12-h forecast, which is  

indicative of the stronger geopotential height gradient over that region. The 

occurrence of this dipole feature can be attributed to the position of trough and ridge 

in the westerlies, and the observed sensitivity pattern implies that any variations in 

its magnitude or position would lead to variation in the response function. Although 

the trough is seen extended to far south of the Uttarakhand region, the location of 

maximum sensitivity is observed over the shortwave trough to the north of the 

forecast response function location, whose axis is highlighted by the dashed line in 

Fig. 3.7. The forecast sensitivity of precipitation to the column integrated 

precipitable water shows large positive values over the box (Fig. 3.8) while an east-

west oriented dipole pattern emerges after 6-h forecast.  The strong positive  

Figure 3.7. Sensitivity (shading) of area-averaged precipitation in D1 to 500hPa 

geopotential heights at forecast hours (a) 1800 UTC 15 June 2013, (b) 0000 UTC 16 June 

2013, (c) 0600 UTC 16 June 2013 and (d) 1200 UTC 16 June 2013. Contours are 

geopotential heights (every 10m) from the ensemble mean. The black box represents the 

response function region. The location of Uttarakhand is represented by a black dot. The 

dashed line represents the trough axis. 
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Figure 3.8. Sensitivity (shading) of area-averaged precipitation in D1 to precipitable water 

at forecast hours (a) 1800 UTC 15 June 2013, (b) 0000 UTC 16 June 2013, (c) 0600 UTC 

16 June 2013 and (d) 1200 UTC 16 June 2013. The black box represents the response 

function region. The location of Uttarakhand is represented by a black dot. 

Figure 3.9. Spatial distribution of Rainfall from WET and DRY ensemble for D1 and D2. 

Shading (every 30mm) denotes 24 h accumulated precipitation of (a) WET and (b) DRY 

for D1; (c) WET and (d) DRY for D2. 
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sensitivity suggests that the increase in column integrated precipitable water 

increases the precipitation over the box while the region of negative sensitivity over 

the western edge of the box indicates the existence of a dry condition due to the 

southward descending branch of the westerlies. Joseph et al. (2015) confirms the 

existence of a southward intruding branch in the westerlies that brings cold dry air 

from the polar region to the Indian subcontinent during the Uttarakhand rainfall 

event. The positive sensitivity area over the central regions of the Indian 

subcontinent can be seen extending towards the Arabian Sea and the Bay of Bengal, 

which is indicative of the source region of moisture for the precipitation event. To 

understand the ESA results further, the flow structures of ensemble members with 

different forecast performance are evaluated. For this purpose, an ensemble 

member with maximum and minimum response function is selected from the set of 

80 ensemble members (Bednarczyk and Ancell, 2015). The maximum and 

minimum response function occurred for member 32 (WET) and member 40 (DRY) 

with precipitation magnitude of 60 mm/day and 17 mm/day, respectively. Further, 

the quantitative precipitation skill scores of these two ensembles are evaluated with 

Figure 3.10. The 500-hPa geopotential height contours for WET and DRY ensembles 

(contoured every 20m) for 24-h forecast. The blue (red) colour represents the geopotential 

height of WET (DRY) ensemble member.   
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respect to the TRMM observations using Equitable Threat Score (ETS).  The ETS 

value of 1 assumes the forecast skill to be perfect and a value of 0 or less represents 

no skill for precipitation forecast. The ETS for ensemble members 32 and 40 are 

0.21 and -0.05, respectively. It is found that the precipitation maxima of DRY 

ensemble is located far north of the Uttarakhand region and depicts stronger 

precipitation as compared to WET ensemble member (Fig. 3.9). A comparison of 

500 hPa geopotential height of DRY and WET ensemble members indicate that the 

position of the trough in DRY over the most sensitive region is shifted north of 

WET ensemble member (Fig. 3.10). We hypothesize that the northward shift in the 

Figure 3.11. Sensitivity (shading) of area-averaged precipitation in D2 to 500hPa 

geopotential heights at (a) 1200 UTC 15 June 2013, (b) 1800 UTC 15 June 2013, (c) 0000 

UTC 16 June 2013, (d) 0600 UTC 16 June 2013, (e) 1200 UTC 16 June 2013, (f) 1800 

UTC 16 June 2013, (g) 0000 UTC 17 June 2013, (h) 0600 UTC 17 June 2013 and (i) 1200 

UTC 17 June 2013. Contours are ensemble-mean geopotential heights (every 10m). 
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trough position over the sensitive region has resulted in the displacement of 

precipitation maxima to the north of the Uttarakhand region in DRY ensemble 

member.  

Fig. 3.11 shows the ensemble sensitivity of 24-h accumulated precipitation 

forecast valid at 1200 UTC 17 June 2013 to 500 hPa geopotential heights at various 

forecast hours. In contrast to the results obtained for D1, the prominent negative 

sensitive regions are observed far southwest of Uttarakhand at 6-h forecast, which 

then progresses north-eastward during the later hours of the forecast. Further, an 

east-west oriented sensitivity dipole feature is observed starting from 6-h forecast 

(Fig. 3.11b– h). This is indicative of the sensitivity of D2 precipitation to the 

southward extension of the mid-latitude trough, which is shown to have intensified 

Figure 3.12. Same as in Figure 3.11, but for precipitable water 
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the flow of moist air towards the Uttarakhand region (Ranalkar et al., 2016). The 

sensitivity features confirm that the D2 precipitation over the Uttarakhand is 

significantly influenced by the reduced heights to the south of the storm location, 

unlike D1 precipitation. The presence of positive sensitivity from 36 to 48-h 

forecast (Fig. 3.11g – i) over the far east of the Uttarakhand illustrates that enhanced 

ridging over the Tibetan Plateau increases the precipitation event.  Fig. 3.12 

illustrates the sensitivity of D2 precipitation to the column integrated precipitable 

water. The sensitive regions with positive values can be seen extending from the 

Uttarakhand region towards the Arabian Sea. Earlier studies such as Chevuturi and 

Figure 3.13. Sensitivity (shading) of area-averaged precipitation in D2 to 700 hPa 

meridional wind at (a) 1200 UTC 15 June 2013, (b) 1800 UTC 15 June 2013, (c) 0000 

UTC 16 June 2013, (d) 0600 UTC 16 June 2013, (e) 1200 UTC 16 June 2013, (f) 1800 

UTC 16 June 2013, (g) 0000 UTC 17 June 2013, (h) 0600 UTC 17 June 2013 and (i) 1200 

UTC 17 June 2013. Vectors represent ensemble mean 700 hPa wind (vectors 20m/s). The 

black box represents the response function region. The location of Uttarakhand is 

represented by a black dot. 
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Dimri (2016) illustrated the role of stronger moisture-laden south-westerly wind 

from the Arabian Sea in the extreme precipitation over the Uttarakhand. Further, 

the sensitive region is also seen extending towards the Head Bay, which is 

highlighting the significance of moisture from the Bay of Bengal in D2 

precipitation. Additionally, a sensitivity dipole is observed over the west of the 

response function box, similar to that in D1 precipitation at later forecast hours, 

however, with an enhanced magnitude of sensitivity. The sensitivity of D2 

precipitation to 700 hPa meridional wind also shows a dipole near the forecast 

response function location that indicates the presence of the southward extending 

trough (Fig. 3.13). Further, a WET (member 17) and DRY (member 61) ensemble 

corresponding to maximum and minimum D2 precipitation, respectively, are 

selected. The area-averaged precipitation is 85 mm/day and 41 mm/day with an 

Equitable Threshold (ETS) of 0.2 and 0.01 for the WET and DRY ensemble, 

respectively. The comparison of 500-hPa geopotential height in WET and DRY 

ensemble member depicts that the trough in the former is extended further south of 

the latter in the most sensitive regions (Fig. 3.14). The result confirms that the 

deepening of the southward protruding shortwave trough and its northeast-

Figure 3.14. Same as in Figure 3.10, but for 42-h forecast 
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southwest orientation, as indicated by the sensitivity patterns, enhances the D2 

precipitation over the Uttarakhand region.  

  

Figure 3.15. The D1 precipitation for forecast from (a) Control and (b) perturbed initial 

condition for perturbation amplitude 𝛼 =  −10𝑚. The red solid circle is the grid point 

where perturbation is applied. 

Figure 3.16. The change in precipitation in the perturbed ensemble forecast against the 

baseline (control) forecast for a range of perturbation amplitudes for (a) D1 and (b) D2. 
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3.5.1.2 Perturbed Initial condition experiment  

Results from the previous section show that the position of the shortwave trough 

has a significant impact in the location and intensity of the forecasted precipitation. 

To test this idea quantitatively, perturbations are applied to the analysis ensembles 

in the most sensitive regions and integrated the model forward from the perturbed 

initial conditions.  

 The perturbation with an amplitude of 𝛼 = −10𝑚 is applied to the grid point 

that lies in the most sensitive region (Fig. 3.15) of D1 precipitation. The forecast 

from the perturbed initial condition has shown an increase of 2.5 mm in 

precipitation in the response function box when the geopotential height at 500 hPa 

in the most sensitive region is reduced by 10 m (standard deviation). The initial 

condition is perturbed with a range of values of 𝛼 for both D1 and D2 precipitation 

and the predicted change in precipitation is shown in Fig. 3.16. For D1, the increase 

(decrease) in the geopotential height at the sensitive grid point decreases (increases) 

the precipitation in the box which depicts that the magnitude of precipitation is 

inversely proportional to 𝛼. However, the amplitude of perturbation is not 

correlated linearly with D2 precipitation. For D2, the increase in precipitation is 

observed to the northwest of the Uttarakhand with decrease in 𝛼 and hence the area-

averaged precipitation inside the box shows a decrease (Fig. 3.17). This indicates 

that perturbation in the sensitive region may produce displacement in the 

precipitation location, in addition to its variations for intensity. As the forecast 

length increases the perturbation may grow nonlinearly and we hypothesize this as 

a possible reason for the observed variations in D1 and D2 results.    

3.5.1.3 Features of Ensemble Sensitivity in Convective Scale  

The organization and evolution of convection are expected to be well represented 

in convection-permitting resolution ensembles. Houze et al. (2017) observed that 

the precipitation event over the Uttarakhand is primarily stratiform, with convective 

cells embedded to it occasionally. To understand the finer scale thermodynamic 

process of the Uttarakhand precipitation event, ESA is performed on the ensembles 

at a horizontal resolution of 3 km. We consider the maximum composite reflectivity 

(MDBZ) and maximum vertical wind (MaxW) in a vertical column as the forecast 
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metric here. As can be seen from Fig. 3.18, the spread of MaxW is maximized to 

the west of the Uttarakhand region, and its southeast extent is much smaller as 

compared to the spread of MDBZ. To understand how the sensitivity varies with 

the location of the response function, ESA is performed at two regions; one centred 

over the Uttarakhand region and the other one over the northwest of the storm 

location.  

Fig. 3.19a-c illustrates the sensitivity of MDBZ to the temperature at 850 

hPa. The reflectivity forecast is negatively sensitive to the temperature at 850 hPa 

at all the forecast hours, which indicates that the increase in reflectivity over the 

box is associated with cooler temperature.  

Figure 3.17. Spatial distribution of D2 precipitation forecast from (a) control and (b) 

perturbed ensemble. The perturbation amplitude is 𝛼 =  −10𝑚. 

 

Figure 3.18. Ensemble spread of (a) MDBZ, (b) MaxW, and (c) 6-h accumulated 

precipitation at forecast hour 18. 
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Figure 3.19. Sensitivity (shading) of MDBZ at 18-h to temperature (top) and moisture flux 

(bottom) at 850-hPa in the convective scale for a box over Uttarakhand at (a) 1800 UTC 

15 June 2013, (b) 0000 UTC 16 June 2013 and (c) 0600 UTC 16 June 2013. The arrows 

indicate the ensemble mean wind vectors. The black dot represents the location of 

Uttarakhand. 

Figure 3.20. Similar to Figure 3.19 but for a box over northwest of Uttarakhand. 
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The convection requires warmer air to provide buoyant air parcels, and hence, it 

can be inferred that the chances of active convection near the location of response 

function are limited. However, the sensitivity of MDBZ with respect to 850-hPa 

moisture flux shows strikingly different features as compared to temperature 

sensitivity (Fig. 3.19d-f). The moisture flux indicates positive values over and near 

the response function location while the southeast regions of the box show negative 

sensitivity. So, when linked together, the negative and positive sensitivities of 

temperature and moisture depicts the presence of cool and moist air near the 

response function location. Hence, it may be inferred that the stronger bands of 

precipitation features observed near the Uttarakhand are less likely due to the 

convective processes, and the cooler temperature may be associated with a cloud 

shadowing effect. Cloud shadows results in alternate light and dark episodes with 

sudden changes occurring in the presence of low-level forced cumulus clouds 

(Kivalov and Fitzjarrald, 2018). However, when the forecast response function box 

is relocated to the north of its original position, positive sensitivity region is seen 

inside the box during 6-h and 12-h forecast (Fig. 3.20a-c). This indicates that 

stronger reflectivity is associated with warmer air temperature, which implies 

chances of stronger convection associated with the precipitation to the north of the 

Uttarakhand region.  

3.5.2 Kerala rainfall 2018 

3.5.2.1 Ensemble sensitivity analysis  

As indicated in section 3.2.2, the mid-tropospheric conditions play a crucial role in 

the development of the KF18 event. Therefore, it is of interest to calculate the 

sensitivity between the precipitation forecasts and the mid-tropospheric features. 

Henceforth, ESA uses the spatially averaged 5-day accumulated rainfall as the 

response function over the region shown in Fig. 3.3. It is to be noted that the 

magnitude of the forecast response function (which is, precipitation in this case) 

increases as the state variable increases (decreases) over a region of positive 

(negative) sensitivity.  

The sensitivity of response function to the 500 hPa geopotential averaged 

over the 5 days shows strong negative sensitivity over the Arabian Sea, which 
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indicates that lower geopotential heights in this region increase the precipitation 

over the response region (Fig. 3.21a). To be more specific, the ensemble members 

with lower heights over the highly sensitive region produce more rainfall over 

Kerala. Quantitatively, for every one standard deviation fall in heights over the 

sensitive region, the precipitation in the box increases by 10 mm. It is evident from 

Fig. 3.21b that the lower the geopotential height, the higher the precipitation will 

Figure 3.21. (a) Sensitivity of 5-day accumulated precipitation with time-averaged 24-h to 

144-h forecast 500 hPa geopotential height (shaded) and (b) scatterplot of the 50 ensemble 

members (indicated by filled circles), with forecast 24-h to 144-h 500 hPa geopotential 

height at the point of maximum precipitation along the abscissa and forecast metric along 

the ordinate for KF18. The linear least-squares fit line is also shown. 

Figure 3.22. Sensitivity (shaded) of the 5-day accumulated precipitation averaged over the 

box in Fig. 3.3 to a) 500 hPa and b) 850 hPa geopotential heights at 0000 UTC 15 August 

2018. Contours are the ensemble mean geopotential heights.  
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be in the box. Furthermore, the sensitivity at 500 hPa level shows the presence of a 

dipole pattern near the circulation over the WNP at 0000 UTC August 15 (Fig. 

3.22a). Bednarczyk and Ancell (2015) showed that the existence of such dipole-

like patterns in ensemble sensitivity is often associated with positional shifts of the 

synoptic systems. The gradient of sensitivity patterns demonstrates the existence of 

a gradient in geopotential and stronger wind circulations over the WNP, in 

connection with the KF18 event. To be more precise, the ensemble sensitivity 

structure indicates that greater height fall needs to occur over the WNP to increase 

the response function, and any shift in the location of these features may affect the 

precipitation patterns over Kerala. We found that the dipole exhibits a westward 

shift in its position with respect to time, which is indicative of the westward 

movement of circulations over the WNP. From Fig. 3.4 it can be observed that the 

alignment of circulations over South China sea and Western North Pacific and the 

low-pressure system over the Bay of Bengal are responsible for sustaining the 

intense westerly flow during the KF18 rainfall period. Therefore, it is possible that 

the series of tropical systems over the Bay of Bengal, SCS and WNP maintained an 

intense zonal alignment such that the momentum transported by this chain of 

tropical system kept the low-level flow active for a couple of days. Such an 

interaction might have further intensified the transport of additional amount of 

moisture to Kerala, triggering orographic lifting at the Western Ghats and enhanced 

rainfall over the windward regions. This confirms the findings of Mohandas et al. 

(2020) that the presence of remotely aligned tropical circulations extending from 

WNP to Kerala has influenced the KF18 event. The sensitivity of the forecast metric 

to 850 hPa geopotential heights is shown in Fig. 3.22b. The negative sensitive 

region over the southwest coast of India at 500 hPa is absent at 850 hPa indicating 

the importance of mid-tropospheric conditions in KF18. To probe whether the 

positional shift in the sensitivity dipole has any impact on the KF18 event, ESA is 

applied by considering the longitudinal position of WNP circulation as the forecast 

metric.  
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Figure 3.24. The sensitivity of the 5-day accumulated precipitation averaged over the box 

in Fig. 3.3 to 500 hPa moisture flux (shading) at (a) 0000 UTC 13 August 2018, (b) 0000 

UTC 14 August 2018, and (c) 0000 UTC 15 August; (d)-(f) similar to (a)-(c) but for 850 

hPa moisture flux and (g)-(i) for Total Colum Water (TCW). The black vectors represent 

the ensemble mean wind at the appropriate pressure level and time. 

Figure 3.23. Sensitivity of longitude of the circulation over WNP to 500 hPa wind at 1200 

UTC 14 August 2018. The black vectors are the ensemble mean wind vectors at the 

corresponding forecast hour.  
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The longitudinal position, which is used as a proxy for the positional shift 

of circulations, is estimated for each ensemble member by computing the position 

of maximum relative vorticity at 850 hPa in a specified box (from 15°𝑁 to 

30°𝑁 and 100°𝐸 to 120°𝐸 ) over WNP. The longitude thus obtained is then used 

as a forecast metric in the equation of ESA, and the sensitivity to 500 hPa wind is 

calculated. Figure 3.23 depicts that the position of circulation over WNP shows 

positive sensitivity to 500 hPa wind over the Arabian Sea and the Kerala coast. 

Positive sensitivity suggests that when the circulation is shifted to the east (i.e. as 

the longitude value increases), the mid-tropospheric wind over the Arabian Sea 

increases. As indicated before, the mid-tropospheric feature has significantly 

influenced the rainfall, which in turn confirms the role of WNP circulations in 

KF18. Further, the moisture flux over 500 hPa level also shows substantial positive 

sensitivity values near south-western peninsular India (Fig. 3.24a-c). Further it 

should be noticed that the sensitivity to 850 hPa moisture flux (Fig. 3.24 e and f) 

shows positive sensitivity values upstream of the response region at forecast hours 

72 and 96. Looking backward at forecast hour 48 (Fig. 3.24d) positive sensitivity is 

noticed near Kerala coast. This indicates that the rainfall forecasts are sensitive to 

the low-level moisture reaching the Kerala coast at an earlier forecast hour, and if 

there is an increment in this feature, it will increase the amount of rainfall over 

Kerala. But at later hours the positive sensitivity is shifted to north of the response 

region possibly because of the anomalous alignment between the LPS over the Bay 

of Bengal and the circulations over the WNP. Additionally, the sensitivity of total 

column water (TCW) shows a large positive area over the southern tip of peninsular 

India, extending from the Arabian Sea to the Bay of Bengal (Fig. 3.24d-f). The 

positive sensitivity to moisture variables shows the significance of moisture supply 

from the Arabian Sea in the precipitation over the response region. Furthermore, 

the moisture gets embedded in the synoptic flow that extends to the Bay of Bengal 

region. 

3.5.2.2 Ensemble analysis 

The synoptic-scale processes that are favorable and detrimental for the event are 

further analyzed by classifying the ensembles into a good and bad set based on the 

quantitative precipitation forecast (QPF) skill, which is estimated using Equitable 
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Threat Score (ETS). The ETS is computed with respect to TRMM rainfall 

observations at a threshold of 150 mm. Figure 3.25a shows ETS estimated for 

individual ensemble members against the area-averaged precipitation over the 

response function box. Based on the ETS score and the 5-day area-averaged 

rainfall, the ensembles 1, 11, 31, 37, 38 are classified as GOOD, and 12, 17, 26, 35, 

Figure 3.25. The 5-day accumulated area-averaged precipitation in (a) KF18 and (b) KF19 

verses ETS scatterplot for 150 mm and 200 mm threshold, respectively. The ETS is 

calculated over the black box shown in Fig.3.3. GOOD (BAD) members are indicated as 

blue (red) filled circles and other members are represented as black filled circles. The green 

line represents the observed forecast metric and the brown line indicates ensemble mean 

ETS. The best fit line is represented by the black line. 

Figure 3.26. The distribution of 5-day accumulated rainfall in KF18 for (a) GOOD and 

(b) BAD. 
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43 as BAD members. The composite of precipitation in GOOD ensembles shows 

that precipitation patterns of KF18 events extend all over the Kerala coast while in 

BAD members, the distribution of rainfall is not very extensive as in GOOD and 

the heavier precipitation is concentrated mostly towards the north (Fig. 3.26). 

GOOD members depict a deeper trough over Kerala as compared to BAD members, 

which can be indicated as one of the potential reasons for the enhanced rainfall 

during the KF18 event (Fig. 3.27a). Another notable feature is the shift in the 

position of the circulation over the WNP in the GOOD and BAD members. The 

GOOD members show an eastward shift of WNP circulations from their mean 

position as compared to BAD members (Fig. 3.27b). The circulation that is shifted 

east might be responsible for maintaining the zonal alignment with the LPS over 

the Bay of Bengal. However, in doing so this feature pulled moisture from the Bay 

of Bengal and simultaneously amplified the monsoon circulation over the southern 

Indian region. It is worth noting that the results are consistent with that of ensemble 

sensitivity patterns obtained in the previous section. Further, it is found from Fig. 

3.28a and 3.28b that the moisture flux over the mid-troposphere is substantially 

higher over the south of the Indian subcontinent in GOOD.   
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Figure 3.27. (a) Comparison between the GOOD (blue contours, every 10 gpm) and BAD 

(red contours, every 10 gpm) members for 500-hPa geopotential heights; (b) the maximum 

relative vorticity location at 850 hPa in each ensemble members at 0000 UTC 15 August 

2018; blue (red) filled circles indicate good (bad) members and grey filled circles represents 

all the other members. Shading indicates relative vorticity at 850 hPa. 
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Figure 3.28. Comparison between the composite moisture flux at 500-hPa of (a), (c) 

GOOD and (b), (d) BAD at 0000 UTC 15 August 2018 for (a), (b) KF18 and (c), (d) KF19. 

Figure 3.29. (a) The sensitivity of 5-day accumulated precipitation with time-averaged 24-

h to 144-h forecast 500 hPa geopotential height (shaded) and (b) scatterplot of the 50 

ensemble members (indicated by filled circles), with forecast 24-h to 144-h 500 hPa 

geopotential height at the point of maximum precipitation along the abscissa and forecast 

metric along the ordinate for KF19. The linear least-squares fit line is also shown. 
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3.5.3 Kerala Rainfall 2019 

3.5.3.1 Ensemble sensitivity analysis 

Similar to KF18, ESA is performed for KF19 events and the results are presented 

in this section. Figure 3.29a shows the broad regions of negative sensitivity for 

temporally averaged 500 hPa geopotential heights to the 5-day accumulated 

precipitation forecast in the response region. As compared to the KF18 event, the 

sensitive region in the KF19 event is seen concentrated over peninsular India. 

Moreover, the maximum sensitivity values indicate that for every one standard 

deviation fall in geopotential height, the response function increases by 16 mm, 

which is about 60% stronger than the KF18 event. One of the potential reasons for 

enhanced precipitation over the response region can be attributed to the higher 

sensitivity of precipitation to the midlevel trough and to the greater geographical 

proximity. Figure 3.29b depicts the relationship between temporally averaged 500 

hPa heights at the maximum precipitation location 13.5°𝑁 and 75°𝐸, and the 5-day 

area-averaged precipitation. It is evident from the figure that the lower geopotential 

height enhances the response function over the box. The absence of sensitivity 

dipole suggests that the circulations over WNP may not have a significant impact 

on KF19 (Fig. 3.30).  

The sensitivity to 500 hPa moisture flux shows a significant positive 

sensitive region over the Arabian Sea and peninsular India at 0000 UTC 9 August 

2019 (Fig. 3.31c), which depicts the significance of mid-tropospheric moisture flux 

in KF19. However, Figure 3.31f indicates that rather than the 500 hPa moisture flux 

the forecast metric is sensitive to the low-level (850 hPa) moisture flux. The LLJ 

play a major role in the summer monsoon rainfall over the Indian subcontinent. The 

low-level westerly winds impinging the Western Ghats increase water vapor 

transportation and low-level convergence, which promotes orographic precipitation 

over Kerala. Therefore, any change in this low-level flow influences the rainfall 

over the Western Ghats. The ensemble sensitivity analysis shows that for one 

standard deviation change in the 850 hPa moisture flux the predicted change in the 

forecast metric is more than 14 mm. Such an understanding on change in low-level 

westerly moisture flux convergence is essential for predicting deep convection and 

the torrential rain over Kerala. The larger spatial extent of positive sensitivity to 
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TCW over the western coast of peninsular India indicates that the supply of 

moisture from the Arabian Sea is important for sustaining the precipitation for 

KF19 (Fig. 3.31f). Moreover, the magnitude of positive sensitivity for TCW is 

higher in KF19 than in KF18.   

3.5.3.2 Ensemble analysis 

The ensemble forecast of the KF19 event is examined by comparing the forecast 

performances of different ensemble members. Similar to the KF18 event, the 

ensemble members are classified as GOOD (14, 15, 30, 34, and 44 ensemble 

members) and BAD (2, 13, 20, 42, and 49) set based on the values of ETS and 

forecast metric. The analysis of 5-day area-averaged precipitation reveals that most 

of the ensemble members underpredicted the rainfall (Fig. 3.25b). The shallow 

slope of the regression line shows that the correlation between 5-day area-averaged 

precipitation and ETS scores is not strong. Similar to August 2018, the ensemble 

members are characterized by differences in geopotential heights, wind, and 

moisture. The comparison of 500 hPa geopotential heights between the GOOD and 

BAD members shows that the heights in GOOD are deeper than that in BAD. In 

contrast to KF18, the circulations over WNP do not show any significant difference 

in the position or intensity among the GOOD and BAD ensembles of KF19. From 

Fig. 3.28c, d it is clear that the forecasts of GOOD ensembles depict enhanced mid-

tropospheric moisture flux compared to BAD.  

3.6 Summary 

The present chapter focuses on the catastrophic events that happened over Kerala 

in the years 2018 and 2019, and the torrential flood episode over Uttarakhand in 

2013. This study uses univariate ensemble sensitivity analysis to understand the 

atmospheric flow features that are important to the predictability of these three 

heavy rainfall events that happened over the Indian subcontinent. 
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Figure 3.30. The sensitivity of the 5-day accumulated precipitation averaged over the box 

in Fig. 1 to the 500 hPa geopotential heights (shading, every 2 mm) at 0000 UTC 9 August 

2019. The black contours (every 10 m) are the ensemble mean geopotential heights at the 

appropriate time.  

Figure 3.31. The sensitivity of the 5-day accumulated precipitation averaged over the box 

in Fig. 1 to 500 hPa moisture flux (shading) at (a) 0000 UTC 7 August 2019, (b) 0000 UTC 

8 August 2019 and (c) 0000 UTC 9 August 2019; (d)-(f) similar to (a)-(c) but for 850 hPa 

moisture flux and (g)-(i) for Total Colum Water (TCW). The black vectors represent the 

ensemble mean wind at the appropriate pressure level and time.  
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For the extreme rainfall over Uttarakhand during 14-17 June 2013, the 

ensemble forecasts initialized from an EnKF DA system using the WRF model is 

used to understand the dynamics and predictability. ESA is employed in synoptic 

and convective scale ensembles to identify the multi-scale aspect of the weather 

event. Further, predictability aspects of the heavy rainfall event are explored by 

applying perturbations to the analysis ensembles in the most sensitive regions and 

analysing its impact on the forecast metric. 

The precipitation forecast is sensitive to the mid-tropospheric trough and 

moisture fields for both days, in general. The D1 precipitation shows negative 

sensitivity to the geopotential height at 500 hPa over the upstream regions of the 

storm location, which then progresses eastward with time. The midlatitude westerly 

trough is seen extended to far south of the storm location, however, the maximum 

sensitivity is observed north of the Uttarakhand region for D1 precipitation.  This 

shows that the southward intrusion of the trough has not significantly influenced 

the D1 precipitation. Further analysis revealed that the positional shift of the trough 

over the sensitive region has resulted in the displacement of precipitation bands. In 

contrast to the results obtained for D1, sensitive region to D2 precipitation is 

observed over the southward intruded branch of the trough, which then progresses 

north-eastward along with the trough. A sensitivity dipole to geopotential height is 

observed for both D1 and D2 precipitation. However, the location of the dipole 

varies significantly in both days. The sensitivity of total precipitable water to the 

D2 precipitation is seen extending towards Head Bay, which highlights the 

significance of moisture from the Bay of Bengal in the D2 precipitation. Perturbed 

initial condition experiments are performed to quantitatively ascertain the initial 

condition sensitivity to the precipitation episode. On reducing the geopotential 

height at 500 hPa by 10 m at the most sensitive grid point, the D1 precipitation in 

the response region increases by 2.5 mm and thus difference in forecast metric 

between the control and predicted ensemble members compare well with sensitivity 

values (5 mm). These results show that the initial condition perturbations in the 

maximum sensitive region can have a large impact on the intensity and location of 

precipitation forecast. Perturbations introduced in the initial conditions (IC) over 

the most sensitive region over the west of the storm location indicate significant 
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variations in the forecast location of precipitation. IC perturbed experiments show 

that the perturbation amplitude is correlated linearly with predicted change in 

precipitation, which becomes nonlinear as the forecast length increases. To 

determine the finer scale thermodynamic process of the Uttarakhand precipitation 

event, ESA is applied on the convection-permitting ensembles. The sensitivity of 

MDBZ forecast to temperature reveals that D1 precipitation is mostly non-

convective. However, when the location of the response function is moved north-

westward, the sensitivity patterns show signs of convective precipitation.  

Next univariate ensemble sensitivity analysis is also applied to understand the 

atmospheric flow features that are important to the predictability of two heavy 

rainfall events formed over the southern peninsular region of the Indian 

subcontinent. The ensembles required for ESA are obtained from the ECMWF 

TIGGE data archive. One of the important characteristic features of the Indian 

summer monsoon is the strong low-level westerly winds over the central Arabian 

Sea and the peninsular India. The rainfall activity over Indian subcontinent is 

strongly dependent on the moisture supplied to this region by the low-level winds.  

Figure 3.32. The sensitivity (shading) of 5day area-averaged accumulated precipitation to 

(a) 500 hPa wind and (b) 850 hPa wind for KF18; (c) and (d) similar to (a) and (b) but for 

KF19. The vectors represent ensemble mean wind. 
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Figure 3.33. Vertical distribution of moisture flux averaged between the longitude 

(74.5°E − 77.0°E) at (a) 0000 UTC 15 August 2018 and (b) 0000 UTC 9 August 2019. 

 

Figure 3.34. INSAT-3D satellite imagery for brightness temperature at 0800 UTC 14 

August 2018 and 0630 UTC 8 August 2019.  
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Ultimately, any change in the low-level moisture flux will have a direct 

impact on the rainfall over the peninsular regions of India. The sensitivity patterns 

shown in Figs. 3.32b and 3.32d clearly indicates the importance of low-level 

moisture in the extreme rainfall events over Kerala on 2018 and 2019. 

Quantitatively, a one unit change in the low-level moisture flux might increase the 

KF18 and KF19 rainfall by 10mm and 16mm, respectively. However, it is 

understood that the mid-tropospheric flow has a significant role in the formation of 

KF18 than the KF19 event, which is evident from the prominent positive sensitivity 

over the Arabian Sea (Fig. 3.32a). On the other hand, flow conditions at the lower 

levels of the atmosphere are more important for the KF19 event, and the influx of 

moisture at 850 hPa is stronger in KF19 than in KF18 (Fig. 3.33). The synoptic-

scale flow patterns at lower levels in the KF19 event are intense and persistent 

toward the Western Ghats for a sustained period. Analysis of the INSAT-3D (Indian 

National Satellite System) imagery during KF18 and KF19 events depicts that the 

KF19 event is dominated by deep convective clouds (Fig. 3.34).  

The spatial extent of negative sensitivity over the Arabian Sea and 

Peninsular India at 500 hPa level for KF18 and KF19 events, indicates the 

significance of lower geopotential heights to the precipitation over the response 

region. To be more specific, the ensemble members with lower heights over the 

highly sensitive region produce more rainfall over Kerala. Sensitivity analysis 

indicates that greater height fall needs to occur over the WNP to increase the KF18 

precipitation, and any shift in the location of these features may affect the 

precipitation patterns over Kerala. Additionally, the results indicate that the 

circulations positioned farther east of its mean position are related to stronger 

precipitation over the response function region. To be more specific, the LPS over 

the Bay of Bengal and the circulations over the WNP maintained an alignment such 

that the momentum transported by this system triggered additional supply of 

moisture towards Kerala coast. Any shift in this alignment might produce an impact 

on the direction of westerly winds towards Kerala. As can be seen from Figs. 3.28a, 

b the direction of mid-tropospheric winds is normal over Kerala in GOOD 

ensembles whose circulations over WNP show a shift towards east. While the 

alignment of circulations over WNP and LPS over the Bay of Bengal influences the 
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KF18, the absence of sensitivity dipole suggests that the circulations over WNP 

have not impacted the KF19 event. The mid-tropospheric flow over the response 

region has shown stronger positive sensitivity for the KF18 event while the flow 

conditions over the lower levels depict higher sensitivity values for the KF19 event. 

The moisture-laden low-level flow is more substantial in the case of KF19, which 

has favored the development of deep convective clouds. Thus, it is found that 

nevertheless, the synoptic conditions of KF18 and KF19 look similar, the 

underlying dynamics governing the extremely heavy rainfall events are different. 
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sensitivity analysis applied for an extreme rainfall over Indian subcontinent. Atmospheric 

Research 277. 1-14. 
 

CHAPTER 4 

MULTIVARIATE ENSEMBLE SENSITIVITY 

ANALYSIS APPLIED TO AN EXTREME 

RAINFALL OVER THE INDIAN SUBCONTINENT 

  

4.1 Introduction 

The ensemble sensitivity analysis proposed by Torn and Hakim (2008) accounts for 

the contribution of diagonal elements of the covariance matrix. The sensitivity 

analysis obtained by regressing the forecast variable independently on each analysis 

variable is known as univariate ensemble sensitivity (Torn and Hakim, 2008a). In 

the previous chapter, we have used the univariate ensemble sensitivity analysis to 

understand the dynamics of three extreme rainfall events over the Indian 

subcontinent. However, the univariate ensemble sensitivity may overestimate the 

forecast responses due to sampling errors.  

In this chapter, a multivariate ensemble sensitivity is introduced that 

accounts for the collective contributions from all state variables across all nearby 

grid points simultaneously that is expected to ameliorate the sampling error in the 

analysis system (Hacker and Lei, 2015). Further, Hacker and Lei (2015) used a two-

scale Lorenz model to investigate the impact of diagonal approximation and 

possible ways to reduce the sampling error. They found that in the presence of fast 

scales (large-scale synoptic activity), model errors, and fewer observations, 

multivariate ensemble sensitivity has superior skill in predicting forecast responses 

compared to univariate ensemble sensitivity. Limpert and Houston (2018) 

demonstrated storm-scale ensemble sensitivity analysis and the application of 

multivariate regression to a supercell thunderstorm for targeting observations. Ren 

et al. (2019) applied multivariate ensemble sensitivity analysis to a tropical cyclone 

over the western North Pacific 
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Ocean. Using perturbed initial condition experiments they showed that the 

predicted response using multivariate ensemble sensitivity is more accurate than 

univariate ensemble sensitivity analysis.  

This chapter examines the various aspects of the multivariate sensitivity 

analysis in a nonlinear, quasi-operational forecast model.  The formulation has been 

tested in meso- and convective scales in the presence of model errors to understand 

the impact of diagonal approximation for ensemble sensitivity estimates in the 

context of an extreme rainfall event that devastated a south-eastern state of the 

Indian subcontinent, Chennai, on December 2015. This is done by incorporating 

the contribution from the full covariance matrix in the ensemble sensitivity 

calculations.  

4.2 Case Overview  

On 1st December 2015, unprecedented rainfall led to flooding in the Chennai city 

of the Indian subcontinent. The 24-h precipitation started from 1st December, 0830 

Local Time (LT) varied between 77 mm to 494 mm as reported by the city 

commercial centre, and the recorded citywide average precipitation is estimated to 

be 286 mm (Herring et al., 2016). The event caused flash flooding leading to 

widespread damages to life and property. A low-pressure system (LPS) formed over 

the southern Bay of Bengal on 27th November 2015 made landfall over the Tamil 

Nadu coast on 1st December 2015, which was responsible for bringing convective 

systems over Chennai. Chakraborty (2016) has shown that the upper-tropospheric 

anticyclones that were present over the Bay of Bengal and the Arabian Sea have 

guided the convective systems to Chennai city. A study by Phadtare (2018) showed 

that the orographic blocking by the Eastern Ghats obstructed the propagation of the 

low-pressure system from moving inland and caused the convective systems to 

remain stationary over the coast. Studies have shown that (Reshmi Mohan et al., 

2018; Singh et al., 2018; Srinivas et al., 2018) use of a high-resolution mesoscale 

model and better model parameterization schemes provides an improved forecast 

of the Chennai extreme rainfall. Krishnamurthy et al. (2018) has shown that the 

surge of moisture from the warm Bay of Bengal induced by the formation of low-

pressure systems triggered the precipitation over Chennai on 1st December 2015.   
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4.3 Model and Data Assimilation System     

The numerical weather prediction model employed in this chapter is the Advanced 

Research Weather Research and Forecasting version 3.8.1. The boundary and initial 

conditions on a 0.5° × 0.5° global latitude-longitude grid are obtained from NCEP-

GFS for the WRF model simulation. Random perturbations are added to the initial 

and lateral boundary conditions to generate 90 ensemble members (Barker et al., 

2004). A horizontal grid spacing of 27 km with 36 vertical levels is chosen for the 

coarser-resolution parent domain with model top at 50 hPa. The two inner nested 

domains are configured using the one-way nesting strategy with a horizontal grid 

spacing of 9 km and 3 km. All domains utilized Yonsei University (Hong, Noh and 

Dudhia, 2006) scheme for the boundary layer, Noah land surface (Chen and Dudhia, 

2001), the Rapid Radiative Transfer Model (RRTM) for longwave (Mlawer et al., 

1997), shortwave scheme (Dudhia, 1989), and Thompson microphysical 

(Thompson, Rasmussen and Manning, 2004) schemes. The Kain-Fritsch (Kain, 

2004) cumulus parameterization scheme is adopted for 27 km and 9 km domains, 

and the 3 km inner domain is run without cumulus parametrization.  

 Observations are assimilated using an EAKF (Anderson,  2001) available in 

DART (Anderson et al., 2009) for updating the ensemble perturbations. About 8390 

observations are being assimilated over the model domain after processing through 

the DART quality control (QC) field. Higher values of DART QC field are 

considered poorer and lower values are regarded as better. Nearly 76.33% 

observations fail DART QC check and about 635 observations are available in the 

vicinity of the low-pressure system over the Bay of Bengal. The assimilated 

observations are as follows: radiosonde winds, temperature and moisture; aircraft 

winds and temperature; satellite-derived winds; surface winds, temperature, 

moisture and pressure; and marine temperature, winds and moisture. These 

observations are assimilated in every 6 hours interval on the outer domain for three 

days, starting from 0000 UTC 28 November 2015 to 0000 UTC 1 December 2015. 

Subsequently, 72-h, 48-h and 24-h ensemble forecasts are initialised from the 

analysis ensemble members on 0000 UTC 29 November 2015, 0000 UTC 30 

November 2015 and 0000 UTC 1 December 2015, respectively. During the cycling 
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phase, spatially and temporally varying adaptive inflation (Anderson, 2007; 

Anderson et al., 2009) and covariance localization (Houtekamer and Mitchell, 

1998; Hamill, Whitaker and Snyder, 2001) are applied to maintain the ensemble 

spread. The Gaspari-Cohn localization function (Gaspari and Cohn, 1999) with 

horizontal half-widths of 765 km is used as covariance localization and no vertical 

localization has been used in this chapter. 

𝐾  Ensemble size 

𝑁  Model state dimension 

 𝐽 Scalar forecast metric 

𝑱  𝐾 × 1 forecast response vector 

𝒙  𝑁 × 1 analysis state vector 

𝒙𝑛
𝑒   1 × 𝐾 nth ensemble member state vector 

𝜷  𝑁 × 1 vector of regression coefficients 

𝑿  𝑁 × 𝐾 matrix with ensemble of state vector perturbations 

𝜎𝑛  Standard deviation of nth state vector 

𝝆  𝑁 × 𝑁 matrix of the covariance localization function 

𝒙𝑎  1 × 𝐾 analysis state vector 

𝒙𝑠  1 × 𝐾 perturbing state vector 

𝒙𝑝  1 × 𝐾 vector of perturbed ensemble state variable  

𝛼  Perturbation amplitude 

4.4    Multivariate Ensemble Sensitivity Analysis 

Torn and Hakim (2008) introduced univariate ensemble sensitivity as the slope 

obtained from the linear regression between a scalar forecast metric 𝑱 and a state 

variable 𝒙. All the mathematical notations used in this section are provided in Table 

4.1. The linear relationship between 𝑱 and 𝒙, for a slope 𝑏 and error 𝜀, is given by 

the linear regression model, 

𝑱 = 𝑏𝒙 + 𝜀 (4.1) 

Table 4. 1. Mathematical notation and dimensions 
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For an ensemble of size 𝐾, let the forecast response vector be represented by 𝑱 and 

the state vector as 𝒙 . 𝑱 and 𝒙 has the dimensions 𝐾 × 1 and 𝑁 × 1, respectively, 

where 𝑁 indicates the dimension of the state vector. The ensemble perturbations 

corresponding to the nth state variable is the 1 × 𝐾  vector, 𝒙𝑛
𝑒 . The ensemble 

sensitivity of a scalar forecast metric to changes in a state variable is often estimated 

by solving the ordinary least squares equation and is expressed as  

𝑏𝑛 =
𝜕𝐽

𝜕𝑥𝑛
=

𝑐𝑜𝑣(𝑱, 𝒙𝑛
𝑒 )

𝑣𝑎𝑟(𝒙𝑛
𝑒 )

,    𝑛 = 1,2, … , 𝑁 (4.2) 

The above equation gives the change in 𝒙 needed to produce a given change in 𝑱, 

and therefore, provides the linear statistical estimate of ensemble sensitivity.  The 

sensitivities thus obtained may be used to estimate the forecast response by 

assimilating a hypothetical observation. This is performed by multiplying the 

sensitivity with an expected analysis increment from a new or hypothetical 

observation in a data assimilation system. Consider assimilating a hypothetical 

observation that is of the same type as the nth state variable. Let 𝜎𝑛 be the 

corresponding ensemble spread that is equal to the analysis increment. The change 

in forecast response obtained by introducing the new observation is,  

𝛿𝐽𝑛 = 𝜎𝑛 ×
𝜕𝑱

𝜕𝒙𝑛
 (4.3) 

It is understood that the covariance matrix of 𝒙 is approximated as a matrix 

with diagonal elements alone to estimate the univariate ensemble sensitivity. 

Hacker and Lei (2015) and Ren et al. (2019) found that the univariate ensemble 

sensitivity can overestimate the forecast response to an assimilated observation. 

Hacker and Lei (2015) proposed the multivariate ensemble sensitivity analysis that 

incorporates the full covariance matrix by using multivariate regression to estimate 

the ensemble sensitivity. Using sample statistics, the multivariate linear prediction 

equation is given by, 

𝐽 = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝜀 (4.4) 

Solving the above equation yields the regression coefficient 𝜷, a 𝑁 × 1 vector, that 

gives a linear statistical estimate of multivariate sensitivity, 

𝜷 =
𝜕𝐽

𝜕𝒙
 (4.5) 
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The multivariate regression retains the full covariance matrix when computing the 

multivariate regression in the subspace spanned by the ensembles and the regression 

coefficient is given by  

𝜷 =
𝜕𝐽

𝜕𝒙
 = 𝑿(𝑿𝑇𝑿)−𝟏𝑱 (4.6) 

Here, 𝑿 is a 𝑁 × 𝐾 matrix, with ensemble perturbations in each row. Further, this 

multivariate ensemble sensitivity is multiplied by the analysis increment 𝛿𝒙 of the 

nth state variable to obtain the change in the forecast response after assimilating a 

hypothetical observation of the same type as the state variable.  

𝛿𝐽𝑛 = (
𝜕𝐽

𝜕𝒙
)

𝑇

𝛿𝒙 (4.7) 

The analysis increment 𝛿𝒙 is a 𝑁 × 1 vector that consists of elements 𝛿𝑥 given as, 

𝛿𝑥𝑖 =  {

𝜎𝑛,                                        𝑖 = 𝑛,

𝜎𝑛 ×
𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑛)

𝑣𝑎𝑟(𝑥𝑖)
,   𝑖 = 1, … , 𝑛 − 1, 𝑛 + 1, … , 𝑁

 (4.8) 

Thus, elements 𝛿𝑥 contains 𝜎𝑛 of nth state variable and correlations with the other 

state variables. However, if the off-diagonal elements of the covariance matrix of 𝑥 

are ignored, then the 𝛿𝐽𝑛 in Eq. (4.7) becomes equivalent to that in Eq. (4.3).  

 Localization function is applied to multivariate ensemble sensitivity analysis 

using fifth-order piecewise polynomial with spatial correlation called the Gaspari-

Cohn localization function (Gaspari and Cohn, 1999). The localization is 

introduced as Schur or Hadamard product as 𝝆 ∘ (𝛿𝒙), where “∘” represents the 

element-by-element product. Accordingly, with covariance localization the 

multivariate ensemble sensitivity analysis can be represented as follows   

𝛿𝐽𝑛 = (
𝜕𝐽

𝜕𝒙
)

𝑇

𝝆 ∘ (𝛿𝒙) (4.9) 

 The 24-h accumulated precipitation averaged over a box in a chosen area is used 

as a forecast metric for the ensemble sensitivity analysis. The selected model state 

variables include the geopotential height, water vapour mixing ratio, potential 

temperature, sea level pressure and wind. Firstly, the sensitivity patterns obtained 

via the univariate and multivariate ensemble sensitivity analysis are identified and 

compared. The localization scale used in the multivariate ensemble sensitivity is 
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equal to 1600 km in horizontal which is approximately the same as the scale used 

in the EnKF assimilation cycle. Next, three additional experiments are carried to 

explore the impact of lead time, localization and model errors on the precipitation 

forecasts.   

4.5 Results and Discussion 

4.5.1 Dynamics of rainfall event using wet and dry ensemble 

members 

A better understanding of the dynamics of the weather event may be obtained from 

differencing subsets of ensemble members based on the intensity of the 

precipitation. A set of 5 ensemble members with maximum and minimum 

precipitation over the forecast response region is categorized into wet and dry 

ensembles, respectively.  Figure 4.1 presents the difference in the synoptic features 

associated with the wet and dry ensemble members. The geopotential height of the 

subsets differs considerably over the Bay of Bengal at 850 hPa level (Fig. 4.1a), 

which indicates that the occurrence of a deeper low-level region over the Bay of 

Bengal favoured the extreme rainfall over the response region. Moreover, the 

vertical extent of the convective system seems higher in the wet members as 

compared to dry members.  The difference in 300 hPa geopotential heights between 

the wet and dry members show two significant positive regions towards the east 

and west of the Indian subcontinent (Fig. 4.1b), which confirms the role of 

anticyclones in the upper troposphere over the west and east of the Indian 

subcontinent in the precipitation over Chennai as shown by Chakraborty (2016). 

Figure 4.1c represents the sea level pressure contours for wet and dry members and 

closed circulation for blue contours indicates the presence of a low-pressure for wet 

members over the Bay of Bengal near the response region. Figure 4.1d indicates 

that the precipitation location in the wet members is shifted to the north of the 

response region as compared to the dry members.  
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4.5.2 Univariate and multivariate ensemble sensitivity 

 The ensemble sensitivity from univariate and multivariate computed using the 90-

member ensemble system are compared to understand the effects of assuming off-

diagonal elements as zero in the ESA approach. It is to be noted that the 24-h 

accumulated precipitation forecast valid at the 72-h lead time is used as the forecast 

metric for sensitivity analysis in the following sections. As the event considered in 

this chapter is an extreme precipitation event, rainfall is used as the forecast metric.  

Figure 4.2 represents the sensitivity of precipitation forecast to the mean sea level 

pressure in the initial condition. The regions of negative (positive) sensitivity 

Figure 4.1. Difference between the wet and dry ensemble members on analysis (a) 850 hPa 

geopotential heights and (b) 300 hPa geopotential height. Contours of analysis (c) sea level 

pressure for wet (blue) and dry (red) ensemble members. (d) Spaghetti plot showing the 

predicted 100 mm rainfall contour valid at 0000 UTC 2 December 2015 from the 90 

ensemble members. The ensemble-mean 100 mm contour is shown in thick black line. The 

blue contours represent the wet ensemble members and the red contours represent the dry 

ensemble members.  Black contours in (a) and (b) are the ensemble mean geopotential 

heights for the respective pressure levels.  
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suggest that the forecast metric will be higher if the initial sea level pressure in the 

sensitive region is lower (higher). More specifically, if the sea level pressure in the 

negative sensitive region shown in Fig. 4.2a changes by one standard deviation, 

then the precipitation forecast within the box will change by 22 mm. Both univariate 

and multivariate ensemble sensitivity analysis estimates a stronger negative 

sensitive region over the Bay of Bengal indicating that the sea level pressure in the 

sensitive region plays a significant role in the predictability of rainfall over the 

response region.  However, univariate ensemble sensitivity calculations indicate 

broader regions of negative sensitivity that span throughout the domain, while 

multivariate depicts more organized patterns of sensitivity, notably as a dipole over 

the south of the Indian Ocean region (Fig. 4.2b). Such organized sensitivity patterns 

reveal the key synoptic-scale factors that influences the forecast metric. 

Additionally, these sensitive regions identified by the ensemble sensitivity analysis 

can be used as the potential locations for targeting additional observations to reduce 

the forecast error.  A closer comparison between the results in the previous section 

reveals that the region of maximum sensitivity values is similar to the regions where 

maximum difference among the subsets is observed.  However, the positive region 

of the dipole is not observed in Fig. 4.2a.  

Figure 4.2. Sensitivity of 24-h accumulated area-averaged precipitation valid at 72-h lead 

time to analysis sea level pressure for (a) univariate and (b) multivariate. Contours (every 

2 hPa) are the ensemble mean sea level pressure. The black box represents the response 

region.  
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Similar results are obtained for the sensitivity of precipitation forecast to 

geopotential height at the lower, middle, and upper troposphere when the univariate 

and multivariate sensitivity is compared (Fig. 4.3). As the extreme rainfall event is 

closely associated with the low-pressure system formed over the Bay of Bengal, it 

is a natural choice to consider the geopotential height as the analysis field. Broader 

regions of positive sensitivity are observed in Fig. 4.3 for univariate sensitivity at 

upper levels, while middle and lower troposphere regions depict pronounced 

negative sensitive regions over the south of the computational domain. In 

Figure 4.3. Shading (mm) indicates (a-c) the univariate ensemble sensitivity and (d-f) the 

multivariate ensemble sensitivity of 24-h accumulated area-averaged precipitation valid at 

72-h lead time to analysis geopotential heights at 850 hPa (bottom), 500 hPa (middle) and 

300 hPa (top). Contours (every 10 gpm) are geopotenial heights from ensemble mean.  
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multivariate approach, the sensitive regions are located closer to the forecast 

response function box in the middle and lower levels. It is hypothesized that the 

observed variations in the univariate and multivariate ensemble sensitivity patterns 

originate from the sampling error associated with the ensemble statistics. If the error 

in the predicted change of the metric is proportional to the sampling error variance, 

it introduces overconfidence in the analysis, which essentially leads to the 

overestimation of ensemble sensitivity. Multivariate ensemble sensitivity 

calculation with localization accounts for sampling error and therefore better 

predicts forecast metric than univariate ensemble sensitivity approach.  

The arguments are further verified by performing perturbed initial condition 

experiment as given in section 2.5.1. To reduce the computational costs, an 

ensemble member whose forecast metric is close to the ensemble mean is 

considered for performing perturbed initial condition experiments. The ensemble 

member thus selected is then perturbed at 100 randomly chosen grid points using 

the Eqs. 2.38 and 2.39 in Chapter 2: 

 
𝐱i

p
= 𝐱i

a +  
∂xi

a

∂xs
α  

 (2.38) 

where 

 𝜕𝑥𝑖
𝑎

𝜕𝑥𝑠
=

𝑐𝑜𝑣(𝒙𝑖
𝑎, 𝒙𝑠)

𝑣𝑎𝑟(𝒙𝑠)
 

 (2.39) 

With 𝒙𝑠 and 𝒙𝑖
𝑎 being the 1 × 𝐾 ensemble estimates of the perturbation state 

variable and 𝑖th control analysis state variable, respectively. The actual model 

response is obtained by integrating the model forward in time from each perturbed 

initial condition. Figure 4.4 shows the scatter diagram comparing the predicted 

response to the actual response obtained from the forecasts initialized from 100 

perturbed initial conditions. It can be seen that while univariate ensemble sensitivity 

overestimates the predicted response, the multivariate ensemble sensitivity is closer 

to the actual response indicating improved results. The root-mean-square error 

(RMSE) estimated from the univariate and multivariate ensemble sensitivity 

compared to actual model response are 23 and 12 mm, respectively. Similar results 
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are obtained by perturbing other variables such as wind, water vapour mixing ratio, 

and potential temperature.     

4.5.3 Impact of model errors 

Model error is the hardest source of uncertainty to quantify in a weather forecast 

and no matter how developed the models are or how fast the supercomputers have 

become the model imperfections will always have an impact on the forecast 

responses. Hacker and Lei (2015) proposed that the skill in predicting a nonlinear 

forecast response from the linear assumptions becomes superior when model error 

information is incorporated in the ensemble sensitivity analysis. To account for the 

model error and to analyse its impact on sensitivity calculations, a new set of 

ensemble members with small-amplitude stochastic perturbations using stochastic 

kinetic-energy backscatter scheme (SKEBS: Berner et al., 2011, 2009; Shutts, 

2005) are generated for sensitivity calculations using univariate and multivariate 

approach. Figure 4.5 indicates that the magnitude of sensitivity has increased for 

both univariate and multivariate approaches when SKEB ensembles are used. In 

addition to that, the multivariate sensitivity using SKEB ensembles shows 

substantial variations in its magnitude and spatial distribution as compared to 

univariate method. For instance, it can be seen that the positive sensitivity patterns 

observed over the south of the Indian Ocean in the No SKEB experiment have been 

found shifted to the Arabian Sea and Indian landmass in the SKEB experiment (Fig. 

4.5c and 4.5d). We hypothesize that the use of the SKEB scheme has increased the 

forecast spread, which might have resulted in the enhanced magnitude of ensemble 

sensitivity calculations (Fig. 4.6). The results are consistent with the study 

performed by Bednarczyk and Ancell (2015), which indicates that greater variance 

in the response function may lead to increase in the magnitude of sensitivity.  

Another interesting feature is that the bimodal distribution observed in Fig. 4.4 is 

absent when SKEB scheme is employed. We presume that the bimodal distribution 

is associated with the under dispersive ensemble system and using SKEB ensembles 

can treat such problems to a certain extent.  
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Figure 4.4. Actual response obtained from perturbation versus predicted response from (a) 

univariate ensemble sensitivity analysis and (b) multivariate ensemble sensitivity analysis 

for 72-h lead time. The black line indicates the least squares best-fit line.  

Figure 4.5. Sensitivity of 24-h accumulated area-averaged precipitation valid at 72-h lead 

time to analysis sea level pressure from univariate (top panel) and multivariate (bottom 

panel) methods for SKEBS and no SKEBS ensembles. Contours (every 2 hPa) are mean 

sea level pressure from ensemble mean.  
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The predicted responses from univariate and multivariate sensitivities are 

further evaluated using perturbed initial condition experiment. Figure 4.7 shows the 

scatter diagram of predicted responses from sensitivity analysis versus the actual 

model response, which indicates that predicted responses using both the methods 

with SKEB ensembles are lower when compared to the actual response. Compared 

to univariate, the forecast response estimated by multivariate compares better with 

the actual response, which is evident from the RMSE values estimated for 

univariate and multivariate sensitivity.  

4.5.4 Impact of localization 

As mentioned in section 4.5.2 sampling error associated with the finite (here 80) 

ensemble members is ameliorated using a localization function in multivariate 

ensemble sensitivity. To further understand the influence of the specification of 

localization cut-off radius in the multivariate approach, sensitivity studies with 

different localization radius in the multivariate method are attempted. A total of six 

experiments are conducted by increasing and decreasing the cut-off radius by 25%, 

50% and 75% of the reference cut-off radius (1600 km).   

 A significant reduction (increase) in the sensitivity magnitude is observed 

when the cut-off radius of localization is decreased (increased). The sensitivity 

decreases almost by half of its magnitude when the cut-off radius is reduced from 

1200 km to 800 km (Fig. 4.8a, b). However, on increasing the cut-off radius the 

sensitivity magnitude increases only gradually (Fig. 4.9). Further, the actual 

response obtained from the perturbed initial condition experiment is compared with 

the predicted response by the multivariate ensemble sensitivity. Figure 4.8d-f 

indicates that the performance of the multivariate approach depends on the optimal 

choice of localization radius and if insufficient localization is applied, the spurious 

long-distance correlation contaminates the performance of the multivariate 

ensemble sensitivity method.  
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Figure 4.6. Ensemble spread of 72-h accumulated precipitation valid at 0000 UTC 2 

December 2015 with (a) NoSKEBS and (b) SKEBS. The black box represents the response 

region. 

Figure 4.7. Actual response versus predicted response from (a) univariate ensemble 

sensitivity analysis and (b) multivariate ensemble sensitivity analysis for 72-h ensemble 

forecasts with SKEBS. The black line indicates the least squares best-fit line. 
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Figure 4.8. Sensitivity (left) of 24-h accumulated area-averaged precipitation valid at 72-h 

lead time to analysis sea level pressure and perturbation experiment results (right) for 

different localization cut off radius (a & d)1200 km, (b & e) 800 km and (c & f) 400 km. 

Contours (every 2 hPa) are mean sea level pressure from ensemble mean. The black box 

represents the response region.  
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4.5.5 Impact of lead time 

The impact of various forecast lead times on the univariate and multivariate 

ensemble sensitivity analysis is explored in this section. The univariate and 

multivariate ensemble sensitivities are estimated at 72-h, 48-h and 24-h lead time 

with analysis variables initialized at 0000 UTC 29 Nov 2015, 0000 UTC 30 Nov 

2015 and 0000 UTC 1 Dec. It should be noted that the forecast metric remains the 

same and the analysis variables are set to vary in the two sensitivity methods. Figure 

4.10 shows the sensitivity obtained for univariate and multivariate with respect to 

sea level pressure at different lead times. While the broader region of negative 

sensitivity values is obtained for univariate sensitivity analysis at all times, 

multivariate ensemble sensitivity depicts more organized and localized negative 

sensitive regions.  The magnitude of multivariate response is quite higher than that 

of the univariate method during 48-h and 72-h of forecast whereas the magnitude 

of sensitivity estimated by both the methods for the 24-h forecast is comparable. 

Furthermore, the multivariate depicts dipole pattern of sensitivity near response 

region, which clearly indicates the significance of the position of the low-pressure 

system over the Bay of Bengal for the Chennai rainfall event.  The results of the 

perturbation experiment (Fig. 4.11) show that at all lead times, the predicted 

response from multivariate ensemble sensitivity analysis compares well with the 

actual model response. At the 72-h lead time, the RMSE (23.05 mm) from the 

univariate is nearly twice of the RMSE (11.85 mm) from the multivariate analysis. 

However, at the 24-h lead time the RMSE from the multivariate sensitivity is 

slightly higher than that from the univariate method, possibly because of the weak 

correlations between the forecast response function and perturbation variable. Thus, 

it is understood that the predicted responses using multivariate ensemble sensitivity 

are more accurate than univariate, especially at longer lead times when nonlinearity 

becomes significant.  
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Figure 4.9. Sensitivity (left) of 24-h accumulated area-averaged precipitation valid at 72-

h lead time to analysis sea level pressure and perturbation experiment results (right) for 

different localization distances (a), (b) 2800 km, (c), (d)2400 km, and (g), (h) 2000 km. 

Contours are the ensemble mean sea level pressure. The black box represents the response 

region. The black dot represents the location of Chennai. 
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Figure 4.11. Actual response versus predicted response from univariate ensemble 

sensitivity (top panel) analysis and multivariate ensemble sensitivity analysis (bottom 

panel) for (a & d) 72-h, (b & e) 48-h and (c & f) 24-h lead times. The black line indicates 

the least squares best-fit line.  

Figure 4.10. Shading (mm) represents the univariate (top) and multivariate (bottom) 

ensemble sensitivity of 24-h accumulated area-averaged precipitation w.r.t sea level 

pressure for (a & d) 72-h, (b & e) 48-h and (c & f) 24-h lead times. Contours (every 2 hPa) 

are mean sea level pressure from ensemble mean. 
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Figure 4.13. Actual response versus predicted response from (a) univariate ensemble 

sensitivity analysis and (b) multivariate ensemble sensitivity analysis for 24-h convective 

ensemble forecasts. The black line indicates the least squares best-fit line. 

Figure 4.12. Shading (dBZ) represents the sensitivity of area-averaged maximum 

simulated reflectivity valid at 0000 UTC 2 December 2015 to analysis water vapor mixing 

ratio at 700 hPa (top panel) and 850 hPa (bottom panel) for univariate (left) and multivariate 

(right). Vectors are the wind vectors at the appropriate pressure level from ensemble mean. 

The black box represents the response region.  
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4.5.6 Convection permitting ensembles 

The nature of the evolution of initial condition error in convection-permitting 

forecasts is significantly different from a coarser resolution model forecast. 

Therefore, the magnitude and spatial distribution of sensitivity patterns may vary 

substantially in meso- and convective flow scales. The performance of univariate 

and multivariate ensemble sensitivities in convection scale forecasts has been 

examined in this section. The univariate and multivariate sensitivity experiments 

are repeated for the ensemble forecasts and analysis obtained from the 3 km domain. 

Section 4.3 provides an explanation on obtaining the ensemble forecasts and 

analysis from the 3 km inner domain.  

 The forecast response function used in the ensemble sensitivity analysis for 

convection scale ensembles is the area-averaged maximum simulated reflectivity 

valid at 0000 UTC 2 December 2015 and the analysis variables considered are 

potential temperature and water vapor mixing ratio. Figure 4.12 shows the 

sensitivity estimates of forecasted reflectivity to analysis moisture at 850 hPa and 

700 hPa estimated using univariate and multivariate methods. It can be seen that 

the magnitude of sensitivity estimated by the univariate is significantly higher than 

the multivariate method. In convection-permitting ensembles, the accuracy of 

estimated correlations from the ensemble statistics may be suboptimal due to 

pronounced nonlinearity and we attribute this to be a potential reason for the 

observed difference in magnitude of sensitivity of univariate and multivariate 

sensitivity estimates. The sensitivity patterns estimated by the univariate and 

multivariate ensemble sensitivity methods show similarity in spatial distribution, in 

general. To verify the performance of methods, the perturbation initial condition 

experiment is conducted using the convective ensembles at 25 randomly selected 

grid points (Fig. 4.13). It is found that the predicted response by multivariate 

sensitivity falls within the range of actual response with an RMSE of 2.4 dBZ. 

However, univariate sensitivity predicts a higher forecast response compared to the 

actual response with RMSE equal to 12.6 dBZ. Thus, the predicted response from 

multivariate ensemble sensitivity analysis using the convective ensembles provides 

better estimates than the univariate estimates of sensitivity. The error growth is 
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expected to be greater in convective scales and the multivariate sensitivity 

calculation with localization is found to be substantially beneficial in finer scales.  

4.6    Summary 

Univariate ensemble sensitivity has been widely applied to understand the 

dynamics of forecast errors associated with various weather systems using 

ensemble statistics. However, the method ignores the contribution of diagonal 

elements of the covariance matrix in its calculations and it may potentially 

overestimate the response. On the other hand, the multivariate ensemble sensitivity 

analysis incorporates the contribution from the full covariance matrix in the 

sensitivity calculations. This work evaluates the performance of univariate and 

multivariate ensemble sensitivity analysis methods in the backdrop of an extreme 

rainfall event over the Tamil Nadu coast in India. The 90-member ensemble 

analyses and forecasts are generated using data drawn from a cycling DART EnKF 

data assimilation system and WRF model. Univariate and multivariate ensemble 

sensitivity is estimated for meso- as well as convection scale ensemble members 

and the effectiveness of the methods is demonstrated by validating the response 

against actual response generated from perturbed initial condition experiment.  

 The analysis performed on the subsets of ensemble members based on the 

intensity of precipitation confirms the role of anticyclones in the upper troposphere 

over the west and east of the Indian subcontinent in the precipitation over Chennai. 

Results from ensemble sensitivity analysis indicate that the univariate ensemble 

sensitivity calculations for precipitation forecasts depict broader regions of negative 

sensitivity that extend throughout the domain, while multivariate depicts more 

organized patterns with a dipole over the south of the Indian Ocean region. 

Perturbation initial condition experiments suggest that the multivariate ensemble 

sensitivity is more effective in predicting the forecast response closest to the actual 

model response compared to the univariate ensemble sensitivity. To account for the 

model error and to analyse its impact on sensitivity calculations, a new set of 

ensemble members with small-amplitude stochastic perturbations using stochastic 

kinetic-energy backscatter scheme are generated for sensitivity calculations using 

the univariate and multivariate approaches. Compared to univariate, the forecast 
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response estimated by multivariate with SKEBS ensembles compares better with 

the actual response, which is evident from the RMSE values estimated for 

univariate and multivariate sensitivity. To account for sampling errors resulting 

from finite ensembles, covariance localization is used in multivariate ensemble 

sensitivity. It is found that the performance of the multivariate approach depends 

on the optimal choice of localization radius and if insufficient localization is 

applied, the spurious long-distance correlation contaminates the performance of the 

multivariate ensemble sensitivity method. The impact of various forecast lead times 

on the univariate and multivariate ensemble sensitivity analysis indicates that 

responses using multivariate ensemble sensitivity are more accurate than univariate, 

especially at longer lead times when nonlinearity becomes significant. The 

performance of univariate and multivariate methods in convection-permitting scale 

is examined by using the high-resolution ensemble forecasts and it is found that the 

multivariate sensitivity with localization substantially improves the estimates in 

finer scales.   

 The analysis of this chapter suggests that multivariate ensemble sensitivity 

provides better performance than univariate ensemble sensitivity in the presence of 

model error, non-linearity, and when the observations are sparse.  
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CHAPTER 5 

PREDICTABILITY CHARACTERISTICS OF 

TROPICAL CYCLONES OVER THE BAY OF 

BENGAL USING ENSEMBLE SENSITIVITY 

ANALYSIS 

 

5.1 Introduction 

Tropical cyclones (TCs) are one of the most devastating natural disasters due to 

their economic and social impacts. During the past few decades, there have been 

drastic improvements in the TC track forecasts, however, the forecasting of tropical 

cyclone intensity requires further research (DeMaria et al., 2014). Even though 

advanced data assimilation methods, numerical models and availability of a wide 

range of observations reduce the errors in the track forecasts, small-scale moist 

processes and the chaotic nature of the internal dynamics of a TC make it difficult 

to predict the intensity with a great amount of accuracy. That is, the inherent chaotic 

nature of the TC puts limits on intrinsic and practical predictability. Therefore, it is 

crucial to have an understanding on these predictability limits to improve the TC 

modeling forecasts. Several studies have shown that the ambient factors of TC, such 

as the sea surface temperature (Tao and Zhang, 2014) and vertical wind shear 

(Zhang and Tao, 2013) strongly influence the predictability (Torn, 2016). Many 

other studies have focused on the role of internal processes, such as initial intensity 

of vortex (Munsell et al., 2017; Liu et al., 2018; Nystrom et al., 2018), the initial 

size of vortex (Xu and Wang, 2010; Chen, Cheung and Lee, 2011; Carrasco, 

Landsea and Lin, 2014; Guo and Tan, 2017) and the evolution of the inner-core 

(Van Sang, Smith and Montgomery, 2008; Zhang and Sippel, 2009; Rogers, 2010; 

Liu et al., 2018) on the predictability of TC intensity. Besides the chaotic nature of 

TC, the practical predictability is also limited by model uncertainty and initial 

condition uncertainty. The former is related to model physics, air-sea interaction 
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and model resolution, and the latter depends on data assimilation techniques and 

the assimilated observations.  

Ensemble-based methods are widely accepted in the research community 

and operational centers as the ensemble mean provide less forecast error than the 

deterministic forecasts (Krishnamurti et al., 1997; Zhang and Krishnamurti, 1999; 

Mackey and Krishnamurti, 2001). Another benefit is that these methods provide 

flow-dependent estimates of the background and forecast uncertainty. One 

important advantage of examining predictability using ensemble-based methods is 

that we can determine both ensemble sensitivity and analysis/forecast spread 

(Ancell and Hakim, 2007; Torn and Hakim, 2008a). While the ensemble spread of 

an optimal ensemble system can be regarded as a proxy for predictability, ensemble 

sensitivity provides a measure of dynamical error growth of initial-time 

perturbations (Ancell and Hakim, 2007). The analysis covariances in an ensemble 

framework can be used to describe the likely initial-time perturbations. In short, if 

the forecast spread is large, it could be either because of large initial spread and 

small dynamical growth or because of small initial spread and large dynamical 

growth. Ancell and McMurdie, (2013) showed that the forecast variance can be 

reduced by assimilating targeted observations at the potential locations for certain 

types of storms. That is forecast spread can be reduced by reducing initial-time 

spread through targeted data assimilation.  

Studies have shown that among the set of worldwide TCs that caused human 

fatalities of 5000 or more in the last 300 years, more than 75% occurred in the Bay 

of Bengal (Singh, 2007; Attri and Tyagi, 2010; Needham, Keim and Sathiaraj, 

2015). The densely populated areas at the rim of the Bay of Bengal and the shallow 

continental shelf makes it vulnerable to TCs (Jakobsen et al., 2006). As the tropical 

cyclones that develop in the Bay of Bengal are considered to be lethal globally 

owing to the number of fatalities, it is essential to understand the predictability 

characteristics of TCs that develop in this basin. Though several studies have taken 

place and still going on about various aspects of TCs over the Bay of Bengal, very 

few have ventured into the predictability study of TCs in this basin (Belanger et al., 

2012). In this chapter, the general predictability characteristics of landfalling TCs 

that formed across the Bay of Bengal from 2000 to 2020 are quantified using the 
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multivariate ensemble sensitivity analysis. The chapter also compares the 

dynamical perturbation growth with initial-time spread for the least and most 

predictable cyclones. In addition to that, predictability of TC Sidr has been 

investigated in detail using ensemble sensitivity analysis and ensemble perturbation 

experiments.  

5.2 Model and Data Assimilation System     

The version 3.8.1 of Weather Research and Forecasting (WRF; Skamarock WC, 

(2008)) model with a horizontal resolution of 27 km and 36 vertical levels together 

with the DART EAKF is used for generating ensemble analyses and forecasts. The 

initial and lateral boundary conditions are obtained from the National NCEP FNL 

(final) data with a 1-degree by 1-degree grids. The 90 ensembles and boundary 

conditions are generated using the RANDOM CV3 option in the WRF-3DVAR 

system (Barker et al., 2004). The ensemble perturbations are allowed to grow for a 

period of 12 hours and the analysis ensembles are generated by assimilating 

observations every 6-h for half a day. The assimilated observations include: satellite 

winds, Aircraft Communication Addressing and Reporting System (ACARS) 

aircraft wind and temperature observations, radiosonde wind, temperature and 

moisture observations, and surface temperature, wind and altimeter observations. 

Satellite radiance observations are not assimilated. The ensemble analyses thus 

generated consist of long-range spurious correlations due to sampling error. 

Therefore, adaptive inflation and covariance localization (Gaspari and Cohn, 1999) 

are used to mitigate sampling errors in the analysis step. Background for the next 

assimilation cycle is provided by integrating the model for 6 hours from each 

analysis for each cyclone. Finally, an extended forecast (48-h) is initialized before 

the tropical cyclone makes landfall. Parametrization schemes used in the model are 

as follows:  Yonsei University (YSU) for the planetary boundary layer (Hong, Noh 

and Dudhia, 2006), Kain-Fritsch for cumulus (Kain, 2004), Noah as the land surface 

model (Chen and Dudhia, 2001), WRF single-moment 5-class for the microphysics 

scheme (Hong, Dudhia and Chen, 2004), Rapid Radiative Transfer Model (RRTM) 
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for the long wave radiation (Mlawer et al., 1997), and Dudhia for shortwave 

radiation (Dudhia, 1989).  

5.3 Experimental Design  

For this study, 45 cyclones formed over the Bay of Bengal from 2000 to 2020 are 

selected by keeping the minimum wind speed at 40 knots. The tracks of these 

cyclones are shown in Fig. 5.1. The forecast metrics used for ensemble sensitivity 

and spread calculations are the intensity error and track error obtained with respect 

to the observed intensity and track. The best track analysis from Joint Typhoon 

Warning Center (JTWC) is used to calculate the model forecast errors. The 

ensemble spread at the final forecast time (48 h) is used as a proxy for predictability 

assuming a well-calibrated ensemble system. It is to be noted that larger spread 

indicates lower predictability and smaller ensemble spread shows higher 

predictability.  

Figure 5.1. Tracks of the tropical cyclones formed over the Bay of Bengal from 2000 to 

2020. 
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The ensemble sensitivity of the 48-h forecast metric for each cyclone is 

calculated with respect to initial minimum sea level pressure (MSLP), deep layer 

vertical wind shear (DVWS) between 850 and 200 hPa, shallow layer vertical wind 

shear (SVWS) between 850 and 600 hPa, relative humidity at 925hPa (RH925) and 

relative humidity at 600hPa (RH600). After obtaining the ensemble sensitivity field 

for each cyclone, the maximum absolute value of the ensemble sensitivity for each 

variable is found. The maximum absolute value of sensitivity is used as the proxy 

for the potential dynamical growth of error. For different groups of cyclones such 

as intense, fast, and north-landfalling, the maximum ensemble spread for each 

cyclone is averaged together and compared to other groups of cyclones. The same 

process is repeated for maximum ensemble sensitivity. 

All the results in the study are subject to statistical significance using the 

bootstrap method as follows (Wilks, 2007). Suppose there are two groups with 

members 𝑎 and 𝑏, respectively. Our focus is to verify the difference in the mean 

values of the two groups by the bootstrap method. For this a new group with 𝑎 

members and another new group with 𝑏 members are constructed by random 

selection of members with replacement from the (𝑎 + 𝑏)-union of the original two 

groups. Then, the difference between the mean values of the two new groups is 

computed. This whole process is then repeated 10000 times. Finally, the original 

difference, which needs to be verified is then considered significant if it achieves 

the 0.05 or the 95% confidence level.  

5.4 Results and Discussions 

5.4.1 General predictability characteristics 

The tropical cyclones considered in this study are classified into different categories 

based on their intensity, translational speed and landfalling location to understand 

the general predictability characteristics. Figure 5.2 shows the forecast spread in 

MSLP and track for each of the categories. Based on the maximum wind speed TCs 

are first classified into weak (< 44 knots) and intense cyclones (>44 knots). Intense 

TCs are found to exhibit large forecast spread in SLP and hence low predictability 
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(Fig. 5.2a, c). Similarly, it has been found that intense cyclones show comparatively 

less forecast spread in track, and therefore these cyclones show high predictability 

in terms of position as compared to the weak cyclones (Fig. 5.2b, d). Further, from 

Fig. 5.3a nominal difference is noticed in the analysis SLP spread between the weak 

and intense TCs. However, the difference in the mean of maximum absolute 

sensitivity is higher in the case of weak cyclones compared to intense cyclones and 

the difference is statistically significant. It can be found that the upper quartile is 

higher in the case of intense cyclones than the weak cyclones for both analysis 

spread and sensitivity. It means that even though the mean is higher, the number of 

intense cyclones showing ensemble sensitivity to SLP is higher than the number of 

b) a) 

c) d) 

Figure 5.2. Ensemble spread in MSLP error (left panel) and position error (right panel) at 

24 h (top panel) and 48 h (bottom panel) for the different categories of cyclones. The top 

and bottom end of each box represents the upper and lower quartile, respectively. The 

vertical lines represent the range between the extreme values of each group. The two-colour 

squares at the bottom indicate significantly different pairs of the respective group. The red 

horizontal line represents the mean and the black horizontal line indicates mode of each 

group. 
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weak cyclones. This signifies that the low predictability of intense cyclones is 

associated with the large intrinsic potential for perturbation growth. Intense 

cyclones are also found to exhibit high initial condition sensitivity of MSLP to the 

TC environment and core fields, as seen from Fig. 5.4a. This further suggests that 

the low predictability of intense cyclones is also linked to the dynamical 

perturbation growth associated with the environmental and core fields. Figure 5.3d 

shows the track analysis spread and the position error sensitivity to SLP. It can be 

seen that the initial condition sensitivity of weak cyclones to SLP is higher than the 

intense cyclones, which suggests that perturbation growth is a crucial factor in the 

low predictability of track for weak cyclones. 

Again, based on the translational speed the cyclones are further categorized 

into fast and slow-moving cyclones, where fast-moving cyclones have a 

translational speed greater than 7.8 knots and slow-moving cyclones have a 

translational speed less than 7.8 knots. It has been found that fast-moving cyclones 

a) b) c) 

d) e) f) 

Figure 5.3. Analysis spread in SLP and maximum absolute ensemble sensitivity of MSLP 

error to SLP (top panel); analysis spread in track and maximum absolute ensemble 

sensitivity of position error to SLP (bottom panel) for the different categories of cyclone. 

The bars represent the mean ensemble sensitivity corresponding to each group and the 

vertical lines are the ranges between the upper and lower quartiles of each group. The small 

black box at the bottom indicates significantly different pairs. 
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exhibit significantly large forecast spread in both SLP and position of the TCs 

compared to slow-moving storms indicating low predictability in terms of intensity 

and track (Fig. 5.2). From Fig. 5.3b the analysis spread and initial condition 

sensitivity to SLP is found to be lower in fast-moving cyclones. However, fast-

moving cyclones are also found to show statistically significant sensitivity to the 

TC core features (Fig. 5.4b). Therefore, core features might have an important role 

to play in the lower predictability of intensity of fast-moving cyclones. Figure 5.3e 

shows that the analysis spread of SLP in the fast-moving cyclones is higher than 

the magnitude of the initial condition sensitivity, which indicates that the low 

predictability in the track of the fast-moving cyclones is due to the initial spread in 

the SLP. Also, the position error of faster storms shows higher sensitivity to core 

features, as seen in Figure 5.4e. Thus, the initial error in the SLP together with the 

intrinsic error growth in both near surface and midtropospheric humidity at the core 

a) b) c) 

d) e) f) 

Figure 5.4. The maximum absolute ensemble sensitivity of MSLP error (top panel) and 

position error (bottom panel) to DVWS, SVWS, 925RH and 600RH for the different 

categories of cyclone. The bars represent the mean ensemble sensitivity corresponding to 

each group and the vertical lines are the ranges between the upper and lower quartiles of 

each group. The small coloured boxes at the right end indicates significantly different 

pairs. 
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of faster storms can be considered as a plausible reason for the low track 

predictability of the fast-moving cyclones. 

Another category of TCs is also considered in this study based on the 

landfalling latitude. The cyclones that make landfall north of 17° latitude are 

considered north falling cyclones and that make landfall south of 17° are south 

falling cyclones. The average maximum spread in intensity and position are 

compared for north and south falling cyclones in Fig. 5.2. Interestingly, north 

falling cyclones exhibit higher spread in both intensity as well as track compared to 

south falling cyclones. This suggests that cyclones that make landfall towards the 

north of the Indian subcontinent are less predictable in terms of intensity and 

position when compared to the south falling cyclones. Figure 5.3c compares the 

analysis spread and sensitivity of intensity and position error for north and south 

a) b) 

c) d) 

Figure 5.5. Mean (a) DVWS, (b) SVWS, (c) 925RH (d) 600RH at different forecast hours 

for low and high predictability cyclone classification based on TC intensity error spread at 

forecast hour 48. The vertical lines are the ranges between the upper and lower quartiles of 

each group. The two-colour squares at the bottom indicate significantly different pairs at 

that time. 
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falling cyclones. It can be seen that north falling cyclones show higher analysis 

spread in SLP while the ensemble sensitivity to SLP is higher for the south falling 

cyclones. Therefore, it can be interpreted that the large forecast spread in the 

intensity of the north falling cyclones is due to the initial spread in SLP rather than 

dynamical perturbation growth. Further, the north falling cyclones show higher 

initial condition sensitivity to the core features, especially to the near surface 

humidity (Fig. 5.4c). From Fig. 5.3f it is clear that the lower predictability in the 

track of the north falling cyclones is due to both initial spread and the initial 

condition sensitivity to SLP compared to the south falling cyclones. The north 

falling cyclones also show higher ensemble sensitivity to the core fields, which can 

also be considered a factor that contributes to the low predictability of north falling 

cyclones (Fig. 5.4f).  

5.4.2 Factors affecting the predictability of the tropical cyclones 

Next, we examine how the different factors of cyclones affect the predictability of 

tropical cyclone intensity. For this, the cyclones are classified into low 

predictability cyclones and high predictability cyclones based on the ensemble 

c) d) 

a) b) 

Figure 5.6. Similar to Figure 5.5, but for TC track error spread. 
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spread of MSLP error at 48 h. Bootstrap sampling is performed to test the statistical 

significance of the difference between the mean of the two classifications. Figure 

5.5 shows the evolution of DVWS, SVWS, 925RH and 600RH for low 

predictability and high predictability cyclones as well as the six hourly lower and 

upper quartiles of each group. There is hardly any difference in the mean value of 

DVWS between the low and high predictability cyclones (Fig. 5.5a). However, it 

should be noticed that the range between the upper and lower quartiles is different 

among the two categories. This means that 50% of cyclones with low predictability 

have values of DVWS between 18 to 21 m/s at 24 h and 50% of high predictability 

cyclones have values between 14 to 22 m/s. This suggests that low predictability 

cyclones have significantly higher values of DVWS than high predictability 

cyclones.  Further, the difference in the mean value of SVWS between low and high 

predictability cyclones is slightly higher during initial forecast hours with higher 

SVWS in high predictability cyclones (Fig. 5.5b). From Fig. 5.5c, it is clear that 

low predictability cyclones exhibit lower values of near surface humidity within the 

core of the cyclones whereas the midtropospheric humidity (Fig. 5.5d) is high in 

low predictability cyclones compared to high predictability cyclones. Moreover, it 

can be noticed that the core features produce a considerable difference between the 

low and high predictability cyclones rather than the environmental features. The 

cyclones are again classified into low and high predictability based on the track 

error spread at forecast hour 48 (Fig. 5.6).  It is found that cyclones with low track 

predictability exhibit low and high values of DVWS and SVWS, respectively. 

Besides, cyclones with low track predictability include lower near surface humidity 

and midtropospheric humidity. We have seen how the different parameters evolve 

in low and high predictability cyclones. Such differences in characteristics between 

low and high predictability cyclones could be explained either by analysing the 

error in the initial conditions or the dynamical error growth in the initial 

perturbations. Figure 5.7a, b shows the analysis spread in SLP and initial condition 

sensitivity to various atmospheric fields. It can be seen that low intensity 

predictability cyclones are characterized by less analysis spread in SLP. On the 

other hand, the intensity of low predictability cyclones shows comparatively high 

ensemble sensitivity to all the atmospheric fields. The high ensemble sensitivity of 
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low predictability cyclones compared to high predictability cyclones reveals the 

importance of dynamical perturbation growth in the low predictability of cyclones. 

Similar analysis of track predictability shows (Fig. 5.7c) a comparatively higher 

analysis spread for low predictability cyclones. Nevertheless, cyclones with low 

track predictability show generally large initial condition sensitivity to all fields 

except SLP (Fig. 7d). Therefore, the initial spread in SLP and dynamical error 

growth associated with core and environmental fields make the cyclones to be less 

predictable in track.  

 

 

a) b) 

c) d) 

Figure 5.7. Analysis spread in SLP and maximum absolute ensemble sensitivity of MSLP 

error to SLP, DVWS, SVWS, 925RH and 600RH (top panel); analysis spread in track and 

maximum absolute ensemble sensitivity of position error to SLP, DVWS, SVWS, 925RH 

and 600RH (bottom panel). The bars represent the mean value corresponding to each group 

and the vertical lines are the ranges between the upper and lower quartiles of each group. 

The small black box at the bottom and the coloured box at the right end indicates 

significantly different pairs. 
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5.4.3 Perturbation experiment 

In this section, perturbation initial condition experiments are performed on all 

cyclones to understand the error growth characteristics. For this purpose, we 

estimate the error growth between the unperturbed (CNTL) and perturbed (PERT) 

simulations. The error growth is estimated by finding the time evolution of domain-

integrated difference total energy (DTE) per unit mass as in Zhang, Snyder and 

Rotunno (2003). The DTE is defined at any grid point and time as 

𝐷𝑇𝐸 =
1

2
∑[(𝛿𝑢)2 + (𝛿𝑣)2 + 𝜅(𝛿𝑇)2] 

where 𝛿𝑢, 𝛿𝑣 and 𝛿𝑇 are the difference in wind components and difference in 

temperature between the unperturbed and perturbed simulations. The constant 𝜅 =

𝐶𝑝/𝑇𝑟 , with 𝐶𝑝 = 1004𝐽𝐾−1𝑘𝑔−1 being the specific heat at constant pressure and 

a) b) 

c) 

Figure 5.8. Time series of domain integrated difference total energy for the perturbation 

experiments. DTE time series for the various categories such as (a) weak (solid line) and 

intense (dashed line), (b) slow (solid line) and fast moving (dashed line), and (c) south 

(solid line) and north (dashed line) falling cyclones.   
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𝑇𝑟 = 270𝐾 being the reference temperature. Figure 5.8 shows the domain-

integrated DTE time series of the vertical wind shear and humidity for the different 

categories of cyclones described in section 5.4.1. As can be seen from Fig. 5.8a the 

error growth is rapid up to forecast hour 12 for all the fields of the intense cyclones 

compared to that of the weak cyclones and slows steadily over the rest of the 

forecast hours. Moreover, errors are found to rapidly increase in the first 6 h for the 

moisture fields compared to other fields. Similarly, from Figs. 5.8b and c, 

atmospheric fields associated with fast and north falling cyclones exhibit 

comparatively rapid error growth than slow and south falling cyclones. This proves 

that small amplitude perturbations will introduce intrinsic error growth in the 

atmospheric fields particularly moisture fields at the core, that could affect the 

predictability of the cyclones.  

5.4.4 Tropical cyclone Sidr 

Tropical cyclone Sidr is one of the most devastating tropical cyclones that caused 

several thousand deaths and substantial damages. Sidr is found to exhibit large 

Figure 5.9. Time evolution of the track of TC Sidr. The JTWC best track is denoted in 

black line and the ensemble forecasts in blue lines. 
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uncertainty in both intensity and track, therefore the predictability of this TC is 

studied separately. Figure 5.9 shows the ensemble forecasts and the best track from 

JTWC. It should be noticed that there is large ensemble spread in the track of the 

TC Sidr. The magnitude of forecast spread in central pressure and track of TC Sidr 

is shown in Fig. 5.10 along with the magnitude of maximum absolute ensemble 

sensitivity. The intensity of the TC Sidr shows the largest sensitivity to shallow 

layer vertical wind shear at the environment and the track shows maximum absolute 

sensitivity to near surface humidity at the core. Fig. 5.11 shows the ensemble spread 

at 48 h and the ensemble sensitivity of cyclone MSLP and position to the initial sea 

level pressure field. The ensemble spread is the largest in the vicinity of the cyclone 

low with magnitude greater than 6 hPa (Fig. 5.11a). This hints that various 

ensemble members forecasted different cyclone positions, sea level pressure at the  
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Figure 5.10. Forecast spread in central pressure and maximum absolute ensemble 

sensitivity of MSLP error to SLP, DVWS, SVWS, 925RH and 600RH (top panel); 

forecast spread in track and maximum absolute ensemble sensitivity of position error to 

SLP, DVWS, SVWS, 925RH and 600RH (bottom panel) for TC Sidr. 
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a) b) c) 

Figure 5.11. (a) Ensemble spread of sea level pressure at 48 h (shaded) and ensemble mean 

sea level pressure (contours, every 2 hPa) (b) Ensemble sensitivity of MSLP error at 48 h 

to analysis sea level pressure (shaded) and analysis sea level pressure (contours, every 

2hPa). 

DVWS SVWS 

925RH 600RH 

a) b) 

c) d) 

Figure 5.12. Time series of domain integrated difference total energy for the perturbation 

experiments. DTE time series for the All, Moist and Dry experiments based on the IC 

metrics (a) DVWS, (b) SVWS, (c) 925RH and (d) 600RH. 
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center, landfall timing or combinations of these factors. The ensemble sensitivity 

of central pressure to initial sea level pressure shows positive values to the north 

and negative values to the southwest of the initial cyclone (Fig. 5.11b). This 

suggests that changes to initial sea level pressure towards southwest and north of 

the TC Sidr are related to the intensification of the cyclone 48 h later.  

Similarly, Fig. 11c shows the ensemble sensitivity of cyclone position to 

initial sea level pressure with negative values towards the northeast and positive 

values towards the east of the initial cyclone position. This means the changes in 

cyclone position are related to the initial sea level pressure towards northeast and 

east of the initial position of the cyclone.  

The large ensemble spread in the intensity and track of the TC Sidr indicates 

that the cyclone has low predictability. The strong ensemble sensitivity suggests 

strong potential for perturbation growth that causes low predictability. Earlier from 

a) b) 

c) d) 

DVWS SVWS 

925RH 600RH 

Figure 5.13. Time series of domain integrated difference total energy for the perturbation 

experiments. DTE time series for the All experiment with perturbation amplitude ranging 

from 0.5𝜎 to 2𝜎  based on the IC metrics (a) DVWS, (b) SVWS, (c) 925RH and (d) 

600RH.   
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section 5.4.1 we have seen that the cyclones that exhibit low predictability in MSLP 

are intense, fast-moving and north-landfalling. TC Sidr is also found to be an 

intense, fast-moving and north-landfalling cyclone with low predictability in both 

intensity and track.  

Perturbation experiments are performed to understand the error growth factors 

that affect the predictability of TC Sidr. Three different experiments are performed 

by considering each of the atmospheric fields as the initial condition (IC) metric 

(𝑥𝑠) in Eq. 2.38 and 2.39 as in Rios-Berrios, Torn and Davis (2016). In the first 

experiment perturbations (named All) are applied to all the model state variables 

through Eq. 2.38, whereas in the second experiment (named Dry) the initial 

condition perturbations are applied to all variables except the water vapor mixing 

ratio. And in the third experiment (named Moist) perturbations are applied only to 

the water vapor mixing ratio. Figure 5.12 shows the DTE obtained for the three 

experiments by considering DVWS, SVWS, 925RH and 600RH as the IC metrics. 

From Fig. 12a, it can be seen that the total error growth is nearly the same for All 

and Dry experiments throughout the forecast period, however, the error growth 

rapidly increases till forecast hour 6 for Moist experiment and becomes steady 

afterwards. That is, changes in DVWS are linked to small perturbations in the water 

vapor mixing ratio. In addition, the DTE values in the Dry experiments are nearly 

identical to those of the Moist experiments after about 6-h. This suggests that the 

simulations of TC Sidr have finite predictability, as perturbing the initial conditions 

with or without the water vapor mixing ratio does not change the total error growth 

through 48-h lead times. It should be also noticed that the Dry and Moist 

experiments cause the greatest DTE growth and the All experiment causes the 

reduced growth for all the IC metrics except DVWS. It is also found that the error 

growth rate of ICs associated with moist perturbations is higher in the first 6-h. This 

result hints that the error growth is due to moist convection, which is also consistent 

with the studies by Zhang et al. (2007).  

The perturbation experiments are repeated for different perturbation amplitude 

ranging from 0.5𝜎 to 2𝜎 with 𝜎 being the ensemble standard deviation of the 

respective IC metric (Fig. 13). We notice that for all the IC metrics, the smaller the 
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magnitude of perturbations faster will be error growth. These results are similar to 

the findings by Lloveras, Tierney and Durran (2022). It is also observed that the 

error growth rate is higher for near surface humidity at the core of the TC.  

The MSLP of the TC Sidr obtained after the perturbation experiments are shown 

in Fig. 14. Generally, there is less difference in MSLP between the All, Moist and 

Dry experiments. The highest change in MSLP relative to the unperturbed 

experiment is observed for the near-surface and midtropospheric humidity. That is, 

small changes to these IC metrics at the core will produce the largest change in the 

MSLP of TC Sidr rather than the environmental shear factor.  

 

 

925RH 

DVWS SVWS 

600RH 

a) b) 

c) d) 

Figure 5.14. The minimum sea level pressure obtained after the All, Moist and Dry 

perturbation experiments for the IC metrics (a) DVWS, (b) SVWS, (c) 925RH and (d) 

600RH.   
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5.5 Summary 

This study uses multivariate ensemble sensitivity analysis to understand the general 

predictability characteristics of landfalling TCs formed across the Bay of Bengal 

from 2000 to 2020. The ensemble analysis and forecasts for 46 TCs formed over 

the Bay of Bengal are generated using the WRF and DART-EnKF systems. In this 

study, the ensemble spread of cyclone central pressure and position at the 48-h 

forecast time is considered as a proxy for predictability. That is, TCs with large 

forecast spread exhibits low predictability and those with small ensemble spread 

shows high predictability. The large forecast spread could be either because of the 

large initial spread or the large potential for perturbation growth (intrinsic 

predictability).  In this chapter, multivariate ensemble sensitivity analysis is used to 

obtain the intrinsic predictability. The results obtained from this study are 

summarized as follows.    

The general predictability characteristics analysed using the ensemble 

sensitivity analysis show that intense, fast-moving and north-landfalling TCs 

exhibit large forecast spread in intensity and hence low predictability in terms of 

central pressure of the tropical cyclones. However, weak, fast-moving and north-

landfalling TCs show large ensemble spread in track; therefore, it can be stated that 

TCs with these characteristics exhibit low predictability in track. Comparing 

analysis spread and ensemble sensitivity results show that cyclones with low 

predictability in intensity exhibit large potential for intrinsic error growth. 

Moreover, low predictability is found to be linked to the dynamical perturbation 

growth associated with TC core features rather than the environmental fields. In 

addition, it has been found that the low predictability in the track of the fast-moving 

and north-landfalling TCs is associated with both initial spread in sea level pressure 

and intrinsic error growth in TC core fields. Further analysis showed that low 

intensity predictability cyclones exhibit high values of DVWS and low values of 

SVWS in the environment of the TC. It is also found that the factors that affect the 

predictability of intensity and track of the TCs are the moisture fields at the core of 

the TCs rather than environmental shear factors. The high ensemble sensitivity of 

low predictability cyclones to environmental and core factors reveals the 
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importance of dynamical perturbation growth in the low predictability of cyclones 

compared to high predictability cyclones. The perturbation experiments prove that 

small amplitude perturbations to the moisture fields at the core indeed result in low 

predictability of the intense, faster and north falling TCs. The large ensemble spread 

in the intensity and track of the TC Sidr indicates that the cyclone has the lowest 

predictability in the group of tropical cyclones analyzed in this study. Therefore, 

the predictability characteristics of TC are analysed separately in this chapter. The 

strong ensemble sensitivity indicates strong potential for perturbation growth that 

causes low predictability. The perturbation experiments suggest that the error 

growth rate of initial conditions associated with moist perturbations is higher. It is 

also found that the smaller the magnitude of initial condition perturbations, the 

faster will be the error growth. Nevertheless, the largest change in the central 

pressure of TC Sidr is observed for small changes in the near surface humidity and 

midtropospheric humidity at the core of the cyclone.  

This study has revealed the general characteristics of TCs that exhibit large 

forecast spread or low predictability and the factors responsible for the low 

predictability. The large dynamical potential for error growth is found to be the key 

factor that affects the predictability of the TCs over the Bay of Bengal and such 

error growth cannot be solved practically. Another factor that affects the 

predictability is the large spread at the initial time, which can be mitigated by data 

assimilation methods.  
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CHAPTER 6 

OPTIMAL LOCATIONS FOR TARGETING 

OBSERVATIONS IDENTIFIED USING 

ENSEMBLE SENSITIVITY ANALYSIS 

6.1 Introduction 

Providing dependable rainfall forecasts using NWP models is challenging. One 

factor that jeopardizes forecast accuracy is uncertainties in the initial conditions. 

An advanced DA system can effectively use the available observations to improve 

initial conditions and the subsequent forecast well in advance. However, the 

accuracy of forecasts is often impaired by the lack of observations. Assimilation of 

observations from an optimal observation network may maximize the reduction of 

forecast error. The flow-dependent dynamics within an NWP model play a 

significant role in deciding the placement of such supplement observational 

networks, which would produce the largest uncertainty reduction in the forecast. 

One approach for designing an optimal observational network is sensitivity 

analysis, which points to the spatial regions where the underlying error growth 

dynamics are significant. It is expected that additional observations on such 

locations reduce forecast uncertainty following data assimilation.   

Several predictability studies have employed sensitivity analysis to determine 

how forecast features evolve within numerical models to influence chosen 

responses (Rabier et al., 1996; Snyder, 1996; Langland, Shapiro and Gelaro, 2002). 

Theoretically, sensitivity analysis can be used as a tool to understand the locations 

of potential error growth in the initial conditions (Torn and Hakim, 2008a). Among 

the sensitivity studies using various methods, adjoint sensitivity and ensemble-

based sensitivity analysis have been widely used for understanding error growth 

dynamics and observation targeting of extreme weather events (Ancell and Hakim, 

2007; Torn and Hakim, 2009; Torn, 2010; Xie et al., 2013; Bednarczyk and Ancell, 

2015; Zhou and Cui, 2015; Limpert and Houston, 2018; Kumpf et al., 2019). Ancell 

and Hakim (2007) indicated that the ensemble-based sensitivity analysis is useful 
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for identifying a target region for additional observations because the analysis error 

statistics are included in the ensemble calculation, unlike adjoint methods. The 

present study addresses the question “Where should one deploy observations to 

curtail rapidly growing forecast errors during summer monsoon season for various 

target forecast domains over the Indian subcontinent?”  

In recent decades, the occurrence of extreme rainfall events has increased 

considerably over India during the summer monsoon season (Rajeevan, Bhate and 

Jaswal, 2008; Roxy et al., 2017). Therefore, efforts to improve short-range forecasts 

during the Indian summer monsoon by assimilating optimal observations have 

much significance in the current context.  

6.2 Data and Methods 

Ensemble forecasts from The Observing System Research and Predictability 

Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) are used in 

the computation of sensitivity analysis. For the current study, we have used the 

ensemble forecasts from the NCEP TIGGE data archive. This dataset consists of 21 

ensemble members with an unperturbed control forecast and 20 perturbed forecasts 

at a horizontal grid spacing of 0.5° × 0.5°. Potential error growth regions in the 

Figure 6.1. Area of study. Boxes in the figure represents the regions over which the 

forecast metric is area-averaged. 
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initial conditions are estimated by applying ensemble sensitivity analysis using 

short-range ensemble forecasts initialized from 0000 UTC of 1 to 31, July. A 

statistically robust estimate of initial condition sensitivity is obtained by conducting 

the experiments for five years, starting from 2011 to 2015.  

In this study, ESA uses accumulated precipitation as the forecast metric in 

various locations over the Indian subcontinent. These forecast metrics are averaged 

over four regions: the Western Ghats (WG), the Ganges basin (GB), the Bay of 

Bengal (BB), and the Northeast (NE) to obtain the climatological sensitivity 

associated with these four regions (Fig. 6.1). Climatological sensitivity is defined 

as the percentage of analysis cycles for which the ensemble sensitivity of the 

forecast metric with respect to a state variable is different from zero at a certain 

level of confidence. Thus, climatological sensitivity is used to determine how often 

a forecast metric is sensitive to changes in a state variable. Regions with a high 

Figure 6.2. Percentage of forecast cycles with grid point sensitivity statistically significant 

at the 95% confidence level for the sensitivity of 24-h (left panel) and 48-h (right panel) 

precipitation forecasts over the Western Ghats to SLP (top panel) and 850 hPa geopotential 

height (bottom panel). The box indicates the region over which the forecast metric is 

averaged. 
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percentage of sensitive forecast cycles may be regarded as potential locations for 

new observations. 

6.3 Results and Discussions 

Figure 6.2 shows results for the sensitivity of 24-h and 48-h accumulated 

precipitation forecast averaged in a box to analyses of mean sea level pressure 

(SLP) and geopotential height at 850 hPa. It can be seen that the region with the 

largest percentage of forecast cycles is located far south of the forecast region in 

the Indian Ocean and over the northern edge of the box. Though the sensitivity 

region remains the same for both forecast metrics, the 48-h precipitation forecasts 

are more often sensitive to the region south of the Indian Ocean. (Figs. 6.2b, d). The 

sensitivity of 48-h precipitation forecasts to SLP and 850 hPa geopotential height 

analyses show similar results with the latter being less sensitive. The sensitivity of 

precipitation forecasts to 850 hPa wind and humidity is shown in Fig. 6.3. The 

rainfall over WG is frequently sensitive to 850 hPa wind to regions upstream of the 

response region (Figs. 6.3a, b). Similarly, the analysis of humidity depicts 

consistent sensitive regions to the upstream locations of the forecast box (Fig. 6.3c, 

d). Locations of frequent sensitivity indicate the region where additional 

observations are required to improve the precipitation forecast over the WG.  

The precipitation forecasts in a box over the Bay of Bengal show sensitivity to 

SLP over regions extending to the south of the box (Fig. 6.4a). For wind at 850 hPa, 

the region of frequent sensitivity is seen within the box (Fig. 6.4b). The sensitivity 

to 850 hPa humidity shows a meridionally elongated sensitive region towards the 

south of the metric box.  

The region of frequent sensitivity to precipitation forecasts over Gangetic basins 

(GB) is shown in Figs. 6.4a and 6.4d. It is noticed that for SLP the precipitation 

forecasts are frequently sensitive to regions within the box region and no upstream  
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Figure 6.3. Percentage of forecast cycles with grid point sensitivity statistically significant 

at the 95% confidence level for the sensitivity of 24-h (left panel) and 48-h (right panel) 

precipitation forecasts over the Western Ghats to 850 hPa wind (top panel) and 850 hPa 

humidity (bottom panel). The box indicates the region over which the forecast metric is 

averaged. 

Figure 6.4. Percentage of forecast cycles with grid point sensitivity statistically significant 

at the 95% confidence level for the sensitivity of 24-h precipitation forecasts over the Bay 

of Bengal (top panel) and Gangetic basins (bottom panel) to SLP (left panel) and wind at 

850 hPa (right panel). The box indicates the region over which the forecast metric is 

averaged. 
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shift in the sensitive region is found for forecasts over GB (Fig. 6.4c). A recent 

study by Nikumbh et al. (2021) shows that the presence of a zonally elongated 

monsoon trough enhances the vorticity and temperature that sets up large-scale 

dynamic forcing over central India for medium-range and large extreme rainfall 

events. The frequently sensitive region is possibly linked to the monsoon trough 

that extends all the way from Pakistan to head Bay. Similar to the previous result 

the precipitation over the GB is consistently sensitive to regions within the metric 

box for wind at 850 hPa, (Fig. 6.4d). Therefore, the precipitation forecasts over the 

GB would be benefited from additional in situ observations over central India and 

the zonally elongated sensitive region. Similar results are obtained for the 

precipitation forecasts over the northeast region of India (Fig. 6.5). A zonally 

elongated region over the head Bay has been identified as the frequently sensitive 

region to SLP and 850 hPa geopotential height (Fig. 6.5 a and b).  

Figure 6.5. Percentage of forecast cycles with grid point sensitivity statistically 

significant at the 95% confidence level for the sensitivity of 24-h precipitation forecasts 

over Northeast to (a)SLP, (b)850 hPa geopotential height, (c) 850 hPa wind and (d) 850 

hPa humidity. The box indicates the region over which the forecast metric is averaged. 
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Figure 6.6. Percentage of forecast cycles with grid point sensitivity statistically significant 

at the 95% confidence level for the sensitivity of 24-h SLP forecasts over the Western 

Ghats to 850 hPa wind. The box indicates the region over which the forecast metric is 

averaged. 

 

Figure 6.7. Percentage of forecast cycles with grid point sensitivity statistically 

significant at the 95% confidence level for the sensitivity of 24-h SLP forecasts over the 

Bay of Bengal to (a)SLP, (b)850 hPa geopotential height, (c) 850 hPa wind and (d) 850 

hPa humidity. The box indicates the region over which the forecast metric is averaged. 
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To study how the sensitivity varies with forecast metrics, the regions associated 

with SLP forecasts are estimated. Over the WG, the frequent sensitive region shows 

an upstream shift in the analysis for 850 hPa wind (Fig. 6.6). The SLP forecasts 

averaged over GB and NE regions show similar regions of sensitivity towards the 

southeast of the box. This indicates that the forecast of SLP over GB and NE may 

be benefitted from additional wind measurements over the Bay of Bengal. Figure 

6.7a shows the sensitivity of SLP forecasts in the box over the Bay of Bengal to 

SLP analyses. The forecast metric is sensitive to more than 60% of the time over 

the region within the box. For 850 hPa wind analyses (Fig. 6.7c), the region with 

the largest percentage of sensitive forecast cycles is seen over the Bay of Bengal 

zonally extending from 80°𝐸 to 100°E.  Studies conducted by changing the forecast 

metric box do not show substantial variations in the sensitivity patterns, suggesting 

that the sensitive regions are independent of the dimension of the forecast metric 

box.  

6.4 Summary 

Ensemble analyses and forecasts obtained from NCEP TIGGE are used to identify 

locations of frequent sensitivity during the summer monsoon rainfall season over 

the Indian subcontinent. Locations of frequent sensitivity are determined for 

different forecast metrics over different domains. The 24-h and 48-h precipitation 

forecasts averaged over the WG are most often sensitive to far south of the target 

forecast region. It is also found that the assimilation of additional wind and 

humidity measurements to the upstream regions of the WG could improve the 

precipitation forecasts in this region. The region of sensitivity for the forecast 

domain located over the GB and NE is identified to be a zonally elongated region 

over central India and head Bay, respectively. Therefore, the precipitation forecasts 

in these regions would be benefited from the assimilation of additional observations 

over the monsoon trough zone. The region of consistent sensitivity for precipitation 

forecasts over the Bay of Bengal is found to be far south of the Bay of Bengal. 

According to Torn and Hakim (2008), regions of consistent sensitivity indicate 

assimilation of additional observations over those regions would optimally improve 

the forecast metric over the target domain.  
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Overall, this study shows that the precipitation forecasts during the Indian 

summer monsoon season are benefited from the assimilation of observations that 

are located over the upstream regions of the forecast metric box. It is to be noted 

that the frequently sensitive region for a target forecast region may vary depending 

on the flow conditions (season) as well as the NWP model used.  The optimal 

locations for observations need to be tested by assimilating real/synthetic 

observations in the sensitive regions which are left for future work. 
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CHAPTER 7 

CONCLUSIONS 

Numerical Weather Prediction (NWP) is an initial-value problem, and its ability to 

determine the future state of the atmosphere depends on the accuracy of the initial 

state. The uncertainties in the initial condition and model formulations limit the 

predictability of weather using NWP models. Therefore, quantifying these 

uncertainties in the forecasts is crucial in understanding the relevant dynamics and 

the predictability of the weather event. One way to quantify the uncertainties in a 

forecast is through sensitivity analysis, which is defined as how a forecast variable 

responds to changes of initial conditions. Sensitivity analysis is a reliable method 

that is employed to quantify the uncertainties imposed by chaos in the forecast, 

which determines predictability of a weather event. Ensemble Sensitivity Analysis 

(ESA) uses sample statistics of ensemble forecasts to estimate relationships 

between forecast metric and initial conditions. The present thesis uses ESA to 

understand the dynamics and predictability of extreme weather events over the 

Indian subcontinent with the ensemble analyses and forecasts obtained from the 

Ensemble Kalman Filter (EnKF) data assimilation system along with TIGGE data 

from European Centre for Medium-Range Weather Forecasts (ECMWF) and 

National Centers for Environmental Prediction (NCEP) Ensemble Prediction 

System.  

ESA often uses a diagonal approximation to the multivariate regression, 

leading it to a simple univariate regression. In Chapter 3, the forecast sensitivity of 

three extreme rainfall events viz. the torrential flood episode over Uttarakhand in 

2013, and the catastrophic rainfall events that happened over Kerala in 2018 (KF18) 

and 2019 (KF19) are investigated through univariate ESA. For the heavy rainfall 

event over Uttarakhand in June 2013 univariate ESA indicates that the day 1 

precipitation exhibits negative sensitivity to the trough over upstream regions of the 

storm location while on day 2, the sensitive region is found to be located over the 

southward intruded branch of the mid–tropospheric trough. It is found that in 

general, the precipitation forecasts associated with this heavy rainfall event are 
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sensitive to the mid-tropospheric trough and moisture fields. IC perturbed 

experiments show that the perturbation amplitude is correlated linearly with the 

predicted change in precipitation, which becomes nonlinear as the forecast length 

increases. Univariate ESA performed on convection-permitting ensembles show 

that precipitation over the Uttarakhand is mostly non-convective. However, when 

the location of the response function box is moved northwestward of the 

Uttarakhand, the sensitivity patterns show signs of convection. Univariate ESA 

indicates that greater height fall needs to occur over the Western North Pacifc 

(WNP) to increase the KF18 precipitation, and any shift in the location of these 

features may affect the precipitation patterns over Kerala. Further analysis using 

ESA depicts that the existence of circulations in the WNP has played a significant 

role in the heavy rainfall event, KF18. Though the synoptic settings remained 

almost similar for KF19, the underlying dynamics that led to both events are found 

to be different. ESA reveals that the moisture-laden low-level flow is more 

substantial for KF19, which has favoured the development of deep convective 

clouds.  

As the univariate ESA used in the previous chapter considers only the 

diagonal elements of the covariance matrix, it may potentially overestimate the 

response of a forecast metric to initial conditions due to the presence of sampling 

error. Therefore, in Chapter 4, the contribution of the full covariance matrix in 

ensemble sensitivity analysis is studied by applying a multivariate linear regression 

approach to an extreme rainfall event over Chennai. Both univariate and 

multivariate ensemble sensitivity is estimated for meso- as well as convection scale 

ensemble members and the effectiveness of the methods is demonstrated by 

validating the response against the actual response generated from the perturbed 

initial condition experiment. Multivariate ensemble sensitivity shows organized 

sensitivity patterns, while the sensitivity values are found to be broadly distributed 

in univariate ensemble sensitivity. The performance of univariate and multivariate 

methods in the convection-permitting scale is examined by using high-resolution 

ensemble forecasts, and it is found that the multivariate sensitivity with localization 

substantially improves the estimates in finer scales. 
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Chapter 5 investigates the general predictability characteristics of tropical 

cyclones (TCs) over the Bay of Bengal using the multivariate ESA. The chapter 

also compares the dynamical perturbation growth with the initial-time spread for 

the least and most predictable TCs. The forecast spread in intensity and track of 

tropical cyclones before landfall is considered as a proxy for predictability. A set of 

90 ensemble analyses and forecasts for each of the 45 tropical cyclones over the 

Bay of Bengal from 2000 to 2020 is obtained using the Ensemble Kalman Filter 

data assimilation system. These cyclones are categorized based on the 

characteristics such as intensity, translational speed, and landfalling location. It is 

found that intense, fast-moving, and north-landfalling exhibits lower predictability 

than weak, slow-moving, south-landfalling tropical cyclones. It is also found that 

the low predictability of storms is associated with large initial condition sensitivity, 

which indicates a larger potential for error growth. Through the perturbation initial 

condition experiment, it is found that the dynamical error growth rate is higher if 

the perturbations are smaller. Additionally, the error growth associated with moist 

perturbations is higher for the less predictable tropical cyclones.  

Since ESA account for uncertainties in the forecast and analysis, the 

approach can be used to determine where new observations should be deployed to 

reduce forecast errors. In Chapter 6 we have estimated the regions of potential error 

growth in the initial conditions and optimal observation locations are identified to 

curtail rapidly growing forecast errors during summer monsoon season for various 

target forecast domains over the Indian subcontinent. ESA is successfully applied 

to estimate the climatological sensitivity of short-range precipitation forecasts 

during the Indian summer monsoon season. Ensemble forecasts from NCEP TIGGE 

are used to determine a statistically robust estimate of initial condition sensitivity 

by conducting the experiments for five years, starting from 2011 to 2015. Results 

show that the 24-h and 48-h precipitation forecasts averaged over WG are most 

often sensitive to two regions, one to the far south over the Arabian Sea and the 

other to the northwest of the metric box. It is also found that additional wind and 

humidity measurements to the upstream regions of the Western Ghats could 

improve the precipitation forecasts in this region. A similar analysis is performed 

for a box over the Gangetic basin, the Northeast, and the Bay of Bengal. In addition, 
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it is noticed that the magnitude of the forecast metric does not change the 

predictability zones, but a decrease in the percentage of cycles is noticed. To 

summarize, the potential regions for launching observation networks for targeted 

data assimilation over the Indian subcontinent have been identified using ESA. It is 

found that the optimal observation location may vary for each forecast domain and 

such regions are mostly observed upstream of the forecast domain.   

Future directions 

ESA is based on the underlying assumption that the relationship between the 

forecast and the initial state is linear. Therefore, a quantitative examination of the 

impact of the linearity assumption would be needed to understand the feasibility of 

the application of ESA for various weather events, especially in cases involving 

convection. The present study does not address the effect of the assimilation of real 

observations at sensitive locations. . A benefit of targeting based on this method is 

that it incorporates knowledge about the dynamical error growth as well as the 

analysis error, both of which are necessary for a comprehensive targeting algorithm. 

Hence, an extension of the present study includes targeted assimilation of 

observations to determine the locations and types of observations that produce the 

largest reduction in response function variance for various weather systems. In the 

present study, the predictability characteristics of only the landfalling phase of the 

TCs over the Bay of Bengal are studied. It would be interesting to study the 

predictability characteristics of the genesis and deepening phases of the tropical 

cyclones that develops over the Bay of Bengal. At the end of the road, ensemble 

sensitivity analysis is a data mining problem, and therefore, advanced machine 

learning algorithms could be potentially applied to solve the problems associated 

with the predictability of weather systems in the future.   
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