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ABSTRACT 
 

 

Target detection in remote sensing imagery, mapping of sparsely distributed materials, 

has vital applications in defence security and surveillance, mineral exploration, 

agriculture, environmental monitoring, etc. The detection probability and the quality of 

retrievals are functions of various parameters of the sensor, platform, target-background 

dynamics, targets’ spectral contrast, and atmospheric compensation efficiency. A 

comprehensive approach to analyse the effect of atmospheric processes and target 

environment for the detection of an engineered target in hyperspectral imagery is 

critical for real-time remote sensing-based target detection systems. The overall aim of 

the thesis is to analyse target detection in hyperspectral imagery under the complex 

atmospheric and imaging environment. Under this overarching aim, the objective of 

this thesis is threefold. The first objective is to explore the different aspects of a 

radiative transfer model which is used for modelling the atmospheric parameters for 

atmospheric correction of remote sensing data. The second objective is to conduct an 

experimental analysis of the target detection systems with respect to target positioning 

and different background setting. Finally, we analyse the target detection performance 

under the influence of the various combinations of atmospheric conditions. 

As part of the first objective, we have developed an open-end atmospheric 

correction scheme named Flexible Atmospheric Compensation Technique (FACT) 

based on open source Second Simulation of the Satellite Signal in the Solar Spectrum 

(6S) radiative transfer model (RTM). The proposed FACT scheme utilizes a look-up 

architecture for simulating the responses of the RT model for various input parameters’ 

combinations. The proposed FACT scheme has been evaluated exhaustively using 

spatio-spectral statistical error measures by comparing the performance with widely 

used atmospheric correction models. Results confirm that the proposed FACT scheme 

offers accuracy of about 95% for hyperspectral imaging sensors and close to 98% for 

multispectral imaging sensors. To evaluate the target detection in complex scenarios 

and background conditions, we acquired a benchmark multi-platform hyperspectral and 

multispectral remote sensing dataset named as ‘Gudalur Spectral Target Detection 



viii 

 

(GST-D)’ dataset. Positioning artificial targets on different surface backgrounds, we 

acquired remote sensing data by terrestrial, airborne, and space-borne sensors. Various 

statistical and subspace detection algorithms were applied on the benchmark dataset for 

the detection of targets, considering the different sources of reference target spectra, 

background, and spectral continuity across the platforms. We validated the detection 

results using the receiver operation curve (ROC) for different cases of detection 

algorithms and imaging platforms. Results indicate, for some combinations of 

algorithms and imaging platforms, consistent detection of specific material targets with 

a detection rate of about 80%. 

Finally, we carried out a quantitative assessment of atmospheric parameters' 

influence on the detectability of engineered targets. Specifically, critical atmospheric 

parameters such as aerosol optical thickness (AOT), standard atmospheric profiles, and 

standard aerosol models are considered to quantify their influence on top-of-

atmospheric (TOA) radiance signal. We formulated the radiance spectral library by 

simulating TOA radiance spectra using the 6S RTM. We have considered two cases of 

target radiance spectra simulation, i.e., (i) corresponding to a grid of different AOT 

values for a predefined atmospheric and aerosol profile, and (ii) corresponding to 

varying combinations of atmospheric and aerosol profiles at a given AOT. The 

detection results indicate that change in the magnitude of AOT across atmospheric 

models has decision-bearing implications on the overall accuracy. The selection of the 

wrong atmospheric profile can potentially aggravate the numbers of FAs produced by 

a detection algorithm.  

The methodological approaches for designing an open-source atmospheric 

correction model and findings related to spectral target detection are the significant 

contributions of this thesis. The benchmark dataset generated in this work is a valuable 

resource for addressing intriguing questions in target detection using hyperspectral 

imagery from a realistic landscape perspective. Overall, the thesis provides an insight 

into why there is an impending demand for better atmospheric correction models, how 

the atmospheric variables are related to underlying problems of detecting engineered 

materials, and, finally, highlights the role of atmospheric modelling for target detection 

systems. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

1.1 Hyperspectral imaging spectroscopy 

 

Technological developments in imaging spectroscopy sensors have led to remote 

sensing data acquisition with very high spatio-spectral resolution over the last two 

decades. Present hyperspectral sensors enable continuous sampling of the data at a finer 

spectral interval (typically 1 𝑛𝑚 𝑡𝑜 5 𝑛𝑚) in the range from 0.4 𝜇𝑚 to 2.5 𝜇𝑚  of the 

electromagnetic (EM) spectrum. Coupled with relatively higher spatial resolution, 

contemporary hyperspectral imagery provides a detailed characterization of the objects' 

surface reflectance, thereby enabling superior material discrimination (Camps-Valls et 

al., 2011), as shown in Figure 1.1. Since different materials have unique surface spectral 

reflectance, hyperspectral imagery provides a wide range of solutions for land surface 

characterization at various scales (Manolakis, Lockwood, and Cooley 2016). 

Hyperspectral imagery has been successfully used in applications such as defence 

(Makki et al., 2017) , mineralogy (Bishop et al., 2011), precision agriculture (Adão et 

al., 2017; Chen et al., 2019), etc. Although hyperspectral imagery is rich in spectral 

information, there are some serious challenges in its usage for everyday problems. A 

series of phenomena such as atmospheric perturbations, time-varying sensor properties, 

and surface-EM signal interaction cause substantial at-sensor signal distortion, making 

it challenging to deploy hyperspectral imaging in applications requiring a high degree 

of accuracy and scalability.  
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Figure 1.1: Example of hyperspectral imagery with representative vegetation, soil, 

and road feature spectra 

 

1.2 Atmospheric compensation in target detection 

 

EM signals reaching any remote sensor suffers double attenuation – first from the 

source of illumination (sun) to the target surface and second from the target surface to 

the remote sensor due to the atmosphere, as shown in Figure 1.2. Scattering and 

absorption are the two predominant atmospheric phenomena caused by aerosols, 

gaseous particles, clouds, and water vapor. Compensating for atmosphere induced 

distortion in the EM signal is known as atmospheric correction/compensation. The 

atmospheric correction process converts the sensor reaching spectral radiance of the 

scene to the surface spectral reflectance. Atmospheric compensation can be typically 

executed using either an in-scene technique such as empirical line method (ELM) or 
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physical-based models - also known as radiative transfer models (RTM), such as 

MODerate resolution atmospheric TRANsmission (MODTRAN), Second Simulation 

of the Satellite Signal in the Solar Spectrum (6S), etc. 

 

In remote sensing context, when the sensor reaching radiance is converted to 

surface reflectance using the available RTMs (such as 6S, MODTRAN), the process is 

termed as inverse modelling/atmospheric correction (IM/AC) mode of data pre-

processing (shown in Figure 1.2). The remotely sensed imagery, together with the 

known acquisition metadata- such as imaging geometry, visibility, atmospheric models, 

aerosol models, etc.- is fed into the RTM to obtain an atmospherically compensated 

imagery. It is common to use the AC mode of data pre-processing for numerous remote 

sensing applications, including target detection. The AC approach for quantifying 

remote sensing products typically involves intensive computing resources (owing to 

big remote sensing data). It is time-consuming (pixel by pixel inversion), proving a 

bottleneck for near real-time applications such as anomaly detection or target detection. 

An alternative approach, termed forward modelling (FM), uses in-situ reflectance data 

of the objects at the ground and approximate their at-sensor radiance using the available 

acquisition parameter (shown in Figure 1.2). This method requires less computational 

resource as the modelling process is limited to only a few spectra, unlike the pixel to 

pixel-based inversion process in the AC approach. 

 

1.3 Target detection in hyperspectral imagery 

 

Locating sparsely populated objects of interest in an image is termed target detection in 

literature (Eismann, 2012). From the perspective of hyperspectral imaging, we exploit 

the characteristic spectral feature of the target objects in the image to infer their spatial 

location. Target detection is mathematically formulated as a binary hypothesis testing 

problem. This approach categorizes every image pixel as either target or 

background/noise (any pixel other than the target). Typically, the target detectors' 
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Figure 1.2: Atmospheric processes showing scattering and absorbing components 

affecting the radiance reaching the remote sensors. (Source: Jensen, J. R. 

(2009). Remote sensing of the environment: An earth resource perspective 

2/e. Pearson Education India.) 

 

performance relies on the spectral matching of the in-situ target reference spectrum and 

the corresponding image spectrum. Since the number of the target pixel in imagery is 

usually deficient (say 5-10 in 106), the pixel level spectral matching is sensitive to 

several factors such as atmospheric compensation, sensor noise, target-background 

interactions, and the nature of the target detector algorithm. The pixel occupancy (full 

or partial) by a target material determines the target detector's suitability for the given 

problem. Several target detection algorithms have been formulated addressing different 

aspects of the target /background state. Detectors are typically classified based on the 

extent of the target present in a pixel (full pixel or sub-pixel) and the assumed statistical 
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model (probability distribution or linear subspace) for the target and background 

material( Manolakis, 2005). Target detectors such as likelihood ratio (LR) detectors and 

matched filters (MF) are commonly used for targets occupying a full pixel. For sub-

pixel targets, target detectors like constrained energy minimization (CEM), Target 

Constrained Interference-Minimized Filter (TCIMF), orthogonal subspace projection 

(OSP), and adaptive coherence/cosine Estimator (ACE)  are preferred (Chang, 2003; 

Manolakis et al., 2016).  We discuss the details of the target detectors used in this thesis 

in the later chapters.   

 

 

 

 

Figure 1.3: Different modes of the spectral target detection 

 

1.4 Motivation and challenges 

 

 The growth rate of hyperspectral imaging systems is projected at 14.88% in the period 

2020 - 2025 with the present global market valuation of 131.18 million dollars 

("Hyperspectral Imaging Market | Growth, Trends, and Forecasts (2020-2025)" n.d.).  

Evolving imaging platform design coupled with the sensor design sophistications have 

provided the research community with an opportunity to explore various critical 
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applications of widely available optical remote sensing data. Platforms such as 

unmanned aerial vehicles (UAVs) mounted with a portable hyperspectral imager (Table 

1.1) facilitate the high-resolution mapping of several features of interest.     

 

Among several generic problems such as classification, anomaly detection, etc., 

under the umbrella of remote sensing, target detection is challenging due to its multi-

faceted nature. Since the distribution of target pixels in the imagery is spatially sporadic 

and sparse, there is a high degree of uncertainty in its detectability. Besides, spectral 

target detection is primarily dependent on the quality of the in-situ sample target 

reference spectra, which is often limited in number. In addition, target detection does 

not involve a training phase and instead involves only a few (~1-5) sample spectra of 

the target to be detected in the image. This increases the risk of either failed detection 

or probability of detection of similar material in the imagery, also called false alarms 

(FA). Overall, several factors such as atmospheric processes, sensor characteristics, 

target-background interferences, detection algorithms, etc., may lead to contamination 

of target signal reaching the sensors and thus determine the target detection 

performance ( Casey & Kerekes, 2009; Cohen et al., 2012a; Archer et al., 2013; Yadav 

et al., 2018a). With the limitations mentioned above and the dynamism of detection 

problems, it becomes imperative to investigate it in a holistic perspective comprising 

key factors deterrent to a successful material detection.    

 

Of late, multispectral remote sensing data have been used for in a limited extent 

for target detection  (Margalit et al., 1985; Wood, 1989; Hoff et al., 1992; Ashton & 

Schaum, 1998; Landgrebe, 2005). High-resolution multispectral sensors have 

facilitated detecting generic objects like building, road, vehicle, and ship using template 

matching, knowledge engineering, object-based, and machine learning methods (Cheng 

& Han, 2016; Kanjir et al., 2018). Although we find the application of multispectral 

sensors for detecting generic and large targets such as buildings, specific tree stands, 

vehicles, etc., its low spectral resolution limits its application to the detection of 

spatially small and pseudo-engineered targets.  
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Table 1.1: List of a few portable hyperspectral sensors with their spectral properties 

and weight 

Sensor Manufacturer 

Spectral 

Range 

(nm) 

Number of 

spectral 

bands 

Weight  

(g) 

MQ022HG-IM-LS150-

VISNIR 
XIMEA 470–900 150+ 32 

MV1-D2048x1088-

HS05-96-G2 
PhotonFocus 470–900 150 265 

Nano HyperSpec 
Headwall 

Photonics Inc. 
400–1000 270/775 1200 

S 185—FIREFLEYE SE Cubert GmbH 450–950 125 490 

CHAI S-640 
Brandywine 

Photonics 
825–2125 260 5000 

OCI-UAV-1000 BaySpec 600–1000 100 272 

vis-NIR microHSI NovaSol 400–1000 180 <450 

SPECIM FX10 SPECIM 400–1000 224 1260 

VNIR-1024 HySpex 400–1000 108 4000 

Pika L Resonon 400–1000 281 600 

VIS-VNIR Snapshot SENOP 400–900 380 720 

 

 On the other hand, hyperspectral sensors provide finer spectral bandwidth and 

offer appropriate baseline spectral data required for typical target detection problems. 

We find few studies of spectral target detection using hyperspectral data in applications 

such as detecting military targets (Briottet et al., 2006), surveillance (Yuen & 

Richardson, 2010), and mineral mapping (Molan et al., 2014; Hou et al., 2016; Dos 

Reis Salles et al., 2017). The remote sensing-based target detection studies in most of 

the studies reported assume the target object as a generic class object and is labelled 

using classical classification algorithms. However, this approach is theoretically not fit 

for detecting "rare" pixels (targets) in the image and requires a different treatment.  
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Given a plethora of the state-of-the-art detectors, target detection using spectral 

data remains far from finding practical applications in real scenarios. One of the key 

factors causing this limitation is the lack of realistic benchmark datasets. In literature, 

we find limited datasets available such as Cooke City, USA, made available by 

Rochester Institute of Technology (RIT), NY, USA (Snyder et al., 2008a) for the 

validation of detection algorithms. While these datasets are useful to the research 

community, there is a need to formulate several experimental datasets with different 

scenarios to validate the algorithms rigorously.  

 

In addition to the lack of benchmark datasets, understanding different 

propagation errors in the pre-processing stage is vital for possible operational 

deployment of spectral target detection workflows. In particular, atmospheric 

phenomena cause considerable perturbation in the radiation reaching remote sensing 

satellite or airborne sensors ( Vermote et al., 1997; Agapiou et al., 2011) . Atmospheric 

correction of remote imagery is sensitive to several parameters such as aerosol models, 

columnar water vapor (CWV), ozone concentration, aerosol optical thickness (AOT), 

atmospheric state, etc. The accuracy of remote sensing-based studies is determined by 

the quality of estimation of these atmospheric parameters (Agapiou et al., 2011; Nia et 

al., 2015; Marcello et al., 2016; Sabater et al., 2017; Seong et al., 2020). There have 

been substantial studies on the effect of the atmospheric correction process and related 

variables on various bio-geophysical parameters ( Rahman, 2001; Tirelli et al., 2015; 

Palve, 2016; Bru et al., 2017 ). However, a comprehensive study on the effect of 

atmospheric processes on target detection remains unreported to the best of our 

knowledge.  

 

Simulations of different atmospheric state variables for assessing their impact 

on target detection require an open-ended atmospheric correction scheme. MODTRAN 

has been the predominant RT code for modelling gaseous scattering and absorption in 

most of the atmospheric correction schemes developed so far. The atmospheric 

correction based on MODTRAN often lacks a broad range of modeling parameters. As 

a result, the end-user does not have control over the regional atmospheric parameters 

such as different aerosol and atmospheric state variables, which may vary substantially 

from region to region. On the other hand, recent developments (e.g., Bue et al., 2015;  
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Thompson et al., 2015) indicate the potential of using the 6S RT code as a basis for 

developing an open-ended atmospheric correction scheme.    

 

Summarizing our review of literature, we found that although spectral target 

detection is one of the most sought-after research areas across various disciplines, lack 

of benchmark datasets makes it difficult to test algorithms' scalability in different 

environments. Besides, spectral target detection by an onboard system requires 

understanding the dynamic atmospheric parameters, which is least understood. Hence 

our focus in this thesis is to design a novel benchmark dataset for target detection and 

develop an atmospheric correction scheme that could help us understand the impact of 

atmospheric processes on target detection.    

 

1.5 Research objectives  

 

This thesis aims to assess the role of atmospheric state variables and spatial positioning 

of the target materials on the hyperspectral target detectors' performance and 

robustness. The development of an open-ended atmospheric correction method with a 

new benchmark detection dataset would enhance our understanding of spectral target 

detection processes and intricacies of overall potential factors that impact a target 

detection framework's performance. The specific objectives of this thesis are as follows:   

1. development of a region sensitive atmospheric correction model for 

hyperspectral and multispectral remote sensors, 

 

2. development of a multi-platform (ground, airborne, and space-borne) target 

detection benchmark dataset and critical analysis of parameters of detection 

performance, and 

 

3. simulation and modelling of hyperspectral target detection under varying 

atmospheric state variables. 
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1.6 Structure of the Thesis 
 

The thesis has been organized into six chapters such that each chapter covers specific 

objectives of the proposed research work. The chapters are self-contained and contain 

key elements - introduction, methods, results, discussion, and conclusions. A brief 

overview of the contents of the chapters is presented below. 

• Chapter 2 presents an overall view of the spectral target detection and 

theoretical background of RT codes. The chapter introduces the mathematical 

formulation of target detectors that are used in testing the benchmark dataset 

proposed. 

 

• Chapter 3 proposes a design framework for the development of an open-end 

atmospheric correction method. Since most of the available atmospheric 

correction schemes are commercially off-the-shelf (COTS) and use patented 

RT codes, we have used open-source RT code for our proposed scheme. The 

proposed scheme, named as flexible atmospheric compensation technique 

(FACT) has been evaluated exhaustively using different spatio-spectral 

statistical error comparing the performance with widely used state-of-the-art 

atmospheric correction schemes. We have used datasets from hyperspectral and 

multispectral remote sensors to compare the FACT atmospheric correction 

model against other atmospheric correction schemes. The FACT atmospheric 

correction model supports a wide range of hyperspectral and multispectral 

sensors with an option for the end-user to add-on a customized sensor. 

Additionally, the FACT supports region specific correction of remote sensing 

data for various Indian geographical regions and climate zones.  

  

• Chapter 4 describes a new multi-platform hyperspectral and multispectral 

remote sensing dataset acquired as part of thesis work. We positioned different 

artificial targets on different surface backgrounds and acquired remote sensing 

data by terrestrial, airborne, and space-borne remote sensors. We have applied 

various statistical and subspace detection algorithms on the proposed 

benchmark dataset to detect targets, considering the different sources of 
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reference target spectra, background, and the spectral continuity across the 

platforms. We validated the detection results using the receiver operation curve 

(ROC) for different cases of detection algorithms and imaging platforms. The 

detection performance was evaluated as a function of the sensor, platform, 

target–background, and the source of reference target spectra. 

 

• Chapter 5 explores the forward modelling approach for target detection with 

different simulations of reference target spectra. We carried out an exhaustive 

analysis of the target detection performance under different atmospheric 

models and parameter mismatch in a multi-platform optical dataset. We 

modelled the atmospheric variables using the 6S RT code and simulated the at-

sensor radiance spectra by running multiple 6S RT code runs on the input in-

situ target surface reflectance. For this, we considered two cases of target 

radiance spectra simulation: (1) simulation corresponding to a grid of different 

AOT values for a predefined atmospheric and aerosol profile, and (2) 

simulation corresponding to varying combinations of atmospheric and aerosol 

profiles at a given AOT. 

 

• Finally, in Chapter 6, the salient features of this thesis, conclusions, and lines 

of future research are presented. 
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CHAPTER 2 
 

 

TARGET DETECTION ALGORITHMS: 

THEORETICAL BACKGROUND 
 

 

Prelude: In this chapter we present the overview of target detection and discuss related 

experimental datasets for validations of various detectors. Further, we give the details 

on the functioning of 6S RT model followed by a description on the mathematical 

formulation of various target detection algorithms used in the later chapters of this 

thesis.  

 

2.1 Target detection overview 

 

A generic target detection framework is shown in Figure 2.1. Typically, a priori 

knowledge on the target’s reflectance spectrum is collected using in-situ 

spectroradiometer and further processed and calibrated for usage in target in the remote 

sensing imagery. A collection of in-situ surface reflectance of different targets of 

interest forms the target library. Given the availability of target material library, target 

detection process begins by conversion of remotely sensed imagery from the raw form 

to at-sensor radiance using sensor’s radiometric parameters. At this juncture, the end-

user has the option to either 1) convert the radiance imagery to reflectance imagery 

using atmospheric correction methods (inverse RT modelling), or 2) convert the target 

material library to at-sensor radiance spectra using the FM approach as discussed in 

section 1.2. In the next step, the background statistics (excluding the target) are 

estimated from the imagery with assumption of model considerations such as 

multivariate normal (MVN) distribution, background subspace models, finite mixture 

models (FMM), nonparametric kernel-based models etc., (Matteoli et al., 2014). Based 
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on the target and background models, the respective detection algorithms (e.g.- ACE 

for MVN and OSP for background subspace models) are then used to apply on the 

imagery to detect targets of interest as supplied by the target material library. This step 

produces a detection score image. Based on thresholding of the score value, whether a 

pixel belongs to target or is a background pixel is decided. 

 

 

Figure 2.1 : Spectral target detection chain for engineered materials (Adapted from 

Manolakis, Marden, and Shaw 2003) 

 

Looking at the overall spectral target detection framework, we identify two 

important factors that are crucial for a successful detection: atmospheric compensation 

methods and the detection algorithm’s response to the target-background dynamics.  

Healey and Slater (1999) developed a target detection framework for automatic target 

detection under unknown illumination and atmospheric conditions. Their work used 

MODTRAN defined standard atmospheric models (such as tropical, midlatitude 

summer etc), aerosol profiles (rural, urban etc), atmospheric gases (such as O3, CH4 

etc), and variable imaging geometry to model the target subspace containing 17920 

usable target spectra corresponding to each of the combination. Although their work 

was primarily focussed on utilizing atmospheric conditions to develop an 

atmospherically invariant target detector, it recognized the spectral variability that is 

induced into the target subspace due to sensor-atmosphere path. This work was further 
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extended by Ientilucci and Schott (2005) to develop a hybrid target detector using 

physical based models to build the target subspace in the radiance space. Other notable 

works such as Goa et al. (2004), Trym Vegard Haavardsholm, Torbjorn Skauli, and 

Ingebjorg Kasen (2007), Kolodner, (2008), Matteoli et al. (2009) etc., have used 

physical based models to devise spectral target detection frameworks accounting for 

the spectral variability in the target subspace due to atmospheric parameters. Although 

these studies have reported different approaches for target detection in the radiance 

space using simulated target subspace, their implementation in real-time systems 

remains a challenge due to computational requirements (Theiler et al., 2019).  

 

The other factor, target-background dynamics, plays a major role in the efficacy 

of a target detection algorithm. The target neighbourhood/background in many cases 

have been found to be one of the key factors deciding its detectability ( Wang & Xue, 

2017; Yadav et al., 2018a). This aspect of target detection problem requires benchmark 

multi-platform datasets to evaluate new algorithms so that their reliability can be 

established. Most of the datasets available are either belong to landcover classification 

problem ( Hook & Rast, 1990; Baumgardner et al., 2015 ) or are synthetically generated 

( Duran & Petrou, 2007; Iordache et al., 2011; Dobigeon et al., 2014). Within the 

context of target detection, the classic approach of implanting targets synthetically in 

an existing dataset has also been attempted (Zhang et al., 2014; Yani Hou et al., 2019). 

Moreover, most of the target detection studies (Cohen et al., 2012; Du & Zhang, 2014; 

Wang & Xue, 2017) have used the same sensor data, available in public domain, 

(Snyder et al., 2008a; Acito et al., 2016;) with small spatial extent, which limit rigorous 

testing of target detection in various environments and at different spatial scales.    

 

2.2 Radiative transfer theory 

 

Since the electromagnetic radiations in the optical region undergo perturbation caused 

by atmospheric components such as aerosols, water particles, clouds, dust, etc., various 

physical-based radiative transfer models approximate different parameters to 

compensate for the net atmospheric effects. These models generally make assumptions 

for the at-sensor reaching radiation as sum of multiple components. A shown in Figure 
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1.2, the total radiance at the sensor can be written as sum of radiant energy reflected 

into the view of sensor from different paths (Jensen, 2009) as following: (1) spectral 

solar irradiance reaching the target surface as a function of atmospheric transmittance 

and reflected back to sensor, (2) the amount of scattered radiant energy reflected 

towards sensor due to the atmospheric gases and aerosol, (3) radiation received by 

target surface after scattering and reflected back towards sensor, (4) radiation received 

by the sensor from the neighbouring pixel, and (5) amount of radiation reflected from 

neighbouring pixel on to the target surface and then reflected back to the sensor. 

Ignoring path (4) and (5) for simplicity, which are often called adjacency effect, the 

total normalized top-of-atmosphere (TOA) reflectance 𝜌𝑡𝑜𝑎
∗  due to TOA radiance 𝐿𝑇𝑂𝐴  

is given as (Thompson et al., 2019): 

 

 
𝜌𝑡𝑜𝑎
∗ (𝜃𝑠, 𝜃𝑣 , 𝜑) =  

𝜋 𝐿𝑇𝑂𝐴
𝜇𝑠𝐸𝑠

 

=  𝑇𝑔(𝜃𝑠, 𝜃𝑣)

[
 
 
 
 
 
 
 
 

𝜌𝑎(𝜃𝑠, 𝜃𝑣 , 𝜑)

+ 𝑒
 
−𝜏
𝜇𝑠   𝑒

 
−𝜏
𝜇𝑣

  𝜌𝑎𝑐(𝜃𝑠,𝜃𝑣 ,𝜑)

+ 𝑒
 
−𝜏
𝜇𝑣

  
𝑡𝑑(𝜃𝑠)𝜌ℎ𝑑  + 𝑒

 
−𝜏
𝜇𝑠
  
𝑡𝑑(𝜃𝑣)𝜌𝑑ℎ

+𝑡𝑑(𝜃𝑠)𝑡𝑑(𝜃𝑣)𝜌ℎℎ

 +
[𝑒

 
−𝜏
𝜇𝑠
  
+ 𝑡𝑑(𝜃𝑠)] [𝑒

 
−𝜏
𝜇𝑣

  
+ 𝑡𝑑(𝜃𝑣)] 𝑆𝑐(𝜌ℎℎ)

2

1 − 𝑆𝑎𝜌ℎℎ ]
 
 
 
 
 
 
 
 

, 

(2.1) 

 

where,  𝜇𝑠 is the cosine of the solar zenith angle, 𝜇𝑣is the cosine of view zenith angle, 

𝐸𝑠 is the top-of-atmosphere solar flux, 𝜃𝑠 , 𝜃𝑣 and 𝜑𝑠, 𝜑𝑣 are the geometrical parameters 

(zenith and azimuth angles for solar and view positions of sun and sensor respectively), 

𝜑 is the relative azimuth angle, 𝜌𝑎 is the intrinsic atmospheric reflectance also known 

as path reflectance, 𝑇𝑔 is the gaseous transmittance, 𝑒−𝜏 𝜇𝑠⁄   and 𝑡𝑑(𝜃𝑠)is the downward 

direct and diffuse transmittance from the sun to the ground, 𝑒−𝜏 𝜇𝑣⁄   and 𝑡𝑑(𝜃𝑣) is the 

transmittance from the ground to the sensor, 𝑆𝑎 is the spherical albedo and 𝜌𝑎𝑐 is the 

expected atmospherically corrected reflectance (also known as surface reflectance). 

The terms  𝜌ℎ𝑑 , 𝜌𝑑ℎ , 𝜌ℎℎ refer to hemispherical-directional, directional-hemispherical, 

and hemispherical-hemispherical reflectance of the target surface respectively. For the 
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case of assumed Lambertian surface it is found that 𝜌ℎ𝑑 = 𝜌𝑑ℎ = 𝜌ℎℎ = 𝜌𝑎𝑐. Thus 

equation 2.1 simplifies to: 

 

 𝜌𝑡𝑜𝑎
∗ (𝜃𝑠, 𝜃𝑣 , 𝜑𝑠, 𝜑𝑣) =  𝑇𝑔(𝜃𝑠, 𝜃𝑣) [𝜌𝑎 + 𝑇(𝜃𝑠)𝑇(𝜃𝑣)

𝜌𝑎𝑐
1 − 𝑆𝑎 × 𝜌𝑎𝑐

], (2.2) 

 

where 𝑇(𝜃𝑠), and 𝑇(𝜃𝑣) represent the total transmittance from the sun to the ground, 

𝑇(𝜃𝑣) and from the ground to the sensor respectively. 

Simplifying equation (2.1) and (2.2), 𝜌𝑎𝑐 reduces to: 

 

 𝜌𝑎𝑐 = 
𝑦

1 + 𝑥𝑐 × 𝑦
 , (2.3) 

where, 

 

 𝑦 =  𝑥𝑎 × 𝐿𝑇𝑂𝐴 − 𝑥𝑏;   
 

𝑥𝑎 =  
𝜋

𝑇𝑔𝑇(𝜃𝑠)𝑇(𝜃𝑣)𝜇𝑠𝐸𝑠
  ; 

 

𝑥𝑏 =
𝜌𝑎

𝑇(𝜃𝑠)𝑇(𝜃𝑣)
  ;  

 

𝑥𝑐 = 𝑠. 

(2.4) 

       

The 6S RT code yields correction coefficients 𝑥𝑎 , 𝑥𝑏, and 𝑥𝑐  at the end of running the 

code and we store them in a look-up table for various combinations of input parameters. 

When atmospheric correction of an imagery is required, equation (2.3) is inverted to 

obtain atmospherically corrected reflectance according to equation (2.4).  

 

2.3 Target detection methods 
 

The taxonomy of detection algorithms depends on various factors such as target-pixel 

occupancy (full pixel vs sub-pixel target), considerations for spectral variability (either 
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for target or background), and modelling the combination of pixel and sub-pixel targets 

( Manolakis et al., 2016). Given an image 𝜒(𝑚,𝑛) having 𝑘 spectral channels and 𝑚 x 𝑛 

pixels such that each pixel 𝐱𝑖= {𝑥1, 𝑥2, 𝑥3, 𝑥4…𝑥𝑘}
𝑡 ∈ 𝐗𝑘,𝑚𝑛, target detection is 

formulated as a hypothesis testing problem. Mathematically, target detection can be 

expressed as a binary hypothesis testing problem: 

 

H0( Null Hypothesis) 𝐱𝑖 ∶  noise (Target absent), 

H1(Alternate Hypothesis) 𝐱𝑖 ∶  Target. 
 

 

Assuming a multivariate normal distribution for target and background, the target 

detection is represented as a hypothesis testing: 

H0 ∶ 𝐱 = 𝐧 

H1 ∶ 𝐱 =  𝐬 + 𝐧 , 
(2.5) 

 

where 𝐬 is the known target spectrum and 𝐧 is the noise/background with mean vector 

′𝐦′ and covariance matrix 𝐂 such that 𝐧~ 𝑁(𝐦, 𝐂). Since the target and background 

are assumed to follow a multivariate normal distribution, the probability density 

function 𝑝(𝐱, θ) for a k-dimensional Gaussian vector 𝐱 is given by: 

 

𝑝(𝐱, θ) =  
1

(2𝜋)k/2|𝐂|1/2
exp {−

1

2
[𝐱 − 𝐦]𝑇𝐂−1[𝐱 − 𝐦]}. (2.6) 

 

At a given false alarm rate (Neyman-Pearson criterion), the probability of detection 

is maximized by using a likelihood ratio (LR) type of detectors (Kay, 1993) expressed 

as: 

𝑙(x)= 
p(x|H1)

p(x|H0)

H1

≷
H0

η , (2.7) 

 

where η is the threshold. If 𝑙(𝐱) is greater than η, then alternate hypothesis (target-

present) is declared true. Equation (2.5) describes the basic statistical model in case of 

a full pixel under the ideal assumption of the same covariance estimate for both target 
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and background. However, at times target pixel gets mixed up due to the targets being 

spatially unresolved. In such cases the appropriate statistical model (also known as 

replacement model) is:   

  

H0 ∶ 𝐱 = 𝐧 

H1 ∶ 𝐱 =  α𝐬 + β𝐧 , 
(2.8) 

 

where 𝐱~ 𝑁(𝟎, 𝐂) under H0 and  𝐱~ 𝑁(α𝐬, β2𝐂); α refers to the fraction fill of the target 

or abundances if 𝐬 represents a matrix containing endmembers.  

 

In this thesis we have used both the types of detection algorithms (full pixel and 

sub-pixel) for detecting targets in the proposed experimental benchmark dataset. 

Several detection algorithms such as spectral angle mapper (SAM) (Kruse et al., 

1993a), MF (D. Manolakis, 2003), CEM (Chang, 2003), ACE (Scharf & McWhorter, 

1996), OSP (Harsanyi & Chang, 1994), and TCIMF (Ren & Chang, 2000) implemented 

for  detection of targets in this work are briefly described in the following sub-sections.  

 

2.3.1 Spectral Angle Mapper (SAM) 
 

Modifying the signal model given by equation (2.5), we have the hypothesis testing:  

 

H0 ∶ 𝐱 = 𝐧 

H1 ∶ 𝐱 =  α𝐬 + 𝐧 , 
(2.9) 

 

where α represents the strength of the target signal in the acquired imagery, 

𝐧 ~ 𝑁(0, 𝜎2𝐈) with 𝜎2 being variance. We estimate α using the maximum likelihood 

estimate (MLE) under the modified signal model as: 

 

𝜕p(x|H1)

𝜕𝛼
=  

𝜕

𝜕𝛼
{exp (

−1

2
(x -α𝐬)T (x -α𝐬))} . (2.10) 

 

Equating equation (2.10) to zero, we obtain the MLE estimate of α as follows: 
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α̂ =  
𝐬Tx

𝐬T𝐬
 . (2.11) 

 

It is usual to estimate the variance (𝜎2) from the image pixel, i.e. pixel under 

test given by  �̂�2 = 𝐱T𝐱. Substituting the estimated parameters in equation (2.7) and 

taking the log-likelihood of the distribution functions, the test statistic is given by: 

 

𝑟(x)= ln(
p(x|H1)

p(x|H0)
) =  

(𝐬Tx)
𝟐

(𝐬T𝐬)(𝐱T𝐱)
 . (2.12) 

 

We reframed the equation (2.9) to represent the test statistic known as spectral 

angle mapper (SAM) as: 

𝑟𝑆𝐴𝑀(𝐱) = 𝑐𝑜𝑠−1 [
𝐬𝑇𝐱

√(𝐬𝑇𝐬)(𝐱𝑇𝐱)
] . (2.13) 

 

Geometrically, SAM measures the similarity between two n-dimensional vectors based 

on the cosine of the angle between two vectors.  

 

2.3.2 Matched Filter (MF) 
 

The MF allows background representation with a normal distribution with finite mean 

and covariance. The signal model then becomes: 

 

H0 ∶ 𝐱 = 𝐧 

H1 ∶ 𝐱 =  α𝐬 + 𝐧 , 
(2.14) 

 

where 𝐧~ 𝑁(𝐦, 𝐂), and α are the unknown parameters. For the given model, we have: 

 

𝑝(𝐱|H0) =  
1

(2𝜋)k/2|�̂�|1/2
exp {−

1

2
[𝐱 − �̂�]𝑇�̂�−1[𝐱 − �̂�]} (2.15) 
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𝑝(𝐱|H1) =  
1

(2𝜋)k/2|�̂�|1/2
exp {−

1

2
[𝐱 − α̂𝐬 −𝐦]𝑇�̂�−1[𝐱 − α̂𝐬 − �̂�]}  (2.16) 

 

Applying the MLE technique similar to equation (2.10) we get: 

 

α̂ =  
𝐬𝑇�̂�−1(𝐱 − �̂�)

𝐬𝑇�̂�−1𝐬
, �̂� =  

1

N
∑𝐱𝑖

N

𝑖=1

 , �̂� =
1

N
∑[𝐱𝑖 − �̂�][𝐱𝑖 − �̂�]T
N

𝑖=1

  . (2.17) 

 

Since the detector assumes an additive model, for α = 1 under the null 

hypothesis, we have 𝐱 =  𝐬 +𝐦, which is incorrect. Besides, α, by definition, is not 

constrained to be positive and may cause negative test statistic (Eismann et al., 2009). 

Correcting for these two problems and using the estimates from equation (2.17), we can 

express MF score 𝑟 as:  

 

𝑟𝑀𝐹(𝐱) =
(𝐬 − �̂�)𝑇�̂�−1(𝐱 − �̂�)

√(𝐬 − �̂�)𝑇�̂�−1(𝐬 − �̂�)
 . (2.18) 

 

2.3.3 Adaptive Cosine Estimator (ACE) 
 

Modifying the equation (2.8) to include a scale factor β yields the following 

replacement model: 

H0 ∶ 𝐱 = β𝐧 

H1 ∶ 𝐱 =  𝐱 =  α𝐬 + β𝐧 , 
(2.19) 

 

where 𝑛 ~ 𝑁(0, 𝐂) and α, β are the unknown parameters. The above model is similar 

to Kelly’s detector (Kelly, 1986), except for the introduction of an unknown parameter 

β in the null hypothesis. The ACE detector was derived based on the assumption of 

different covariance estimates (�̂�0, �̂�1) under the null and alternate hypotheses. It is 

assumed that the data under the null hypothesis correspond to training data for 

noise/background estimation and pixel under test (under the alternative hypothesis) is 

the testing data. Maximizing the joint probability density function of the training and 

test data yields the following estimates: 
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α̂ =  
𝐬𝑇�̂�−1𝐱

𝐬𝑇�̂�−1𝐬
, 

 

β̂0
2 = 

N − k + 1

Nk
𝐱T�̂�−1𝐱, 

 

β̂1
2 = 

N − k + 1

Nk
(𝐱 − α̂𝐬)T�̂�−1(𝐱 − α̂𝐬), 

 

and 

�̂�0 = 
1

N + 1
[
1

β0
2 𝐱𝐱

T + N�̂�], 

 

�̂�1 = 
1

N + 1
[
1

β1
2 (𝐱 − α𝐬)(𝐱 − α𝐬)T + N�̂�], 

(2.20) 

 

where β̂0, �̂�0,β̂1,�̂�1 are the estimates under the null and alternate hypothesis, 

respectively. Plugging the derived estimates in the general form of log-likelihood ratio 

test detector (equation 2.7), we get the ACE score 𝑟 as: 

 

𝑟ACE(𝐱) =
(𝐬T�̂�−1𝐱)

2

(𝐬T�̂�−1𝐬)(𝐱T�̂�−1𝐱)
 . (2.21) 

 

2.3.4 Constrained Energy Minimization (CEM) 
 

The aforementioned spectral detectors assume the target and background subspace to 

follow a particular statistical distribution. Based on the assumed distribution function, 

we usually derive the parameters of the distribution function. The assumption of 

background conformity to a statistical distribution may lead to ambiguous results if the 

target or background is different from the assumed statistical function. In such 

situations, it is desirable to design a detector that does depend upon the target-

background distribution function and eliminates the interferer from the target signal. 
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The CEM is one such detector and is functionally equivalent to a finite impulse 

response (FIR) filter that minimizes the detector output for the background pixels. 

 

Given an image 𝜒(𝑚,𝑛) with 𝑘 spectral channel and N pixels such that each pixel 

𝐱𝑖= {𝑥1, 𝑥2, 𝑥3, 𝑥4…𝑥k}
𝑡  ∈ 𝐗k×N, the average energy of the FIR filter output can be 

written as: 

 

1

(N)
{∑ 𝜙𝑖

2
N

𝑖=1
} =

1

(N)
{∑ (𝐱𝑖

𝑇𝐖)𝑇(𝐱𝑖
𝑇𝐖)

N

𝑖=1
},  

= 𝐖𝑇 {
1

N
∑ 𝐱𝑖𝐱𝑖

𝑇
N

𝑖=1
}𝐖 = 𝐖𝑇𝐑𝐖,  (2.22) 

 

where 𝜙 = (𝐱𝑖
𝑇𝐖) is the filter output for the pixel vector 𝐱𝑖, 𝐖 =

(𝑤1, 𝑤2, 𝑤3, 𝑤4…𝑤𝑘)
𝑇is the weight vector for the designed filter, and 𝐑 is the k-

dimensional background correlation matrix. The CEM problem statement then becomes 

a constraint optimization problem, i.e. min
𝐰
(𝐖𝑇𝐑k×k𝐖) subject to 𝐬T𝐖 = 1. The 

detection problem is solved using the Lagrange’s multiplier method to solve the 

constrained optimization problem to get the CEM score 𝑟 as:   

 

𝑟𝐶𝐸𝑀(𝐱) =
(𝐬T𝐑−1𝐬)

(𝐑−1𝐬)T𝐱 
 . (2.23) 

 

2.3.5 Orthogonal subspace projection (OSP) 
 

In most of the practical hyperspectral target detection problems, the target size is less 

than a full pixel. In such cases, spectral mixture models are useful to estimate the 

material abundances. The OSP assumes a linear mixture model expressed as: 

 

𝐱 = 𝐌𝛂 + 𝐧, (2.24) 

 

where 𝐌 is a matrix of target / known spectral signatures, 𝛂 is abundance, and 𝐧 is the 

noise. The OSP begins by first separating the desired target and unknown target and 
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then projecting desired targets orthogonally to undesired / interferer target space. 

Mathematically OSP is given by: 

 

𝑟𝑶𝑺𝑷 = 𝐝T𝑷U
⊥𝐱 . (2.25) 

 

where 𝐝 is the desired target, 𝑷U
⊥is the projection operator which projects the image 

pixel to space orthogonal to 𝐔 (undesired targets/interferer) given as 𝑷U
⊥ = 𝐈k×k −

𝐔𝐔#,  𝐔# is the pseudo inverse of 𝐔and given as ( 𝐔T𝐔)−1𝐔T, and 𝐈k×k is the identity 

matrix. 

 

2.3.6 Target constrained interference minimization filter (TCIMF) 
 

In this approach, the image is assumed to be a combination of three signal components, 

i.e. desired (targets), undesired (unwanted/background), and interferer component. Like 

the CEM, the desired component is accentuated while suppressing the interference 

signal. The TCIMF is a theoretical superset of CEM and capable of detecting multiple 

targets at once, unlike CEM and OSP. Mathematically, TCIMF score is given as: 

 

𝑟TCIMF(𝐱) = {
𝐑k×k
−1 [𝐃𝐔]

([𝐃𝐔]𝐓 𝐑k×k
−1 [𝐃𝐔])

[
𝟏p×1
𝟎q×1

]}

𝑻

𝐱 , (2.26) 

 

where 𝐃 = [𝐝𝟏, 𝐝𝟐, …… . . 𝐝𝐩] is the set of desired/known target signals, 𝐔 =

[𝐮𝟏, 𝐮𝟐, ……… . . 𝐮𝐪] is the known background/unwanted signals in the image. 

 

2.4 Atmospheric parameters and target detection 
 

The 6S RT code incorporates various standard atmospheric models defined by 

approximation of climatic conditions, such as Tropical, Midlatitude Summer, etc. The 

atmospheric profiles have predefined columnar profiles (0-100kms) of different 

variables such as atmospheric pressure (units), temperature, water vapour, and ozone 

concentrations as a function of height. Further, based on aerosol properties such as 

AOT, mean radius of aerosol particle, real/imaginary refractive indices, particle 
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distribution function, and angstrom coefficient, several standard aerosol models 

(continental, urban, maritime, desert, etc.) are defined in 6S model. Taking into account 

for these variables explicitly as function of wavelength 𝜆, equation (2.2) can be 

modified as: 

 𝜌𝑡𝑜𝑎
𝜆 (𝜃𝑠, 𝜃𝑣 , 𝜑𝑠, 𝜑𝑣 , 𝑃, 𝜓

𝜆, 𝑈𝐻2𝑂, 𝑈𝑂3)

= 𝑇𝑔𝑂𝐺
𝜆 (𝑚, 𝑃)𝑇𝑔𝑂3

𝜆 (𝑚, 𝑈𝑂3) [𝜌𝑎
𝜆(𝜃𝑠, 𝜃𝑣 , 𝜑𝑠, 𝜑𝑣 , 𝑃, 𝜓

𝜆 , 𝑈𝐻2𝑂)

+ 𝑇𝑟𝑎
𝜆 (𝜃𝑠, 𝜃𝑣 , 𝜑𝑠, 𝜑𝑣 , 𝑃, 𝜓

𝜆)
𝜌𝑎𝑐

1 − 𝑆𝑎
𝜆(𝑃, 𝜓𝜆)𝜌𝑎𝑐

𝑇𝑔𝐻2𝑂
𝜆 (𝑚,𝑈𝐻2𝑂)], 

(2.27) 

 

where 𝑃 is the atmospheric pressure (mb), 𝑈𝐻2𝑂 is the integrated atmospheric water 

vapour (cm),  𝑈𝑂3 is the integrated columnar ozone concentration (cm-atm), 𝑚 is the 

air-mass given as 
1

cos𝜃𝑠
+ 

1

cos𝜃𝑣
 , 𝑇𝑔 represent the gaseous transmittance with the 

subscripts 𝑂𝐺, 𝐻2𝑂,𝑂3 denoting gaseous transmittance by gases like  𝐶𝑂2, 𝑂2, 𝐶𝐻4, 

water vapour (𝐻2𝑂) and ozone (𝑂3) respectively, and 𝜓𝜆 represent the aerosol 

components described as: 

 

 𝜓𝜆 = (𝜏𝑎 , 𝜔0, P𝑎), (2.28) 

 

where 𝜏𝑎 is the AOT, 𝜔0 is single scattering albedo and P𝑎  is the phase function at a 

given wavelength 𝜆. 

Inverting equation (2.3) we have:  

 
𝐿𝑇𝑂𝐴 =  

𝜌𝑡𝑜𝑎
∗  ×  𝜇𝑠𝐸𝑠

𝜋
 , (2.29) 

where 𝜌𝑡𝑜𝑎
∗ = 𝜌𝑡𝑜𝑎

𝜆  and is given by equation (2.2). Since the values of 𝜌𝑎𝑐 for the targets 

are known a-priori from the in-situ measurements, we can simulate different 𝐿𝑇𝑂𝐴  

reaching the sensor owing to different atmospheric variables using equation (2.29). 
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2.5 Chapter Conclusions 
 

Target detection is one of the key applications of hyperspectral remote sensing and the 

performance of detectors is typically determined by several factors. This chapter 

presented an overview of the target detection framework, detection algorithms and the 

key factors determining the detectability of engineered targets. Further, the important 

link between spectral target detection and atmospheric processes is also established. 

Finally, a brief mathematical description of all the target detection algorithms and RT 

model used are also presented.  
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CHAPTER 3 
 

 

REGION SENSITIVE ATMOSPHERIC 

CORRECTION MODEL 
 

 

Prelude: In this chapter, the development and evaluation of an open-end atmospheric 

correction scheme, named Flexible Atmospheric Compensation Technique (FACT), is 

described. The developed method is validated against standard atmospheric correction 

schemes using various hyperspectral and multispectral imagery. The methods and 

outcomes of this chapter are used further in the thesis to understand the role of 

atmospheric processes in determining the spectral target detection performance1. 

 

3.1 Introduction 
 

Atmospheric phenomena, such as absorption by gaseous particles and scattering by 

aerosol particles, cause considerable perturbation in the radiation reaching remote 

sensing satellite or airborne sensors (Vermote et al., 1997). Models which account for 

this path induced effects in remote sensing data are known as radiative transfer (RT) 

models (Liang, 2005). Numerous applications of multispectral and hyperspectral 

remote sensing data such as estimation of biophysical parameters (Rao et al., 2008; Wu 

et al., 2015), leaf area index (Rao et al., 2006; Liu et al., 2016), water depth estimation 

(Jay and Guillaume 2014), coastal water quality (Brando & Dekker, 2003; Gholizadeh 

et al., 2016) land use and cover change (Joshi et al., 2016), soil organic carbon (Minu 

et al., 2017), etc., rely on accurate surface reflectance data.   

_____________________ 

1The major contents of this chapter are published in Geocarto International Vol: 36(1), 2019 

Publisher: Taylor & Francis. Authors: Sudhanshu Shekhar Jha, Manohar Kumar C.V.S.S, Rama Rao 

Nidamanuri. 
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In most of these applications, quality of results depends mainly on the quality of 

atmospheric correction of the remote sensing data. 

 

Atmospheric correction is generally divided into two categories: in-scene based, 

and physical based models (Gao et al., 2006). Physical based models use a RT code 

which requires information on a number of parameters describing atmospheric 

conditions, aerosol constituents, pressure, temperature, and CWV distribution, to be 

supplied by the user. Whereas, in-scene methods are less complex and no such a priori 

information is required to perform atmospheric correction (Eismann, 2012). Gao et al. 

(2009) have reviewed the performance of several physical based models such as 

Atmosphere Removal algorithm (ATREM), Second Simulation of the Satellite Signal 

in the Solar Spectrum (6S), the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH), High-accuracy Atmospheric Correction for Hyperspectral 

Data (HATCH), Atmosphere CORrection Now (ACORN), MODerate resolution 

atmospheric TRANsmission (MODTRAN), Atmospheric and Topographic Correction 

(ATCOR) and in-scene methods such as Empirical Line Method (Conel et al., 1987), 

the Internal Average Reflectance (IAR) (Kruse, 1988), Flat Field Correction (Roberts 

et al., 1986) etc. Working behind, MODTRAN is the choice of RT code in operational 

implementations of atmospheric correction modules. As continuation of the open-

source research initiatives such as 3S, 4S and 5S, the 6S is a generic RT code found to 

be a competitive alternative to the existing atmospheric correction models (Vermote et 

al. 2006). It has been adapted and improved by MODIS Land Surface Reflectance 

Science Computing Facility and is freely available (http://6s.ltdri.org/). Kotchenova et 

al., (2008) have discussed the performance of four prominent RT codes i.e., 

MODTRAN, 6S, SHARM (spherical harmonics), and an improved version of basic 

radiative transfer called RT3 and compared performance for different atmospheric 

conditions and viewing geometry. They observe that 6S is within 1% accuracy 

compared to the Monte Carlo code. However, their evaluation of 6S based RT code 

contained only a few broadband wavelengths typical to low spectral resolution 

multispectral sensors. The performance of the 6S across the optical spectrum including 

water and gaseous absorption regions at a finer spectral resolution, typical to 

contemporary and future extended range of multispectral (e.g., WorldView-3) and 

hyperspectral sensors, is not yet reported. 

http://6s.ltdri.org/
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Remote sensor specific atmospheric correction schemes based on some selected 

features of 6S RT code have been developed for several multispectral sensors. Example, 

Pandya et al. (2015) developed a model called SACRS2 for the atmospheric correction 

of Resourcesat-2 AWiFS data. They have used the forward model computations of 6S 

for obtaining the scattering and transmittance coefficients required for using in another 

atmospheric correction method known as SMAC. Hu et al. (2014) developed an 

atmospheric correction scheme for correcting LANDSAT-5 data using information on 

atmospheric parameters acquired from MODIS data. Wang developed a similar 

atmospheric correction scheme for the LANDSAT-8 sensor.  

 

For most of the atmospheric correction schemes that have been developed so 

far, developers have preferred MODTRAN as the RT code for calculating scattering 

and transmittance coefficients due to gaseous particles. Though MODTRAN is a 

sophisticated RT code, the atmospheric correction schemes based on it often lack 

support for fine tuning of modelling parameters. This leaves the end user with no choice 

of selecting regional parameters that may vary from the standard global set of 

observations, thus, impairing the study of local atmospheric phenomena. On the other 

hand, recent works indicate the 6S RT code’s potential for development of open-ended 

atmospheric correction scheme. Together with these research gaps and recent progress 

in using 6S RT code as the basis for atmospheric correction, we have developed an 

atmospheric correction scheme which allows the user to interact with 6S RT code with 

an increased level of user customization and regionalization of input atmospheric 

parameters. Supporting a range of multispectral and hyperspectral remote sensing 

sensors, the model developed allows the end user to exercise a wide range of model 

variables supported by the native 6S RT code. We demonstrate the application of the 

proposed atmospheric correction scheme using remote sensors: LANDSAT-8 Optical 

Land Imager (OLI), WorldView-3, Hyperion, and AVIRIS-NG. The results have been 

validated by comparing the performance against the popular atmospheric schemes, 

FLAASH and ATREM, and using various statistical measures.  
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3.2 Methodology 
 

The overall methodology is shown in Figure 3.1. As the 6S is originally coded in 

FORTRAN, it is not intuitive for its application on image based remote sensing data 

framework. We adapted the python interface developed by Wilson (2013) for further 

design and development to result in an image-based framework interacting with the 6S 

RT code. We began by building up the look-up-table (LUT) containing several 

atmospheric variables as input and store output variables required for the inversion of 

the RT equation. The detailed design process of the LUT is presented in the later 

sections. Spectral response function of a specific sensor to compute the corresponding 

the output values specific to the sensor. 

 

3.2.1 6S atmospheric correction scheme 
 

The 6S code estimates satellite signal between 0.25 and 4 𝜇𝑚 of the solar spectrum. As 

discussed in section 2.2, we retrieved spherical albedo (s), total transmittance 

(𝑇(𝜃𝑠), 𝑇(𝜃𝑣)) and atmospheric path reflectance (𝜌𝑎) for different input parameter 

combinations and stored in the look-up table. When the atmospheric correction is 

required, equation (2.2) is inverted to obtain atmospherically corrected reflectance 

according to equation (2.3).  
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Figure 3.1: An overall architectural framework for the development of FACT 

atmospheric correction method. 

 

3.2.2 Look-up table design 
 

The 6S model requires various input parameters like viewing geometry condition, 

atmospheric conditions, aerosol model, visibility/optical thickness estimate, and target 

elevation. Since typical remote sensing imagery have a very wider areal coverage (a 

very large number of pixels), the direct pixel-by-pixel atmospheric correction would 

require a very high processing time, run into several days. In addition, correction 

coefficients have to be computed every time we need to correct an imagery. To solve 

these challenges we adapted a LUT approach (shown in the Table 3.1) as used in other 

works (Gao, Heidebrecht, & Goetz 1993; Griffin & Burke, 2003; Guanter, Alonso, & 

Moreno, 2007; Gao et al.,2009;  Hu et al.,2012). The proposed scheme supports various 

atmospheric and aerosol models supported by the native 6S. The break points for the 

LUT entries (e.g., 800 for the azimuth angles, 150 for the zenith angles) have been 

chosen such that the proposed scheme has optimal computational and memory overhead 

while ensuring that the parameters’ range covers the gamut of the typical acquisition 
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geometrical specifications of most of the satellite and airborne remote sensors. It may 

also be noted that the proposed scheme supports airborne platforms, hence the look-up 

table contain the sensor’s platform elevation and water vapour as part of the input 

parameter set. The range of AOT and the intervals within it is chosen such that the 

proposed scheme supports the correction of imagery acquired when then the visibility 

is 5Km or more. It may be noted that a high value of AOT would produce high values 

of path reflectance and consequently negative values of surface reflectance (Richter & 

Schläpfer, 2011), thus we avoided choosing high AOT values (>0.7). The look-up table 

was simulated at 2.5nm interval to store the values of upward transmittance ( 𝑇(𝜃𝑣)), 

downward transmittance ( 𝑇(𝜃𝑠)), spherical albedo ( 𝑠) and atmospheric path 

reflectance ( 𝜌𝑎). We used a k-d tree construct (Bentley, 1975), which is a 

multidimensional binary search tree, for searching a tuple query corresponding to a 

combination of the input parameters of the look-up table (10-dimesional space). Using 

a k-d tree, we formulated a tree consisting of the nodes as the input parameter for the 

look-up table. For the interpolation of the stored values, we used the N-dimensional 

nearest neighbourhood interpolation technique. 

 

3.2.3 Aerosol optical thickness (AOT) estimation 
 

For solving any RT equation, estimation of the optical properties (optical thickness, 

scattering albedo, phase function), which depend on the particle size and shape, of the 

atmosphere is essential (Liang, 2005). Atmospheric loading is described by the AOT at 

550nm and is one of the parameters required for solving the 6S RT equation. Kaufman 

(1993) observed that AOT has a significant effect on the path radiance and has derived 

the empirical relationships between optical thickness and path radiance. 
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Table 3.1: Design of the LUT for the development of FACT (6S based)  

atmospheric correction method. 

Parameters Range Interval Values 

 

Aerosol Model 
  

 

6S standard models 

Atmospheric Model   6S standard models 

View Zenith Angle 0-600 150 0,15…..60 

Solar Zenith Angle 0-750 150 0,15…..75 

View Azimuth 

Angle 
0-3600 800 0,80…360 

Solar Azimuth 

Angle 
0-3600 800 0,80…360 

AOT 0-0.7 - 0.03,0.12,0.2,0.3,0.4,0.7 

Water Vapour 
0-5 

(g/cm2) 
- 0,0.4,0.8,1.2,1.6,2,3.5,5 

Altitude of the 

Flight (for 

Airborne sensors) 

0-6 Km - 1,3,6 

Altitude of Target 0-7 Km - 0,1,2,4 

 

He further discusses the use of vegetation, soil or water features for the 

derivation of AOT from the satellite image, popularly known as dense dark vegetation 

(DDV), which is used in the proposed FACT for AOT estimation. This approach is 

found to be computationally efficient and is viable for integration with the atmospheric 

correction module. The framework begins by reading the geometrical parameters (solar 

and view zenith angle) of the input image. For calculating the TOA radiance of the 

darkest pixel, we assume a threshold count of log(𝑛2) + √𝑛  where 𝑛 is the total 

number of pixels in the imagery. According to Hill and Sturm (1991), the at-sensor 

reflectance 𝜌𝑡 can be modelled as: 

 𝜌𝑡 = 
𝜋 (𝐿𝑡 − 𝐿𝑝)

𝑡(𝜇) ↑. 𝐸𝑔
, (3.1) 
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where 𝐿𝑡 is the at-satellite radiance, 𝐿𝑝 is the total atmospheric path radiance, 𝑡(𝜇) ↑ is 

the direct atmospheric transmittance and  𝐸𝑔  is the global irradiance reaching the 

ground. The variables 𝐸𝑔  and 𝑡(𝜇) ↑ were calculated using:  

 𝐸𝑔 =  𝐸0𝑒
[{−(

1
2𝜏𝑟

+
1
6𝜏𝛼

)}/𝜇]
, (3.2) 

 

where 𝐸0 is the solar irradiance at the top of the atmosphere, 𝜏𝑟 is the Rayleigh optical 

thickness, 𝜇 is the cosine of the solar zenith angle and 𝜏𝛼 is the AOT. 

 𝑡(𝜇) ↑ =  𝑒[−(𝜏𝑟+𝜏𝑎)/𝜇], (3.3) 

 

Rayleigh optical thickness as approximated by Moller (1957) is given by: 

 𝜏𝑟 = 0.00879 𝜆𝑐
−4.09, (3.4) 

 

where 𝜆𝑐 is the central wavelength of the band being used for calculating the AOT. 

Since atmospheric radiation scattering is primarily caused by Rayleigh and Mie 

scattering phenomena ( Kaufman and Sendra 1988), total path radiance can be written 

as: 

 𝐿𝑝 = 𝐿𝑝𝑟 + 𝐿𝑝𝑎 , (3.5) 

 

where 𝐿𝑝𝑟 is the atmospheric path radiance due to Rayleigh scattering and 𝐿𝑝𝑎 is the 

atmospheric path radiance due to Mie scattering. Path radiance due to Rayleigh 

scattering phenomenon was calculated using approximation given by Gilabert, Conese, 

and Maselli (1994), which is as follows: 

 𝐿𝑝𝑟 = {
(𝐸0 cos 𝜃0  𝑃𝑟)

4𝜋(cos𝜃0 + cos 𝜃𝑣)
} ∗ {1 − 𝑒

−𝜏𝑟 (
1

cos𝜃0
+

1
cos𝜃𝑣

)
} ∗  𝑡𝐻2𝑂 ↑. 𝑡𝑂3 ↑, (3.6) 

 

where  𝑃𝑟  is the Rayleigh scattering phase function, 𝜃0 is the solar zenith angle, 𝜃𝑣  is 

the sensor viewing angle, 𝑡𝐻2𝑂 ↑ is the transmittance factor due to water vapour, and 

𝑡𝑂3 ↑ is the transmittance factor due to ozone. Atmospheric path radiance due to Mie 

scattering was calculated using the equation given in the work carried out by 

Themistocleous et al. (2012) and is as follows: 
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𝐿𝑝𝑎 = 𝜔𝑎 ∗ {
𝐸0 cos(𝜃0) 𝑃𝑎

4𝜋 cos 𝜃0 + cos 𝜃𝑣
} ∗ {1 − 𝑒

−𝜏𝛼(
1

cos𝜃0
+

1
cos𝜃𝑣

) }
∗ { 𝑒

−𝜏𝑟 (
1

cos𝜃0
+

1
cos𝜃𝑣

)
}, 

(3.7) 

 

where, 𝜔𝑎  is the aerosol single scattering albedo (approximately taken as 0.80), and 𝑃𝑎  

is the aerosol scattering phase function. The value of 𝑃𝑎 was taken from AERONET 

available at https://aeronet.gsfc.nasa.gov/. Solving equation (3.5) using equations (3.1), 

(3.2), (3.3), (3.6) and (3.7) yields the AOT estimate. After the estimation of AOT, 

visibility estimate was calculated by the 6S RT code based on McClatchey et al. (1972) 

model.   

 

3.2.4 Water vapour estimation 
 

The inherent capability of hyperspectral remote sensors to acquire data in contiguous 

and narrow spectral bands in the range 350nm to 2500nm permits image-based 

estimation of CWV required for solving the RT equation. CIBR, one of the popular 

differential absorption techniques (Schläpfer et al., 1998) used for water vapour 

estimation, was adapted for retrieving water vapour in this work. CIBR is a ratio of the 

absorption radiance (𝐿𝑚) at a wavelength (𝜆𝑚) to a linearly interpolated value between 

two non-absorption radiances (𝐿𝑟1, 𝐿𝑟2) on either side of the measurement radiance at 

a wavelengths (𝜆𝑟1, 𝜆𝑟2). The ratio is given by:  

 𝑅𝐶𝐼𝐵𝑅 = 
𝐿𝑚

𝜔𝑟1𝐿𝑟1 +𝜔𝑟2𝐿𝑟2
, (3.7) 

 

where 𝜔𝑟1 =  
𝜆𝑟2−𝜆𝑚

𝜆𝑟2−𝜆𝑟1
 , 𝜔𝑟2 =  

𝜆𝑚−𝜆𝑟1

𝜆𝑟2−𝜆𝑟1
 and  𝑅𝐶𝐼𝐵𝑅  is the CIBR ratio and 𝜔𝑟1 and 

𝜔𝑟2 are weighted factors. As the differential absorption technique provides only a ratio, 

the outcome of CIBR was transformed to water vapour content using an exponential 

approach (Carrère and Conel (1993)) given as :  

 𝑇𝑤𝑣(𝑃𝑊)  ≈  𝑅𝐶𝐼𝐵𝑅 =  𝑒
−(𝛾+𝛼(𝑃𝑊)𝛽), (3.8) 

 

https://aeronet.gsfc.nasa.gov/
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where 𝑇𝑤𝑣(𝑃𝑊) is the total water vapour content and 𝛼, 𝛽 and 𝛾 are the empirical 

regression parameters for solving the water vapour amount using the expression: 

 𝑃𝑊(𝑅𝐶𝐼𝐵𝑅) =  −(
ln(𝑅𝐶𝐼𝐵𝑅) +  𝛾

𝛼
)

1 𝛽⁄

. (3.9) 

 

The procedure to calculate the water vapour begins by generating a LUT using 

6S RT code which stores radiance and path radiance values for the various 

combinations of water vapour content, sensor altitude, target altitude, and visibility 

conditions at a fixed average reflective background reflectance (0.4) as suggested by 

Borel and Schlaepfer (1996). We then calculated the ratio  𝑅 from the LUT generated 

values for all the possible combinations and fit all the values in equation (3.9) for 

estimating the parameters 𝛼, 𝛽 and 𝛾. Subsequently, with the parameters 𝛼, 𝛽 and 𝛾, we 

converted the ratio to water vapour amount for the entire imagery. 

 

3.2.5 Experimental implementation  
 

A robust atmospheric correction module should support correction of a range of 

multispectral and hyperspectral remote sensors, and, preferably, support the user-led 

open-end integration of future remote sensors. While the existing operational 

atmospheric correction modules support a range of remote sensors, they are close-end 

frameworks from the user perspective as the users have no possibility to self-compute 

and integration choice of present and future remote sensors. In an attempt to enable the 

user community, meet the atmospheric correction requirements of future space-borne 

remote sensors and conventional and unmanned airborne spectral imaging platforms, 

the present atmospheric correction framework has the capability to add customized 

sensors with minimal computational demands. The present framework supports a range 

of multispectral and hyperspectral sensors including Landsat-8 OLI, Sentinel – 2, 

WorldView – 2, WorldView – 3, ASTER, LISS III, LISS-IV, Hyperion, and AVIRIS-

NG. 
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3.2.6 Datasets  

 

For evaluation of the overall performance of the developed atmospheric correction 

scheme, we corrected imagery acquired from various multispectral and hyperspectral 

sensors. Details of the imagery used are presented Table 3.2. Except for the AVIRIS-

NG imagery, we used the standard tropical atmospheric model with the continental 

aerosol model since AVIRIS-NG is an airborne sensor unlike the other space-borne 

sensors in this study.  

 

Table 3.2: Datasets used for evaluation of the proposed FACT 

 

3.2.7 Quantitative and comparative evaluation of the performance of 

FACT 
 

The performance of the developed atmospheric correction framework was validated by 

computing multiple statistical error measures and also by pixel-to-pixel (P2P) level 

cross-comparison of the results from an operational atmosphere correction module 

FLAASH. For all the imagery, we computed the spatial mean absolute error (S-MAE), 

the spatial root mean square error (S-RMSE) and compared correction results with the 

FLAASH corrected imagery. We have chosen the FLAASH atmospheric correction 

scheme for comparison due to the fact that it is the most widely used operational 

atmospheric correction module in the remote sensing scientific community.  Spatial 

error evaluation helps to provide a reliable and unbiased estimate of the error in each 

pixel. Consider each pixel to be a k ×  1 vector where k is the number of bands. Let 𝑋𝑖 

Sensor 

Image  

Dimension 

(row x col) 

Study Area 

Spatial  

Resolution 

(m) 

Total  

Spectral 

Channels 

Landsat-8 

OLI 

 

2701 x 3536 
Himalayan Foothills, 

 India, 2015 
30 11 

WorldView-3 1487 x 1392 
Bangalore,  
India, 2017 

multiple 29 

AVIRIS-NG 327 x 359 
Ahmedabad,  

India,2016 
4 425 

Hyperion 160 x 267 Rishikesh, 

India, 2014 
30 242 
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and  𝑌𝑖 be the 𝑖𝑡ℎ pixel where 𝑋 and 𝑌 are two images covering same geographical 

extent with an equal number of spatial pixels and same spatial resolution; the S-MAE 

is given by: 

 S − MAE =  
{|(𝑋𝑖1 − 𝑌𝑖1)| + |(𝑋𝑖2 − 𝑌𝑖2)| + .   .   .   +|(𝑋𝑖k − 𝑌𝑖k)|} 

k
. (3.10) 

 

Similarly, the S-RMSE is given by: 

 
S − RMSE = √

{(𝑋𝑖1 − 𝑌𝑖1)
2
+ (𝑋𝑖2 − 𝑌𝑖2)

2
+   .   .   .  + (𝑋𝑖k − 𝑌𝑖k)

2
}

k
 . (3.11) 

 

A histogram of the residuals was generated to analyse the range of the residuals 

and their spread. In addition, various statistical measures such as minimum, maximum, 

mean and standard deviation of the residual terms were computed. Though it may be 

noted that “mean error” in itself is ambiguous, drawing inference on the spread of error 

is possible from the measure of “mean error”.  The above measures are strictly statistical 

in nature and thus may not reflect upon the error occurred in the underlying physical 

process. To understand the qualitative performance of the developed methodological 

framework in comparison with other atmospheric correction schemes, we compared the 

corrected reflectance cube (in various spectral channels of the given imaging sensor) 

obtained from different atmospheric correction schemes by calculating spectral-RMSE 

between reflectance cube obtained by the proposed FACT and reflectance cube 

obtained from other atmospheric correction schemes. This comparison helps to 

understand the exact response and extent of the atmospheric correction occurred at a 

given wavelength band of the electromagnetic spectrum. 

 

3.3. Results and Analysis  
 

As described in section 3.2.6, the proposed atmospheric correction scheme was applied 

on four different remote sensing datasets – two datasets from multispectral sensors and 

two datasets from hyperspectral sensors. Results are presented in the following sub-
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sections in the order of remote sensing sensors – AVIRIS-NG, Hyperion, WorldView-

3, and OLI of Landsat-8. 

 

3.3.1 Atmospheric correction of the AVIRIS-NG 
 

Results of the atmospheric correction of AVIRIS-NG data and its comparison with the 

results from FLAASH and NASA JPL’s scheme are presented in Figures 3.2 and 3.3. 

The average water vapour content estimated by the proposed scheme is 1.417cm as 

against 1.3241cm and 1.723cm respectively from the FLAASH and NASA JPL’s 

scheme. The visual quality features of the atmospherically corrected remote sensing 

imagery (e.g., contrast, sharpness) closely match with that of FLAASH, and NASA 

JPL’s scheme. The quality of atmospheric correction as observed at within-image scale 

considering typical land surface features was also assessed. As evident from Figure 3, 

while vegetation features appear similar in all the three correction schemes, built-up 

features vary substantially from each other. Close examination reveals that a few built-

up features exhibit rapid transitions in spectral reflectance. This might be due to the 

apparently high reflective nature of built-up constructed with cement and gravels and 

apparent spatial adjacency effect. Since there is no correction mechanism introduced 

for adjusting the spatial adjacency effect in the proposed FACT scheme, few regions of 

AVIRIS-NG imagery with certain built-up features exhibit moderate to higher S-

RMSE. The spread of residuals is presented in Figure 3.4 and Table 3.3. For 99.936% 

of the pixels in the AVIRIS-NG imagery, the computed S-RMSE between the proposed 

FACT and the FLAASH scheme is very negligible and is within 0.0563. Similarly, 

99.94% of AVIRIS-NG pixels exhibit an S-RMSE of 0.101 when the proposed FACT 

scheme is compared with NASA JPL’s scheme. This is marginally lower or at par with 

the results obtained from the comparison of the FLAASH with NASA JPL’s scheme, 

where 99.929% of the pixels are found to be within S-RMSE of 0.1064. On close 

analysis of the statistical figures given in the Table 3.3, we find that the maximum 

values for error terms for all the correction schemes appear high. However, the 

distribution of the error and the number of pixels reveals that the error terms are inflated 

by a single outlier pixel; the reason for its erratic behaviour is unclear. 
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Figure 3.2: Results of atmospheric correction of AVIRIS-NG imagery: (a) – (c) False 

Colour Composites of the corrected imagery from the proposed FACT, 

FLAASH and NASA JPL’s atmospheric correction scheme respectively; 

(d) – (f) Spatial –Mean Absolute Error (S-MAE) image between the 

proposed FACT-FLAASH, FLAASH-NASA JPL’s and FACT-NASA 

JPL’s scheme respectively.  
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Figure 3.3: Results of atmospheric correction of AVIRIS-NG imagery: (a) – (c) False 

Colour Composites of the corrected imagery from the proposed FACT, 

FLAASH and NASA JPL’s atmospheric correction scheme respectively; 

(d) – (f) Spatial – Root Mean Square Error (S-RMSE) image between the 

proposed FACT-FLAASH, FLAASH-NASA JPL’s and FACT-NASA 

JPL’s scheme respectively.  

 

Figure 3.4: The (a) spatial-MAE and (b) spatial-RMSE histogram for the AVIRIS-NG 

corrected imagery by FLAASH, the proposed FACT and NASA JPL’s 

correction method.   
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3.3.2 Atmospheric correction of the Hyperion imagery  
 

Results of error evaluation from the comparison of the FLAASH corrected imagery and 

the proposed FACT are shown in the Figures 3.5, 3.6 and Table 3.3. As reported in the 

case of AVIRIS-NG (section 3.3.1), visual features such as contrast and sharpness for 

the Hyperion imagery corrected by the proposed FACT are retained when compared to 

the imagery corrected by the FLAASH (Figure not shown). Since correction was done 

using the standard atmospheric model, no CWV was retrieved. Analysis of feature level 

accuracy indicates a high correlation and corresponding lower error (both S-MAE and 

S-RMSE of the order 0.02) for vegetation and deep-water feature, as observed in Figure 

3.5 between the imagery corrected by the FLAASH and the proposed FACT. A notable 

performance gain in the deep-water feature (MAE and S-RMSE within 0.01) can be 

easily inferred from the Figure 3.5. In addition to these performance gains, we observed 

a marginal higher error (in the range of 0.04 to 0.07) in some of the features such as 

highly reflective dried river beds mixed with sands, high mountainous landscapes and 

few built-up features. These errors are consistent with both the Hyperion as well 

AVIRIS-NG, indicating a systematic difference in modelling the signals from objects 

having high reflectivity. Considering all the different sources of errors, FACT achieves 

an accuracy of around 95% (99.9% of 42,720 pixels having S-RMSE of 0.069 and MAE 

of 0.054 calculated from the histogram as shown in Figure 3.6).   
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Table 3.3: Spatial-Error statistics for the subset of different satellite imagery 

  
Spatial Root Mean Square  

Error Statistics 

Spatial Mean Absolute  

Error Statistics 

Imaging  

Sensor 
Comparison Schemes Min Max 𝝁 𝝈 Min Max 𝝁 𝝈 

 

FACT Vs FLAASH 

Corrected 

 

0.0089 0.3349 0.0252 0.0078 0.0057 0.2751 0.0150 0.0038 

AVIRIS-NG 

FACT Vs NASA 

JPL’s Corrected 

 

0.0158 0.5168 0.0279 0.0135 0.0090 0.2289 0.0226 0.0061 

 
FLAASH Vs NASA 

JPL’s Corrected 
0.0074 0.5111 0.0219 0.0180 0.0035 0.1113 0.0167 0.0075 

 

HYPERION 

EO-1 

 

FACT Vs FLAASH 

Corrected 

 

0.0069 0.0917 0.2087 0.0053 0.0038 0.0756 0.0125 0.0049 

LANDSAT-8 

OLI 

FACT Vs FLAASH 

Corrected 

 

0.0045 0.1407 0.0165 0.0026 0.0038 0.1282 0.0136 0.0025 

WV-3 

FACT Vs FLAASH 

Corrected 

 

0.0011 0.3505 0.0071 0.0038 0.0008 0.2337 0.0060 0.0032 
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Figure 3.5: Results of atmospheric correction of Hyperion imagery: (a) False Colour 

Composites of the corrected imagery from the proposed FACT, (b) Mean 

Absolute error (c) and Root Mean Square Error image between the 

proposed FACT and FLAASH atmospheric correction method. 

 

Figure 3.6: The (a) spatial-MAE and (b) spatial-RMSE histogram for the HYPERION 

EO-1 imagery calculated between atmospherically corrected image by 

FLAASH and the proposed FACT .  

 

3.3.3 Atmospheric correction of the LANDSAT-8 OLI imagery  
 

The comparative evaluation of the correction results from the FLAASH and the 

proposed FACT scheme for LANSAT-8 OLI imagery is shown in Figure 3.7, 3.8 and 

Table 3.3. For this imagery, we used the standard tropical atmospheric model with the 

continental aerosol model. Other geometrical parameters required were retrieved from 

the metadata file and were given as input to the FACT correction scheme. Based on the 

results of statistical analysis and computation of the S-MAE and S-RMSE (as shown in 
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Figure 3.8), we observe that 99.9% of the pixels have S-RMSE equal to or less than 

0.045, while S-MAE less than or equal to 0.042 (out of total 9550736 pixels). As 

observed in the case of AVIRIS-NG and the Hyperion imaging sensors, we observe a 

substantial disagreement (S-RMSE and S-MAE) for the landscapes that include built-

up features and dried river beds. In addition, a few pixels of the observable cloud 

patches indicate substantial disagreement. Since cloud masking is inherently not part of 

any RT code, we believe any error analysis should ignore such pixels for drawing 

qualitative inferences about the developed atmospheric correction scheme. Despite the 

lack of a close matching for a few pixels, we believe that, with the overall spatial 

accuracy close to 96%, the proposed FACT atmospheric correction scheme compares 

well with the FLAASH atmospheric correction scheme.   

 

Figure 3.7: Results of atmospheric correction of LADSAT-8 OLI imagery: (a) False 

Colour Composites of the corrected imagery from the proposed FACT, (b) 

Mean Absolute error (c) and Root Mean Square Error image between the 

proposed FACT and FLAASH atmospheric correction method.  

 

Figure 3.8: The (a) spatial-MAE and (b) spatial-RMSE histogram for the LANDSAT-

8 OLI imagery calculated between atmospherically corrected image by 

FLAASH and the proposed FACT.   
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3.3.4 Atmospheric correction of the WorldView-3 imagery 

 

Results of the comparative evaluation of the correction from the FLAASH and the 

proposed FACT atmospheric correction schemes for the WorldView-3 imagery are 

presented in Figure 3.9, 3.10 and Table 3.3. As evident from the Figure 3.9, we find an 

improved level of accuracy (99.9% of pixels have MAE of 0.031904, while RMSE of 

0.039464 out of 2,069,904 total pixels computed from Figure 3.10) for the WorldView-

3 imagery when compared to other corrected imagery using the proposed FACT 

atmospheric correction. The relatively better performance, apparent amongst all the 

imagery considered for the comparative analysis, can be attributed to a higher Signal to 

Noise Ratio (SNR). In addition, apparent statistical improvement in the performance of 

the proposed FACT scheme can also be attributed to the uniform distribution of 

different classes of materials in the imagery. Although we observe a substantial gain in 

the performance metrics, nature of reflectance spectrum obtained for the materials with 

high reflectivity (such as roof-top or soil mixed with sands which is observable in 

Figure 3.9) shows persistent error as found in all the other imagery considered. Apart 

from the marginal error in a few of the pixels, the proposed FACT atmospheric 

correction scheme achieved an overall accuracy of about 98%.   

 

Figure 3.9: Results of atmospheric correction of WorldView-3 imagery: (a) False 

Colour Composites of the corrected imagery from the proposed FACT, (b) 

Mean Absolute error (c) and Root Mean Square Error image between the 

proposed FACT and FLAASH atmospheric correction method. 
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Figure 3.10: The (a) spatial-MAE and (b) spatial-RMSE histogram for the WorldView-

3 imagery calculated between atmospherically corrected image by 

FLAASH and the proposed FACT.   

 

3.3.5 Spectral-statistical performance of FACT  
 

As reported in the section above, analysis of spatial residual (S-RMSE and S-MAE) 

errors clearly indicate a  close agreement between the proposed FACT atmospheric 

correction scheme and the FLAASH correction scheme. However, these results are 

generally statistical in nature and for an exhaustive evaluation of the developed 

atmospheric correction scheme, it is required to analyse the performance of the 

proposed FACT in each spectral channel. Spectral evaluation of the corrected 

reflectance spectrum from various atmospheric correction scheme provides an insight 

into the principles of the physical process involved thereby enabling us to dissect the 

scientific gaps in more detail. Such analytical assessment helps to refine the estimation 

processes involved in obtaining the input parameters for the atmospheric correction 

scheme. In Figure 3.11(b-d), we present a comparison of the spectral (band wise) 

accuracy of the proposed FACT atmospheric correction scheme with the FLAASH 

atmospheric correction scheme for the Hyperion, LANDSAT-8 OLI and WorldView-3 

imagery. For the spectral evaluation of AVIRIS-NG data (Figure 3.11(a)), we 

performed an inter-comparison of corrected imagery obtained from the proposed 

FACT, FLAASH and NASA JPL’s scheme. 

 

 As clear from the Figure 3.11(c) and 3.11(d),  consistent band-wise spectral 

conformity of the proposed FACT scheme is evident for the multispectral sensors, 

Landsat-8 (OLI), and WorldView-3. However, the band-wise comparative performance 
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for the hyperspectral sensors (Figure 3.11(a) and Figure 3.11(b)) indicates two distinct 

features across the optical wavelength regions covered by these sensors. On the one 

hand, the observed consistently low S-RMSE levels for both the hyperspectral imagery 

( see Figure 3.3(d-f), and Figure 3.5) across the atmospheric correction schemes 

compared indicates that the results from the proposed FACT scheme are precise and 

accurate. However, on the other hand, despite the apparent overall higher level 

agreement between the proposed FACT and FLAASH, and NASA JPL’s schemes (with 

minimal values of spectral-RMSE; 0.05 for AVIRIS – NG; 0.03 for Hyperion, 0.02, in 

case of LANDSAT-8 OLI  and close to 0.01 in case of WorldView-3), there are a few 

discrete spikes in the Spectral-RMSE. Apparently, these spikes of Spectral-RMSE are 

found positioned at the wavelengths in the electromagnetic spectrum where water 

vapour absorption is the dominant phenomenon. The AVIRIS-NG acquires 

measurements in 400 – 2500 nm range of electromagnetic spectrum and retains spectral 

measurements in the strong water absorption regions around 932 nm to 942 nm and 

1117 nm to 1147 nm. 
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Figure 3.11: A spectral analysis (band wise RMSE calculation) for the imagery data of 

(a) AVIRIS-NG (b) Hyperion (c) LANDSAT-8 OLI and (d) WorldView-3 

corrected by the FLAASH,  the NASA JPL’s and the proposed FACT 

correction method in case of AVIRIS-NG and by the FLAASH and the 

proposed FACT in other three cases.   

 

In addition to the generally lower or lack of calibration for the spectral bands in 

water vapour absorbing wavelength regions, the manner in which different RT codes 

model the signal  also determines the level of conformity of the atmospheric correction. 

Further, the method by which CWV is estimated, which is found to be different by all 

the three atmospheric correction schemes (see section 3.3.1), can contribute substantial 

error in the atmospheric correction. Apart from the occurrence of error at the water 

vapour absorbing wavelength regions, we notice the occurrence of error spikes at a few 

other discrete locations (approximately at 1448 nm, 1964 nm and at the end after 

2380nm; please see Figure 3.11(a) and 3.11(b)). This pattern can be observed in both 

the hyperspectral imagery corrected by all the three atmospheric correction schemes 

considered. Although the reason for the occurrence of these spikes is not 

comprehensible, we assume the manner in which the RT code inverts the signal can be 

one of the causes for such behaviour. Apart from errors in the absorption region, the 

performance of the proposed FACT scheme in case of hyperspectral imagery is 
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satisfactory with an accuracy of more than 95% when compared to the other 

atmospheric correction schemes.  

 

3.4. Discussion 
 

Atmospheric correction of satellite-derived imagery is an important pre-processing in 

the spatio-temporal analysis of remote sensing data for various applications. However, 

the applicability of these methods and quality of the reflectance data obtained depend 

on the RT models being used for atmospheric correction and estimates of the various 

input parameters to these models. With the transforming imaging technology, it is also 

expected that the atmospheric correction technique should account for the regional 

atmospheric variables associated with the imagery. Thus, an atmospheric correction 

scheme should be flexible to account for changing long-term atmospheric conditions 

and open-ended at the user level to incorporate various remote sensing sensors being 

developed. We have assessed the possibility of developing an atmospheric correction 

scheme which provides a user-level customization functionality. In order to 

approximate for accurate reflectance data and for estimating several input parameters 

high computational speed, we have adapted the look-up architecture. For an exhaustive 

evaluation of the proposed correction scheme, several statistical analyses were carried 

out on the results obtained from the proposed correction scheme against the other 

atmospheric correction schemes.  

 

AOT is one of the important input parameters for the atmospheric correction 

scheme to obtain a reliable approximation of the corrected reflectance cube. On one 

hand, FLAASH uses K-T method for the estimation of visibility which requires two 

channels to be defined (one around 660nm and the other at 2100 nm). Whereas, the 

proposed FACT uses radiance single channel (around 550nm) i for calculating the 

AOT. In the absence of specific spectral channels, FLAASH fails to estimate visibility. 

In such cases, the user is prompted to supply visibility estimate based on the haze level 

in the imagery depending on the visual appearance, which may be subjective and in 

turn affect the accuracy and quality of the obtained corrected imagery. Unlike the 

proposed FACT, FLAASH doesn’t report the AOT directly making it difficult to 



51 

 

validate the data (visibility to AOT estimate) against the ground truth data which might 

be collected from the respective AERONET center. This gives the proposed FACT a 

relative edge over the other schemes for atmospheric correction of multispectral 

imagery which lack spectral measurements around 2100 nm.   

 

Spatial statistical analysis (S-RMSE and S-MAE) for both the hyperspectral as 

well as multispectral imagery reveals that a few pixels have a relatively high error when 

compared to the other pixels in the image. It has been found that these pixels represent 

material of high reflectivity (e.g., roof-tops, sands, dried river beds) and thus show 

consistently moderate disagreement between the corrected reflectance spectrum 

approximated by the proposed atmospheric correction scheme FACT and FLAASH. 

For the hyperspectral imaging sensors, an overall spectral conformity of about 95% is 

achieved when compared to the different atmospherically corrected imagery from 

FLAASH and NASA JPL’s correction scheme. For the multispectral imaging sensors, 

the accuracy has increased to about 98% when compared to the FLAASH corrected 

imagery. In case of hyperspectral imaging sensors, we observe a systematic spectral 

error (see figure 3.11(a) and 3.11(b)) throughout the 400 nm to 2500 nm of the 

electromagnetic spectrum at the onset and closure of the transition occurring from the 

calibrated channel to the uncalibrated channel. Reason for these kinds of error may be 

the underlying difference in operating principle (6S is based on successive order of 

scattering while MODTRAN uses discrete ordinate) of the RT code which is being 

implemented in these atmospheric correction schemes (Guanter, 2006; Mandanici, 

2010). Apart from these residuals, Spectral-RMSE at the absorption band is substantial 

for the hyperspectral imaging sensors. Though it affects the performance in the water 

absorption region, we have shown that the overall error from the proposed FACT 

atmospheric correction scheme based on 6S RT model for both AVIRIS-NG and 

Hyperion imaging sensor remains within 3-5% when compared to the FLAASH 

scheme. 

 

We infer that within the given error window of 3-5%, the proposed FACT can 

be a competitive alternative to the existing FLAASH module for carrying out 

atmospheric correction of the imagery acquired from the hyperspectral or multispectral 

sensors. As a flexible correction scheme, the proposed FACT is open for integration of 
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any new sensor developed since it has an appropriate interface at the user level and can 

model the parameters based on the evolved regional atmospheric conditions. We 

believe that allowing this customization feature will give the FACT enough technical 

input and scientific merit so that it can delve into more mature and robust correction 

technique. This technique has been evaluated with data pertinent to the Indian 

subcontinent, but can be used elsewhere too, with the standard parameters defined in 

the proposed FACT. As a future initiative, we intend to make the proposed FACT 

available in a server-client based computing environment, thereby eliminating setup 

related infrastructural requirement. 

 

3.5. Chapter Conclusions 

 

In this chapter, an attempt has been made to explore the possibilities of developing a  

an open-ended atmospheric correction scheme. The proposed correction scheme has 

been compared and cross-validated with other existing atmospheric correction schemes. 

Results indicate that within acceptable limits, the proposed FACT can be used for 

atmospheric correction of a range of multispectral and hyperspectral sensors. However, 

it was noticed that for hyperspectral imaging sensors, especially air-borne imaging 

sensors, the scheme needs further improvement in parameter estimation to make the 

retrieved surface reflectance more accurate at the water absorption spectral region. 

Apart from the error observed in the absorption regions, performance of the proposed 

FACT in the case of the space-borne hyperspectral imaging sensor is found more 

accurate than the air-borne hyperspectral imaging sensors. The accuracy of the 

proposed FACT on water features is consistently high across all the imaging sensors, 

thus suitable for applications which are related to water quality assessment and various 

other studies related to it. At the current status of development, the proposed FACT 

presents a viable and reliable option for carrying out atmospheric correction of the 

multispectral and hyperspectral imaging sensors with the integration and optimization 

for regional atmospheric conditions.  
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CHAPTER 4 
 

 

ENGINEERED MATERIAL TARGET DETECTION 

USING MULTI-PLATFORM REMOTE SENSING 

SETUP 
 

 

Prelude: This chapter introduces the experimental setup of a novel multi-source and 

multi-platform benchmark dataset for engineered material-target detection based on 

reference spectral reflectance patterns. Positioning artificial targets on different 

surface backgrounds, we acquired remote sensing data from terrestrial, airborne, and 

space-borne sensors. Various statistical and subspace detection algorithms were 

applied on the benchmark dataset for the detection of targets, considering the different 

sources of reference target spectra, background, and the spectral continuity across the 

platforms. We validated the detection results using the ROC for different cases of 

detection algorithms and imaging platforms. Continuing the style of content 

organization followed in the previous chapter, this chapter is also self-contained in its 

entirety and encompasses the work related to one of the objectives of the thesis 

“development of a multi-platform (ground, airborne, and space-borne) target detection 

benchmark dataset and critical analysis of parameters of detection performance”.1 

 

4.1 Introduction 
 

Based on one of the fundamental principles of remote sensing, spectral reflective 

signatures of different materials are distinct in the optical range of the electromagnetic 

spectrum (EM), remote sensing data have been used for land surface characterization 

_____________________ 

1The contents of this chapter are published in Remote Sensing Vol: 12(13), 2020 Publisher: 

Multidisciplinary Digital Publishing Institute. Authors: Sudhanshu Shekhar Jha, Rama Rao Nidamanuri. 
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from local to a global level. Building upon the broader application domain of 

hyperspectral remote sensing, various organizations have developed spectral libraries 

of reference spectral signatures for thousands of natural and human-made materials 

(Baldridge et al., 2009; Kokaly et al., 2017; Meerdink et al., 2019). Target detection is 

one of the general approaches of remote sensing which has a broader application 

perspective. Detecting targets - specific material objects (natural or engineered) of 

interest with a sparse spatial distribution in remote sensing imagery has been an active 

area of research. Various mapping and surveillance requirements in defense, 

mineralogy, and precision agriculture can be addressed quickly from a target detection 

perspective in remote sensing imagery. In principle, target pixels are sparse (about 10 

pixels in a million), thus making their detection challenging. Target detection is 

influenced by choice of the detection algorithm, sensor, target - background dynamics, 

and atmospheric perturbance ( Cohen et al., 2012b; Archer et al., 2013; Yadav et al., 

2018b). From a target detection perspective, high-resolution multispectral imagery has 

been used for identifying common land use objects such as buildings, roads, vehicles, 

and ships (Cheng & Han, 2016; Kanjir et al., 2018). Hyperspectral imagery offers 

appropriate baseline spectral data with finer spectral resolution required for typical 

target detection problems. 

 

There are some attempts on using hyperspectral data for target detection for 

military infrastructure (Briottet et al., 2006), surveillance (Yuen & Richardson, 2010), 

and mineral mapping ( Molan et al., 2014;  Hou et al., 2016; Dos Reis Salles et al., 

2017). However, a comprehensive evaluation of the target detection in remote sensing 

data, particularly from the perspective of the vertical continuum of target spectral 

footprints in remote sensing imagery acquired from multiple platforms (ground, 

airborne, and space-borne) has not been explored. In addition, most of the reported 

works have approached the target detection problem from the general classification 

theory wherein a target object is one among the other multiple land use categories 

mapped. In addition to using a single source of remote sensing imagery, the land cover 

category considered as “target” to be detected has abundant spatial distribution and 

extent, which in theory does not qualify it to be called a target. One of the major 

impediments in this direction has been the lack of benchmark datasets in the public 

domain. Most of the recent works on target detection have used the Cooke City, USA, 
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made available by Rochester Institute of Technology (RIT), NY, USA (Snyder et al., 

2008b) for the evaluation of existing and in-development target detection algorithms. 

Especially, reference remote sensing imagery on multi-platform-based target detection 

has not been reported so far. Further, most of the experimental data on target detection 

available for the research community is from a single platform, either airborne or space-

borne. A multi-platform target detection experimental data that encompass remote 

sensing data from different sensors will enhance our understanding of the potential of 

target detection per se and the dynamics involved in a composite framework. 

 

We have carried out a comprehensive experiment for the acquisition of 

multispectral (only from a space-borne platform), and hyperspectral imagery from 

ground, airborne, and space-borne platforms on several engineered/artificial target 

materials in a complex urban neighborhood. This portion of the research is aimed at 

exploring the target detection problem from various platforms of imaging and detection 

of targets in optical remote sensing data. The key research questions of this research 

are: How does the detection performance vary as a function of the imaging platform? 

What is the impact of local background–target interaction on detection rate? Is the 

detection rate reproducible for two identical targets? Multi-platform remote sensing 

datasets were experimentally evaluated for target detections under various scenarios, 

and the results were validated, computing various statistical measures, and the graphical 

ROC, since it is one of the most robust target detection metrics and is used ubiquitously 

(Manolakis, Marden & Shaw 2003; Cohen et al., 2012; Acito et al. 2016). 

 

4.2 Materials and Methods 
 

4.2.1 Experimental Design 
 

The conceptual design of the experimental setup is shown in Figure 4.1. The 

experimental set up consisted of positioning five targets of different artificial thin-sheet 

materials of different colors (base material: nylon and cotton), each of the size 10 m  

10 m (Figure 4.2). For ease of referencing throughout the chapter, we designate a 

distinct name for each target used in Table 4.1. The third letter in the name of a target 

indicates the color of the target (G: green, R: red, W: white, Y: yellow, B: black). 
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Figure 4.1: Conceptual design of the experimental set up used for the acquisition of 

multi-platform remote sensing data. 

 

Table 4.1: Target materials and naming convention used in the chapter. 

Target Material Target Name 

Green nylon sheet N1G 

Red nylon sheet N2R 

White cotton sheet C1W 

Yellow nylon sheet N3Y 

Black nylon sheet N4B 

 

 

Out of the five different target materials, we positioned three on natural grass 

and vegetation features as the background, and two on reflective soil background. To 

introduce a moderate degree of background resemblance to natural camouflage in the 

visible spectral range of the electromagnetic spectrum, we positioned two targets (N1G 

and N3Y) on the grass and soil background. To assess the target detection of materials 

with broadly similar spectral reflectance characteristics, we chose multiple targets with 

a single base material but in different colors. Ensuring an overlapping areal extent of 

the imagery from both the airborne and space-borne platforms, we extracted a subset of 

the data acquired. The datasets maintain SNR ratio close to one in a million for different 
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scene elements under the different spatial-spectral variabilities of materials in the scene. 

A true color composite of the airborne hyperspectral imagery marked with footprints of 

the targets and the corresponding ground truth imagery are shown in Figure 4.2. 

 

 

Figure 4.2: (a) True color composite of the AVIRIS-NG hyperspectral imagery with 

the locations of the artificial targets earmarked; (b) location of targets—

N3Y and N4B; (c) location of targets—C1W, N1G, and N2R; (d) ground 

truth map, and (e–f) enlarged view of the ground truth map for different 

targets. Field photographs (g–k) showing the artificial targets placed in the 

study area for imagery acquisition. 

 

4.2.2 Data pre-processing 

 

4.2.2.1 Reference Spectral Data Sources and Pre-Processing 

 

On March 20, 2018, we acquired multi-platform remote sensing data: ground-based 

terrestrial hyperspectral imager (THI), airborne hyperspectral imager (AVIRIS-NG) 

and the space-borne multispectral sensor (Sentinel-2). The THI is a push-broom 

hyperspectral imager (Headwall Photonics Inc., USA) mounted on a movable tripod-

kind of the platform. The THI acquires hyperspectral imagery in the VNIR region (40–

1000 nm) at about 1nm spectral resolution. In the present setup, a nominal spatial 

resolution of 1cm further approximated to 20 cm across the targeted area was acquired 

in a nadir to oblique view. The AVIRIS-NG hyperspectral sensor was operated to 
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acquire imagery with 4 m spatial resolution and 5nm spectral resolution in the 400–

2500 nm spectral range. The airborne hyperspectral data acquisition was part of the 

NASA and ISRO research collaboration for the HYPSIRI hyperspectral satellite 

(Bhattacharya et al., 2019). The satellite imagery was acquired about one hour before 

the acquisition of airborne hyperspectral imagery. Apart from the spectral imagery, we 

collected point-based in-situ hyperspectral reflectance measurements using a field 

spectroradiometer (Spectra Vista Corporation, HR-1024i, USA) on the target materials 

as per the standard procedures (Field Spectroscopy Guide with SVC I-Series 

Spectroradiometers, 2010). The in-situ measurements are considered pure spectral 

signatures of the target materials, free of atmosphere, and target–surface–neighborhood 

interactions. Plots of in-situ reference spectral signatures of the target materials are 

shown in Figure 4.3. There are two sources of ground-based target reference spectra, 

ground-based hyperspectral imagery (THI) (reference in-situ pixels), and the point-

based in-situ spectral reflectance from spectroradiometer. Since the THI collects 

hyperspectral imagery at a finer spatial resolution, we generated the reference target 

spectra by sampling target pixels corresponding to different places on the target 

materials. As the THI imager is sensitive to sensor noise beyond 900 nm, we used the 

THI data acquired in the spectral range 400 nm to 900 nm. After the initial pre-

processing, which included the calibration using the concurrent measurements acquired 

on white reference panels, all the spectral data were convolved and resampled using the 

sensor response function (SRF) of the respective sensor for analysis across the datasets. 

 

4.2.2.2 Pre-Processing of Airborne and Spaceborne Imagery 

 

The airborne AVIRIS-NG hyperspectral imagery was corrected for atmospheric 

distortions using the radiative transfer based Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes (FLAASH) model (Adler-Golden et al., 1998) and removed the 

noisy and uncalibrated spectral bands between 1348–1443 nm, 1804–1954 nm, 2485–

2500 nm thus resulting in effective imagery with 370 spectral bands. The Sentinel-2 

satellite acquires multispectral imagery at different spatial resolutions, 10 m, 20 m, and 

60 m. We used the imagery acquired at 10 m and 20 m resolution corresponding to blue 

(490 nm), green (560 nm), red (665 nm), NIR (842 nm), and vegetation red edge (705  



59 

 

 

Figure 4.3: Reference spectral signatures of the artificial target materials acquired from 

(a) in-situ point, and (b) in-situ pixel reflectance measurements. 

 

 

nm, 740 nm, 783 nm, 865 nm), SWIR (1610 nm, 2190 nm) bands of the Sentinel-2 

product respectively centered at the given wavelengths. Generating a vertically 

conforming surface reflectance data, we corrected the Sentinel-2 imagery for 

atmospheric distortions using the same model and sensor-surface hyper-parameters 

used for airborne imagery. The imagery acquired at 20 m spatial resolution was 

resampled to 10m resolution to conform to other imagery datasets. 

 

4.2.3 Experimental Implementation of Target Detection 
 

An outline of the methodological process flow adopted for the study is shown in Figure 

4.4. The ground position of the targets was recorded using a GPS device. Since the 

targets used in the experiments were considerably large, we designated the target 

footprint for the airborne imagery as a 16-pixel region of interest (ROI) and a 4-pixel 

ROI for space-borne imagery as suggested in Manolakis et al. (2003). It must be noted 

that, due to different sensor resolutions (4 m and 10 m for airborne and space-borne 

sensor respectively) and imaging geometry, target ROI for airborne imagery contains 

both full pixel as well as sub-pixel targets, while, target ROI for space-borne imagery 

contains predominantly sub-pixel targets. Since part of our aim was to evaluate the 

target detection possibility from multiple platforms, the input signal sources for the 

detector algorithms were collected from various sensors, as shown in Figure 4.4. We 

visualize three different scenarios: (i) the use of ground-based target spectra for 
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detection from airborne and space-borne imagery, (ii) the use of ground-based 

hyperspectral imager target spectra for detection from airborne and space-borne 

imagery, and (iii) the use of airborne based target spectra for detection from space-

borne imagery which can represent the essence of target detection problem from 

multiple civil and defense application perspectives. 

 

 

Figure 4.4: Methodological framework adopted for the target detection in multi-

platform remote sensing imagery. 

 

4.2.3.1 Target Detection Algorithms 

 

Apart from the target’s optical-spectral features and environmental settings, the target 

detection problem has two other primary perspectives—appropriate spectral imagery 

and detection algorithms. Given the applicable nature of spectral imagery, target 

recognition and identification are substantially controlled by the nature of algorithms 

used for target detection. While the development of advanced target detection 

algorithms is not within the purview of this research work, it would be valuable to 

analyze the variations of target detections as a function of the detection algorithm. We, 

therefore, studied the target detection in the datasets with popular detection algorithms 

available in the literature, evaluating the quality and sensitivity of the target detections 

based on the algorithms used. 
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The taxonomy of detection algorithms depends on various factors such as 

target-pixel occupancy (full pixel vs. sub-pixel target), considerations for spectral 

variability (either for target or background), and modeling the combination of pixel and 

sub-pixel targets (Manolakis et al., 2016). Several full and sub-pixel target detection 

algorithms such as SAM, MF, CEM, ACE, OSP, and TCIMF were implemented for the 

detection of targets in this experiment. The SAM, MF, ACE, and CEM are spectral 

detectors and hence do not require any prior knowledge of the background. However, 

OSP and TCIMF require prior scene background characterization. Typically, this is 

approached heuristically estimating the number of distinct background materials or 

endmembers. The number of distinct background materials represents the complexity 

of the scene and hence is a scene dependent parameter. We used the SMACC algorithm 

(Gruninger et al., 2004) for the background endmembers estimation. The detection 

performance of the OSP and TCIMF was evaluated for three different numbers (5, 10, 

and 15 endmembers) of background endmembers. Detailed discussion on the 

mathematical formulation of the target detectors is provided in the Section 2.2.  

 

4.2.4 Validation, and Quantitative Spectral Analysis 
 

The detection results from the different detection algorithms were compared against the 

ground truth map prepared for each case. Graph-based measures have been increasingly 

used for quantifying accuracy in various pattern recognition applications, especially in 

the cases of skewed class distributions (Fawcett, 2006). By the rarity of occurrence, 

target detection is an approximation of skewed class distribution (Krawczyk, 2016). We 

adopted the used ROC graphical measure for accuracy assessment. Based on the 

verified labels of the detections, ROC curves were drawn between the probability of 

false alarm (PFA) and the probability of detection (PD) expressed as: 

 

 
PD =

Number of correctly identified target pixels

Total number of actual target pixels
  

PFA =
Number of pixels identified as false targets

Total number of non − target pixels 
. 

(4.1) 
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The possibility and quality of target detections from multi-platform remote 

sensing imagery depend upon the existence and quantification of inherent spectral 

matching between target spectra from different platforms. Quantitative analysis of the 

spectral matching between the various combinations of reference target spectra and 

imaging platform deciphers the basis of target detections by detection algorithms. For 

each of the possible scenarios considered, we applied multiple spectral matching 

metrics: spectral angle (SA) (Kruse et al., 1993a), spectral information divergence 

(SID) (Chang, 2000a), and spectral gradient angle (SGA) (Robila & Gershman, 2005) 

on the spectral data extracted from the ground reference (ground hyperspectral imagery, 

and point-based spectral measurements) and the airborne and space-borne imagery. We 

present a brief description of the spectral matching metrics considered. 

Consider any two n-dimensional vectors P = {𝑝1, 𝑝2, 𝑝3, 𝑝4…𝑝n}
𝑡, and Q =

{𝑞1, 𝑞2, 𝑞3, 𝑞4…𝑞n}
𝑡. 

The spectral matching metrics SA, SID, and SGA are defined as: 

 

 SA (P, Q)= cos−1 (
〈𝐏,𝐐〉

∥𝐏∥𝟐∥𝐐∥𝟐
), (4.2) 

 

where, 〈 〉 denotes the dot product of two vectors and ∥. ∥2 denotes the Euclidean norm 

of a vector. 

 SID (P, Q) = 𝐷(𝑃  || 𝑄) + 𝐷(𝑄  || 𝑃) 

= ∑(
𝑝𝑖

∑ 𝑝𝑗
𝑛
𝑗=1

−
𝑞𝑖

∑ 𝑞𝑗
𝑛
𝑗=1

)(log(
𝑝𝑖

∑ 𝑝𝑗
𝑛
𝑗=1

) − log (
𝑞𝑖

∑ 𝑞𝑗
𝑛
𝑗=1

))

𝑛

𝑖=1

 
(4.3) 

 

where 𝐷 (𝑃 ∥ 𝑄) and 𝐷(𝑄 ∥ 𝑃)are called the relative entropy of Q with respect to P 

and relative entropy of P with respect to Q, respectively. 

 

SID is a probabilistic approach to measure the spectral similarity between two 

spectra. Each pixel is represented in the probabilistic space defined by their spectral 

histogram. Thus, the SID score is an indication of the behavioral difference in the 

probability distribution function of any two pixels. A score close to zero from the SA 

and SID indicates that the spectra are similar (Chang, 2003; Van der Meer, 2006). The 

spectral gradient angle can be expressed as: 
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 SGA (P, Q) = SA (𝑎𝑏𝑠(SG(P)), 𝑎𝑏𝑠(SG(Q))) and 

SG (P) = (𝑝2 − 𝑝1, 𝑝3 − 𝑝2, … , 𝑝𝑛 − 𝑝𝑛−1), 
(4.4) 

 

where SG( . ) is the spectral gradient of a given vector. The SGA computes the change 

of slope of the pixel vectors and is thus invariant to illumination condition similar to 

SA; a lower value of SGA suggests closer matching of the spectra compared. 

 

4.3 Results 
 

Our experimental research set up was aimed at examining three critical perspectives in 

remote sensing-based target detection: (i) platform—the probability and consistency of 

target detection vis-à-vis platforms, (ii) reference target spectra—the relevance and 

level of acquiescence of cross-platform target reference spectra, and (iii) detection 

algorithm—the variation of detection due to detection algorithms. The first component 

was approached by quantifying the magnitude and patterns of variation of 𝑃𝐷 with the 

three levels of platforms considered. The second component was addressed by 

comparing the levels of target detection rates between two sets of reference target 

spectra generated: from the same dataset and the cross-platform dataset. The third 

perspective, the influence of algorithms on the detection results, was assessed by 

measuring the change in patterns and detection rates from the different detection 

algorithms considered. As different detection algorithms characterize scene 

background at varying levels of land cover composition, the sensitivity of detection 

rates relative to the scene complexity (characterized by the number of endmembers) 

and the contrast between the target and its neighborhood was also carried out. The 

spectral analysis assessing the matching or lack of it in the multi-platform target spectra, 

quantitative comparison of the ground-based target reference spectra with the image-

based target spectra, was also performed using three different spectral matching 

metrics. We present the results organized based on the source of the target reference 

spectra. We considered target detection successful at detection probabilities of (𝑃𝐷) of 

100%, and 75%, recognizing the fact that the datasets encompass a wider range of 
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spectral variability. The detection and false alarm rates from different combinations of 

the platforms and algorithms are described in detail. 

 

4.3.1 In-Situ Measurements as Reference Target Spectra 
 

In this section, we present the results of target detection experiments when the in-situ 

reflectance measurements were used as the reference target spectra for target detection 

in airborne and space-borne imagery. 

 

4.3.1.1 Target Detection in Airborne Hyperspectral Imagery 

 

Results of the target detection in airborne hyperspectral imagery are summarized in 

Figure 4.5 and the corresponding representative detection score image in Figure 4.6. 

The detection score image is a raster image which contains a scalar value also known 

as score, corresponding to each pixel. The value represents the likelihood of the pixel 

for being flagged as target/non-target. Results indicate successful target detections for 

the different types of target materials, meeting the threshold detection rate at 100% 

threshold of 𝑃𝐷 for some materials. Overall, the detection rate is consistent across the 

types of materials. Except for SAM, all the detectors produced an average detection 

rate of 75% at nearly zero false alarm rate. 

 

Detection rate vs. scene complexity: In contrast to the generally acceptable 

levels of detection rates for a broader approximation of scene-background, detection 

rates are substantially variable by the scene complexity, and target–neighborhood 

contrast. The detection rates are consistent and satisfy the lower threshold when the 

scene complexity was represented by five endmembers. When the scene complexity 

increased to represent 15 endmembers, the false alarm rate increased steeply, indicating 

substantial performance degradation in some detection algorithms. The rise in the false 

alarm rate was not uniform and varied by different classes of detection algorithms. 

 

Identical materials vs. background contrast: It is expected that targets of 

identical material, even if of a different color or background, are recognizable in a 

hyperspectral imagery. Results indicate that the possibility of an identical base material 
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target in a different color or on different background introduces substantial ambiguity 

in the quality of target detection. For example, at 𝑃𝐷 of 75%, the 𝑃𝐹𝐴 from the CEM 

method is 0.0685, and 1.02 X10−4 respectively for the targets N2R and N1G placed on 

the same background. Similarly, the 𝑃𝐹𝐴 for the ACE method is 0.017, and 

2 × 10−6 respectively for the N4B and N1G targets placed on different backgrounds. 

During the detection of the N2R, the N1G was also flagged as a potential target and 

vice-versa (see Figure 4.6(d, e)). The failure of the suppression of targets of identical 

color but of physically different materials is one of the challenging problems 

encountered for spectrally close materials. Apparently, by the absolute value, 𝑃𝐹𝐴 is 

relatively low for considering the relevant target detections as ambiguous. However, 

when the corresponding 𝑃𝐹𝐴 estimates are converted into actual pixel count, the 

certainty of detection seems to be far from the ideal case. For instance, for the N1G 

target, the CEM flags a false alarm of ~70 pixels distributed across the imagery. If the 

confidence of the detection rate is increased to 100% (i.e., PD = 100%), almost all the 

detectors show substantially lower detection results in terms of completeness of the 

targets. Overall, results suggest that, apart from the target–background interaction, the 

spectral contrast of targets play a substantial role in the detectability. 
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Figure 4.5: Target detection performance comparison in airborne imagery for the in-

situ target reference spectra. ROC for the detection from spectral angle 

SAM, ACE, CEM, and MF for the (a) N1G, (b) N2R, (c) C1W, (d) N3Y, 

and (e) N4B targets. ROC curves for the detection from OSP and TCIMF 

for the N1G, N2R, C1W, N3Y, and N4B targets for (f–j) 5, (k–o) 10, and 

(p–t) 15 background materials. 

 

 

Figure 4.6: Target detection score image from (a) airborne imagery using in-situ 

reference target spectra, and the enlarged detection score footprint for (b) 

N3Y, (c) N4B, (d) N1G, (e) N2R, and (f) C1W target (In all the target 

detection score images, a brighter pixel indicates a higher target detection 

score and thus a higher probability for it to be declared as a target). 
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 4.3.1.2 Target Detection in Spaceborne Remote Sensing Imagery 

 

Results of the target detection in airborne hyperspectral imagery are summarized in 

Figure 4.7 and the corresponding representative detection score image in Figure 4.8. 

Due to coarse spectral and spatial resolutions and the substantially higher level of 

atmospheric influences, target detection in space-borne multispectral imagery is 

challenging compared to airborne hyperspectral imagery. Use of the in-situ reflectance 

measurements, considered a pure form of reference spectra, as target reference spectra, 

elicited no quantifiable spectral discrimination of target pixels in the satellite imagery. 

As evident from Figure 4.8, the detection scores and surrounding pixels are similar for 

targets N1G, N2R resulting in higher false alarm rates across all the algorithms (Figure 

4.7). While the detection results included the pixels of targets, the apparent gross 

overestimation indicates the detection results to be unreliable. The detection algorithms 

either fail to detect or the respective false alarm rates are higher due to the relatively 

lesser number of estimated background endmembers. However, when the probability 

of detection was set at 75% and the scene complexity increased by representing with a 

large number of endmembers (10 or more), the sub-pixel target detection algorithms 

(e.g., CEM, TCIMF, Figure 4.7(p)) produced stable detection results. It is interesting to 

note that unlike target detection in airborne imagery, there was no change in the false 

alarm rate when the probability of detection was increased from 75% to 100%. 

 

 



68 

 

 

Figure 4.7: Target detection performance comparison from space-borne imagery for the 

in-situ target reference spectra. ROC curves for the detection from SAM, 

ACE, CEM, and MF for the (a) N1G, (b) N2R, (c) N3Y, (d) C1W, and (e) 

N4B targets. ROC curves for the subspace-based detector OSP and TCIMF 

for the N1G, N2R, N3Y, C1W, and N4B targets for (f–j) 5, (k–o) 10, and 

(p–t) 15 endmember/background materials. 

 

 

Figure 4.8: Target detection score image (a) from space-borne imagery using in-situ 

target reference spectrum and the enlarged detection score footprint for (b) 

N3Y, (c) N4B, (d) N1G, (e) N2R, and (f) C1W targets. 
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4.3.2 Ground-Based Hyperspectral Imagery (THI) as Reference 

Target Spectra 
 

In-situ or laboratory-based spectral reflectance measurements of materials are 

considered to be the pure forms of the spectral signatures. While the relevance of the 

purity of spectral signature seems standing, theoretically, on a sound basis, the results 

presented in this section indicate that a pixel-based reference spectrum is a viable 

substitute to the in-situ spectra. 

 

4.3.2.1 Target Detection in Airborne Hyperspectral Imagery 

 

The results of target detection in airborne hyperspectral imagery and a representative 

detection score images are shown in Figures 4.9 and 4.10. Results indicate the 

possibility of target detection, suggesting the existence of a spatially distinct spectral 

matching between the ground hyperspectral imagery and the airborne hyperspectral 

imagery. As shown in Figure 4.10(e), in the case of the THI reference spectrum, 

suppression of similar but different targets (NIG suppressed when N2R was detected 

and vice-versa) is superior compared to the results from in-situ reference spectra (see 

Figure 4.6). However, the false alarm rate is higher compared to the extent and spatial 

distribution of the target pixels in the airborne hyperspectral imagery. This may be due 

to the limited in the spectral coverage (400–1000 nm), compared to the full optical 

spectrum of the airborne hyperspectral imagery (400–2500 nm). As the targets 

considered are inorganic artificial materials, spectral reflectance in the shortwave 

infrared region (1000–2500 nm) may provide characteristic spectral discrimination. 

Compared to the case of using in-situ reference target spectra, spectral matching based 

detection algorithms showed relatively better detection rate, consistent across the 

targets. In addition, contextually camouflaged targets were also detected, as indicated 

by the relatively higher scores of 𝑃𝐷 and negligible scores of 𝑃𝐹𝐴. 

 

The detection rate of the targets by background-characterization based 

algorithms is ambiguous. In-scene estimation of background material spectra was poor. 

For e.g., for the N3Y target, detection by TCIMF improved when the estimated number 

of background material increased from 5 to 15 but degraded at the same time for the 
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N2R target. As observed, if the 𝑃𝐷 rate is required to be high (𝑃𝐷 = 100%), detection 

rate from all the detectors is unacceptable for any practical system. 

 

 

Figure 4.9. Target detection performance comparison in airborne imagery for the 

terrestrial hyperspectral imager (THI) target reference spectra. ROC 

curves for the detection from SAM, ACE, CEM, and MF for the (a) N1G, 

(b) N2R, (c) N3Y, and (d) N4B targets. ROC curves for the subspace-

based detector OSP and TCIMF for the N1G, N2R, N3Y, and N4B targets 

for (e–h) 5, (i-l) 10, and (m–p) 15 endmember/background materials 
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Figure 4.10: Target detection score image from (a) airborne imagery using THI target 

reference spectrum and the enlarged detection score footprint for (b) N3Y, 

(c) N4B, (d) N1G, and (e) N2Rtarget. 

 

4.3.2.2 Target Detection in Spaceborne Remote Sensing Imagery 

 

With the consideration of THI pixel spectra as target reference spectra, the results of 

target detection in space-borne multispectral imagery and a representative detection 

score image in Figures 4.11 and 4.12, respectively. Similar to the results obtained with 

the point-based in-situ target reference spectra, the target detection in space-borne 

multispectral imagery is ambiguous across the types of targets. A couple of detection 

algorithms (e.g., CEM, OSP) produced detection scores meeting the threshold limit. 

However, the corresponding disproportionately high false alarm rate indicates that the 

detection is by chance. 

(a)

(b) (c)

(d) (e)
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Figure 4.11: Target detection performance comparison in space-borne imagery for the 

THI target reference spectra. ROC curves for the detection from SAM, 

ACE, CEM, and MF for the (a) N1G, (b) N2R, (c) N3Y, and (d) N4B 

targets. ROC curves for the subspace-based detector OSP and TCIMF for 

the N1G, N2R, N3Y, C1W, and N4B targets for (e–h) 5, (i–l) 10, and (m–

p) 15 endmember/background materials. 

 

 

Figure 4.12: Target detection score image from (a) space-borne imagery using THI 

target reference spectra and the enlarged detection score footprint for (b) 

N3Y, (c) N4B, (d) N1G, and (e) N2R target. 
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4.3.3 Target Reference Spectra from the Airborne Hyperspectral 

Imagery 
 

4.3.3.1 Target Detection in Airborne Hyperspectral Imagery 

 

Target detection experiments were carried out on the airborne hyperspectral imagery 

and space-borne multispectral imagery using considering pixel-based spectra extracted 

from the airborne hyperspectral imagery as target reference spectra. Figure 4.13 shows 

the target detection scores for the different types of targets in the airborne hyperspectral 

imagery. Targets were detected with detection scores exceeding 90% with negligible 

false alarm rates. The accurate detection of the lowest false alarm rates across the target 

types and detection algorithms indicates the possibility of consistent target detections 

in airborne hyperspectral imagery. However, the relatively higher rate of false positives 

for the contextually camouflaged targets suggests the dominance of local background– 

target interactions (as evident in Figure 4.14) on the radiance measurements. The 

limitations of the present suite of detection algorithms in discerning complex 

background–target interactions might also be a reason higher false alarm rate for 

detecting contextually camouflaged targets. 
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Figure 4.13: Target detection performance comparison in airborne imagery for the 

airborne target reference spectra. ROC curves for the detection from 

SAM, ACE, CEM, and MF for the (a) N1G, (b) N2R, (c) N3Y, (d) C1W, 

and (e) N4B targets. ROC curves for the subspace-based detector OSP and 

TCIMF for the N1G, N2R, N3Y, C1W, and N4B targets for (f-j) 5, (k-o) 

10, and (p-t) 15 endmember/background materials. 

 

 

Figure 4.14: Target detection score image from (a) airborne imagery using airborne 

target reference spectrum and the enlarged detection score footprint for 

(b) N3Y, (c) N4B, (d) N1G, (e) N2R, and (f) C1W target. 
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4.3.3.2 Target Detection in Spaceborne Multispectral Imagery 

 

The target reference spectra extracted from the airborne hyperspectral imagery were 

transferred and convolved to space-borne level for target detection in the space-borne 

multispectral imagery. The detection results are summarized in Figure 4.15 and a 

representative detection score image in Figure 4.16. Most of the detection results are 

ambiguous with a higher rate of false alarms. However, when compared to the detection 

results from using in-situ target reference spectra, detection in satellite imagery 

increased substantially across the targets and algorithms. For instance, in the case of 

MF and ACE, the rate of false positives at 𝑃𝐷 of 75% is very low (10−2 to 10−5). 

Further, contrary to the influence of background types observed in the airborne 

imagery, target detection in space-borne imagery seems not sensitive to the local 

background. For example, for the two different targets (e.g., N1G and N2R) placed 

against the same background, the difference in false alarm rate is relatively low. 

However, this sensitivity is not stable across the detection algorithms. The subspace 

detectors continued to yield ambiguous detection results for most of the targets. The 

differences in the spatial and spectral resolutions, coupled with acquisition geometry 

and enhanced atmospheric effects may have led to the relatively weaker target 

localization in the space-borne imagery. 
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Figure 4.15: Target detection performance comparison in space-borne imagery for the 

airborne target reference spectra. ROC curves for the detection from 

SAM, ACE, CEM, and MF for the (a) N1G, (b) N2R, (c) N3Y, (d) C1W, 

and (e) N4B targets. ROC curves for the subspace-based detector OSP and 

TCIMF for the N1G, N2R, N3Y, C1W, and N4B targets for (f–j) 5, (k–o) 

10, and (p–t) 15 endmember/background materials. 

 

 

Figure 4.16: Target detection score image from (a) space-borne imagery using airborne 

target reference spectrum and the enlarged detection score footprint for (b) 

N3Y, (c) N4B, (d) N1G, (e) N2R, and (f) C1W target. 
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4.3.4 Target Reference Spectra from the Spaceborne Multispectral 

Imagery 
 

The results of target detection in space-borne imagery obtained from using in-scene 

target reference spectra are shown in Figure 4.17 and a detection score image for the 

best case detection in Figure 4.18. Results indicate improved detection scores and low 

false alarms compared to the detection performance obtained from using the target 

reference spectra from in-situ spectral measurements or airborne hyperspectral pixel 

spectra. The performance of all the statistical detectors is similar, and detection rates 

meet the 75% level of probability. However, detection performance from the subspace 

target detectors is random and unreliable. The overall detection results show substantial 

viability in the detection of the engineered targets using the in-scene multispectral target 

spectra from the space-borne imagery. 

 

 

Figure 4.17: Target detection performance comparison in space-borne imagery for the 

airborne target reference spectra. ROC curves for the detection from SAM, ACE, CEM, 

and MF for the (a) N1G, (b) N2R, (c) N3Y, (d) C1W, and (e) N4B targets. ROC curves 

for the subspace-based detector OSP and TCIMF for the N1G, N2R, N3Y, C1W, and 

N4B targets for (f–j) 5, (k–o) 10, and (p–t) 15 endmember/background materials. 
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Figure 4.18: Target detection score image from (a) space-borne imagery using space-

borne target reference spectrum and the enlarged detection score footprint 

for (b) N3Y, (c) N4B, (d) N1G, (e) N2R, and (f) C1W target. 

 

4.3.5 Quantitative Spectral Similarity Analysis 
 

Results of the spectral similarity assessment between the possible pairs of ground, 

airborne, and space-borne target reference spectra are presented in Tables 4.2 through 

4.4. For visual comparison, spectral signatures of the targets from imagery and 

reference sources are shown in Figure 4.19. We found considerable spectral variability 

in the in-scene target spectra, particularly the case of in-situ reference spectra compared 

to the airborne image spectra (Figure 4.19 (a–e) (I)). The relatively higher accuracy of 

target detections observed in the airborne imagery (Section 4.3.1.1) while using the in-

situ spectral measurement as reference target spectra can be attributed to the inherent 

spectral similarity between in situ reference spectra and airborne image spectra (Table 

4.2; lower SID and SGA value across all target materials). Further, the score for the in-

situ target reference spectra and space-borne target image spectra shows stark 

dissimilarities across the targets explaining the apparent unsatisfactory detection 

performance across the algorithms (Section 4.3.1.2). Similarly, the detection 

performance observed in Section 3.2 conforms to the similarity measure seen in Table 

4.3. Comparing the similarity scores from Tables 4.2 and 4.4, we found a close 

similarity between the airborne reference spectra and space-borne image spectra 

compared to that of the in-situ to the space-borne image spectra. This matching 

reflected aptly in the detection performance observed in Section 4.3.3. It may be noted 

that the similarity measures employed for quantifying spectral matching are designed 

(a)

(b) (c)

(d) (e) (f)
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mainly for hyperspectral resolution data. Use of these measures for the quantitative 

spectral matching in multispectral data may not be optimal.  

 

 

 

 

Figure 4.19. Spectral comparison of the reference target spectra with the corresponding 

image target spectra for: (I) in-situ measurements of (a,f) N1G, (b,g) N2R, 

(c,h) C1W, (d,i) N3Y, and (e,j) N4B compared to airborne and space-

borne image spectra respectively; (II) THI measurements of (a,e) N1G, 

(b,f) N2R,(c,g) N3Y, and (d,h) N4B compared to airborne and space-

borne image spectra respectively; and (III) airborne measurements of (a) 

N1G, (b) N2R, (c) C1W, (d) N3Y, and (e) N4B compared to space-borne 

image spectra. 
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Table 4.2: Spectral similarity measures between the point-based in-situ target reference 

spectra and the corresponding airborne, and space-borne target image 

spectra (spectral angle (SA) is measured in degrees and spectral gradient 

angle (SGA) in radians) Values in bold are statistically significant. 

 

 

In-Situ Reference Spectra 

vs. 

Airborne Image Spectra 

In-Situ Reference Spectra 

vs. 

Satellite Imagery Spectra 

Metric N1G N2R C1W N3Y N4B N1G N2R C1W N3Y N4B 

SA 7.623 10.386 12.273 8.503 11.617 8.338 14.111 15.246 8.008 19.219 

SID 0.031 0.050 0.050 0.028 0.105 0.045 0.126 0.074 0.019 0.306 

SGA 0.650 0.839 0.523 0.678 0.744 0.688 1.040 0.904 0.667 0.887 

 

Table 4.3: Spectral similarity between the THI target reference spectra and the 

corresponding airborne, and space-borne target image spectra (SA is 

measured in degrees and SGA in radians). Values in bold are statistically 

significant. 

 

 

THI Reference Spectra 

vs. 

Airborne Image Spectra 

THI Reference Spectra 

vs. 

Satellite Imagery Spectra 

Metric N1G N2R N3Y N4B N1G N2R N3Y N4B 

SA 15.444 15.762 20.916 14.268 13.459 17.567 18.181 16.290 

SID 0.143 0.101 0.179 0.172 0.087 0.136 0.134 0.176 

SGA 0.775 0.821 0.943 0.754 0.898 1.282 0.288 0.836 
 

 

Table 4.4: Spectral similarity between the airborne target reference spectra and the 

space-borne target image spectra (SA is measured in degrees and SGA in 

radians). Values in bold are statistically significant. 

 

 

Airborne Reference Spectra 

vs. 

Satellite Imagery Spectra 

 

Metric N1G N2R C1W N3Y N4B 

SA 4.169 4.431 13.008 1.406 6.045 

SID 0.011 0.016 0.073 0.001 0.018 

SGA 0.336 0.391 0.378 0.096 0.309 
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4.4 Discussion 
 

Having the spectral profiling a priori, targeted detection of artificial/engineering 

materials using remote sensing is emerging as a data paradigm for a host of civil and 

strategic applications. Among the recent developments in hyperspectral remote sensing, 

target detection has the potential to deploy on a broader application base. There have 

been a few seminal efforts on acquiring and making them freely available benchmark 

airborne hyperspectral datasets which have attempted detecting specific information 

class/materials of interest. There have also been a few studies on target detection in 

synthetic or simulated hyperspectral imagery (Goodenough & Brown, 2012). 

 

While these datasets and experiments provide a solid base for classification-

oriented exploration, targets and their landscape-neighborhoods in these datasets are set 

in a relatively controlled environment. They may not represent typical landscapes and 

target conditions. Apart from that, the criteria used for labeling a pixel detection as 

‘true’ or ‘false’ has a substantial bearing on the magnitude of detection accuracy. For 

example, the best accuracy estimates for the case of airborne imagery in this study are 

equal or slightly lesser compared to the accuracy reported in the state-of-the-art 

literature (Snyder et al., 2008b; Wang & Xue, 2017). The potential target detection 

performance in our experiments, considering only from the pixel labelling perspective 

would be substantially higher than the values presented in this chapter, and the values 

reported in the literature. From the state-of-the-art in accuracy estimates in target 

detection, the difference between our potential accuracy and reported accuracy is due 

to the relatively liberal criterion used for accuracy estimation in the literature. The past 

studies define a target guard window - representing a neighborhood region at three 

different levels and proximity to the core ‘target pixel’ for labeling a detection true or 

false. The detection of even a single pixel within any of these three levels is considered 

100% correct detection of the whole target, which may lead to overestimation of 

detection performance. Avoiding the possibility of this uncertainty, we used the 

stringent pixel-for-pixel matching based count of target pixels for computing the 

performance metrics 𝑃𝐷 and𝑃𝐹𝐴. 
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Furthering the experimental landscapes and the benchmark reference datasets 

for target detection, the goal of our research is the acquisition and exploration of a multi-

platform—ground, airborne, and space-borne remote sensing dataset for target 

detection of artificial/engineered materials. Our experiments were aimed at assessing 

the dynamics of target detection in terms of (i) spectral attribute conformity of reference 

target spectra from the ground to space-borne, (ii) target–background interaction: 

identical target material on similar, and different backgrounds, and (iii) the relevance 

of detection algorithms and their functional categorization. We present in the following 

sub-sections the relevance and importance of the results organized according to the 

three perspectives mentioned above. 

 

4.4.1 Spectral Conformity of the Reference Target Spectra from 

Ground to Spaceborne Platform 
 

The continued detections of the engineered material targets in the ground to space-

borne imagery, though at different levels of confidence, preserving the location 

adherence and material-specific identifications indicates the presence of material-

specific spectral features. Results from the airborne hyperspectral imagery exhibit 

successful target detections from both the point-based in-situ and pixel-based THI 

reference target spectra. However, target detections using the in-situ target reference 

spectra are valid only for ground and airborne imagery. As evident from Figure 4.7, the 

target detections in the space-borne imagery drop to that of a random process. 

Contrasting to this trend, detection results from the pixel-based reference target spectra 

indicate patterns in the target detection in both the airborne and space-borne imagery. 

However, point-based in-situ, and the pixel-based THI reference target spectra yield 

comparable levels of target detections in the airborne hyperspectral imagery. Target 

detection and the quantitative spectral assessment of the pixel-based THI reference 

target spectra with the airborne (AVIRIS-NG imagery) and the space-borne (Sentinel-

2 imagery) spectra suggests stable spectral conformity of material spectra at the ground, 

airborne, and space-borne platforms. The pixel-based THI spectral conformity leads to 

two practical implications: (i) a new source of in-situ reference spectra, and (ii) 

potential syllogism that impure contextual spectrum is better than the laboratory-grade 

pure spectrum. Ground-based hyperspectral image acquisitions can replace the 
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spectroradiometer based in-situ or laboratory spectral measurements. Image-based 

reference spectra acquisition is particularly advantageous in surveying inaccessible 

terrain or to acquire rapid reference measurements for the dynamic image-based target 

detection systems. The concept of spectral purity, considered to be inherent in the 

spectral endmembers of reference spectral library-based databases need to be revisited 

to consider for infusing some degree of spectral-contextual-impurity for further usage 

in the image-based detection systems. Compared to point measurement, a pixel has the 

inherent structure to infuse geometrical, illumination and micro-environmental settings 

of material-energy interactions in the reflectance spectra. The pixel spectra may help 

represent the dynamics of material target spectra acquired at different platforms. 

 

Target detection in space-borne imagery using the reference target spectra from 

airborne imagery helps evaluate detection possibilities over a wider geographical 

region. Successful target detections for targets in the space-borne imagery using the 

reference target spectra from airborne imagery suggests the existence of a spectral 

continuum between airborne and space-borne imagery. Compared to the results from 

in-situ or pixel-based THI spectra, the airborne image-based reference spectra produced 

relatively lesser false alarms in space-borne imagery. For example, in the case of the 

lowest target detection scenario (N2R; algorithm: CEM), the false alarms reduced from 

5624 to 1712 when the confidence of the detection rate is set at 75%. Target detections 

in the airborne imagery using the reference target spectra from the airborne imagery 

itself are accurate and unambiguous across all the detection algorithms at the 100% 

probability of detection rate. However, the target detections in space-borne imagery 

using the reference target spectra from the space-borne imagery itself are comparable 

with the results obtained from using the pixel-based THI reference target spectra. At 

the 75% probability of detection rate, the target detections are erroneous mainly by 

overestimation—most of the targets are detected albeit with substantial proportions of 

false alarm. Overall, the results confirm that the strength of spectral conformity of the 

input reference target spectra determines the quality of the target detection in imagery 

acquired from different platforms. 
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4.4.2 Target - Background Interaction: Role of Context 
 

To test the impact of contextual background–target spectral interactions on the 

repeatability of the target detections, we placed targets of identical material in different 

colors on different backgrounds. Considering the background–target spectral 

interactions, the detection of identical materials on identical background vary from 

being systematic and successful to random and fail. With marginal to moderate 

variations in the false alarm rate (PFA), our results suggest unambiguous target 

detection of identical materials on an identical background in both the airborne and 

space-borne imagery (see Figure 4.20). Compared to the case of identical materials on 

identical background, detection rates of identical material targets positioned on 

different backgrounds vary mainly on the local contrast between target material and 

background. Accordingly, the detection rates vary from being chance matching to 

consistent detection. A similar observation has been reported by (Yadav et al., 2018b), 

confirming the substantial effect of scene parameters on the target detection accuracy. 

In addition, we find that the potential of background interference for altering the 

detection scores depends substantially on the source of reference target spectra and the 

detection algorithm. 

 

The variability in the detection rate of identical materials poses a plausible 

question: How do we standardize the detection rate and ensure detection reproducibility 

under different environmental, background, and other geometrical factors? The 

inconsistency in the detection performance needs to be addressed from an algorithmic 

design perspective, modeling and incorporating the source of uncertainties in the 

reference target reflectance spectra as observed by different sensors. One of the primary 

causes for the different detection rates is the non-linearity in the contextual background 

reflectance recorded by sensors at different platforms, as shown in Figure 4.21(a). 

Modeling the reference target spectra with possible background mixtures and 

developing contextual-background sensitive algorithms may enhance target detections 

across platforms and sensors. Overall, we observe that targets placed on a 

comparatively reflective local background are detected with lower false alarms 

(𝑃𝐹𝐴 ~ 10
−4) by all the algorithms. Although a detailed analysis of the role of 

background is not in the purview of this chapter, our results support the theoretical 
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perspectives of different target-background outlined by (Matteoli et al., 2014), and we 

suggest maintaining a balance between model sophistication and its real-time 

applicability. 

 

 

Figure 4.20: False alarms at different levels of PD for (I) identical target material (N1G 

and N2R) in the same context (vegetative) for the (a) best case, and (b) 

worst-case detection performance; (II) identical target material (N1G and 

N3Y) in a different context (vegetation and soil respectively) for (c) best 

case, and (d) worst-case detection performance. 

 

4.4.3 Detection Algorithms and their Functional Categorization 
 

Apart from the spectral-geometrical-imaging platform dynamics of the target materials, 

detection algorithms play a key role in recognizing and identifying material targets. 

Given the acquisition of appropriate spectral imagery and meeting the minimum 

dimension of the target material, the detection algorithm employed determines the 

possibility and quality of target detections. For the given target reference spectra, the 

functional characterization expected from a potential detection algorithm is the ability  
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Figure 4.21: (a) Visualization of the non-linear interaction of background signal with 

the target spectrum for the N2R and N1G targets, and (b) best case target 

detection continuum results of detection performance across imagery 

from all the platforms (G-ground, A-airborne, S-space-borne) for all the 

targets used in at a false alarm rate of 10−3 for the in-situ target reference 

spectra. 

 

to deal with target–background interactions and spectral pattern discrimination in 

imagery. Based on the functional characteristics, we used three types of detection 

algorithms, belonging to categories of geometric approach, spectral matching, and 

background characterization. Target detection of materials in the airborne imagery, 

with target reference spectra extracted from the same imagery, is accurate and complete 

(at 𝑃𝐷=75%) by most of the detection algorithms and the material targets. However, 

major performance limitation of the detection algorithms can be attributed to the 

sensitivity to backgrounds. The detection rate of an identical material target positioned 

on two different backgrounds varied substantially by the detection algorithm. Among 

the spectral matching based detectors, CEM consistently detected material targets 

across the source of reference target spectra and imagery platform. Yet, the average 

number of false alarms is ~50, predominantly in the urban areas (see Figure 4.5), which 

may not meet the practical target detection purposes. The performance of subspace-

based detectors is determined by the quality of extracted endmembers, which in turn 

depends upon the endmember extraction algorithm used. For example, OSP and 

TCIMF yielded the lowest false alarms for some materials (𝑃𝐹𝐴 ~10
−5 for N1G and 
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C1W), but high false alarms for other materials (N4B, N3Y with 𝑃𝐹𝐴 ~10
−2 𝑡𝑜 10−4) 

(see results in Section 3.1.1). However, for the two similar materials placed on a 

different contextual background, the detection rate varied drastically between the 

spectral and subspace-based detectors. For example, for the MF the difference in the 

detection rate between N4B and N1G is ~20 times; whereas, for ACE, it is about 10,000 

times. 

 

The adaptability of the sub-pixel detection algorithms, such as CEM, TCIMF, 

ACE, and OSP, for the detection of engineered materials from space-borne imagery is 

fraught with a large number of false alarms. While the pixels of target materials are 

detected, the number of false alarms outweighs the detection rate 𝑃𝐷 at 75%. For 

instance, when the 𝑃𝐷 is 75, CEM yielded 3260 false alarms for the detection of the 

N1G from the space-borne imagery. In addition, the effect of target–background 

interaction (due to mixed pixels) on algorithms’ performance seems pronounced in 

space-borne imagery (Figure 4.7). However, when the confidence of the detection rate 

𝑃𝐷 is reduced to 50%, the results from the space-borne imagery (Sentinel-2 at 10 m 

resolution) are consistent, indicating the potential utility of space-borne imagery for 

target reconnaissance. We find that the state-of-the-art target detectors needs substantial 

refinements for target detection problems. A couple of studies suggest the use of local 

mean and covariance estimation, and quantification of interaction effects for improved 

detection (Cohen et al., 2012; Wang & Xue, 2017). Algorithms with adaptive target–

background signal modeling with incorporations of non-linear signal mixing models 

for sub-pixel/mixed pixel targets can provide better results compared to the traditional 

statistical detectors. 

 

4.4.4 Key Elements of Influence in Target Detection 
 

Based on our analyses of the extensive target detections observed under different 

combinations of background, material, and detection algorithms, we present an 

empirical estimation of the relative contributions of the three key elements of a remote 

sensing-based target detection system - ground (including local background), sensor 

(spectral properties), and target (types and positioning) as vertices of an isosceles 

triangle. As illustrated in Figure 4.22, the target detection space represents the 



88 

 

possibility of detecting material targets under the full detection possibility (area of the 

triangle) considering the possible levels of the three key elements. The quality of 

detections depends upon finding the optimal range in each of the key elements and 

modeling the appropriate weights. Background contrast (as defined from the target 

spectral attributes), and sophistication of detection algorithm (ability to localize the 

target–background spectral attributes) have major contribution compared to the spectral 

dimensionality of imagery. The spectral features and detection algorithms have equal 

participation (about 35% each) in the detection as represented by sides of the triangle 

(Figure 4.22). The base of the triangle, the target-background, has about 30% 

contribution in the detection and is a landscape driven parameter, not amenable for prior 

human intervention. Improvement in the precision and detection scores, representing 

the height of the triangle, is the sophistication of detection algorithms with reference to 

optimal spectral dimensionality. A stable target detection system will be the weighted 

combination of the three key elements and will have its detection scores in the triangle 

represented by ‘realistic detection space’. Reaching the most optimized combination of 

the key elements (indicated by the green circular dot) is the theoretical upper limit of 

the target detection system. 

 

 

Figure 4.22: Various elements of a target detection system and their mutual correlation 

in the detection space. 

 

Low                                                            High

Background-target contrast
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Ground Target
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4.4.5 Experimental Dataset 
 

The multi-source multi-platform dataset for target detection will be a valuable resource 

for the ongoing efforts on target detection using hyperspectral and multispectral remote 

sensing data. The high-quality in-situ reference spectral data, acquired both in point and 

pixel mode, will be helpful to test the nuances of detection related problems and 

assessment of detection algorithms. Since the present dataset was acquired from an 

urban neighborhood, the complexity of the imagery would provide a rigorous test to the 

existing theories about the detection problems. The detection of engineered material at 

pixel level from satellite data is vital for strategic purposes, and the dataset acquired in 

this research can be used for validating such endeavor. For all the practical purposes, 

we propose that the detection metric (𝑃𝐷) of target detectors should be relaxed and re-

evaluated according to the imaging complexity of the scene. Target detection can be 

undertaken in both the reflectance and radiance modes. However, for the present work, 

we have only tested the detection performance in the reflectance domain. Radiance 

domain target detection will be pursued as future work. The experimental dataset used 

in this study will be made available on an appropriate freely accessible public platform. 

 

4.5 Chapter Conclusions 
 

In this chapter the experimental setup for a multi-platform benchmark remote sensing 

dataset and various aspects of target detection, algorithm development and their 

evaluation are presented. We have carried out experiments on target detections as a 

function of sensor, platform, target–background, and the source of reference target 

spectra. We observe unambiguous detection of targets in the airborne imagery. The 

false alarm rate is substantially low if the probability of detection (𝑃𝐷) is reduced to 

75%. The continuity and the quality of target detections are found to be influenced by 

the source of reference target spectra. While the target–background interaction is one 

of the key components determining the quality of detection, it is not a decisive 

constraint on the overall detection of targets. Target detection results from the ground-

level hyperspectral imagery-based target reference spectra are at par with point-based 

in-situ target reference spectra. The ground-based hyperspectral imaging sensor is a 
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viable source for rapid acquisition of target reference spectra. A non-imaging 

spectroradiometer generated in situ reference spectrum may not conform to the 

landscape area element-based target pixel spectrum in spectral imagery. The continuity 

of target detections from the ground to space, though with different proportions of false 

positives, suggests the viability of satellite imagery-based target detection. However, 

further experiments are required to generalize this observation. Notwithstanding the 

quality spectral data sources, detection algorithm determines the quality of target 

detections. The false positives rate is substantial in most of the detection algorithms 

evaluated, calling for the development of multi-resolution spectral dimensionality 

invariant target detection algorithms.  
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CHAPTER 5 
 

 

INFLUENCE OF ATMOSPHERIC MODELLING ON 

SPECTRAL TARGET DETECTION IN MULTI-

PLATFORM REMOTE SENSING DATA 
 

 

Prelude: This chapter presents quantitative assessment of the impact of atmospheric 

parameters on the detectability of engineered targets. Specifically, the influence of 

critical atmospheric parameters such as AOT, atmospheric profiles, and aerosol 

models are on the sensor reaching radiance from the target detection perspective is 

assessed. The multi-platform dataset described in the Chapter 4 is used for the analysis. 

We formulated the radiance spectral library by simulating top-of-atmosphere (TOA) 

radiance spectra using the 6S RTM. We have considered two cases of target radiance 

spectra simulations, i.e., (i) corresponding to a grid of different AOT values for a 

predefined atmospheric and aerosol profile, and (ii) corresponding to varying 

combinations of atmospheric and aerosol profiles at a given AOT. It is observed that 

change in the magnitude of AOT across atmospheric models and selection of wrong 

atmospheric models resulted in decision-changing implications in the target detection 

modelling.  

 

5.1 Introduction 
 

The sparse nature of targets combined with the propagations of uncertainties in the 

target imaging process, such as sensor noise, atmospheric scattering, absorption, target 

surface characteristics, etc., deter or hinders a reliable detection rate.  

_____________________ 

1The contents of this chapter have been submitted for publication in ISPRS Journal of Photogrammetry 

and Remote Sensing and is under review. Authors: Sudhanshu Shekhar Jha, Rama Rao Nidamanuri, 
Ientilucci Emmett J.  
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Target detection from remote sensing platforms such as UAV, airborne flights, etc., 

requires a multi-dimensional approach to improve detection accuracy, including 

mitigation of uncertainties caused by inefficient atmospheric parameter modelling. 

There have been few studies on the effect of various factors such as the size of the 

target, target-background interaction, sensor characteristics, algorithms (Wang & Xue, 

2017; Yadav et al., 2018a) on target detection performance. Still, the impact of the 

RTM-based estimates, with associated assumptions, of the atmospheric variables such 

as standard atmospheric profiles, aerosol models, etc., and associated uncertainties 

related to target detection performance has been overlooked and, in general, reported 

less in the literature (Yarbrough et al., 2010; Sundberg, 2018; Kim et al., 2019). 

  

Usually, a target detection chain involves RTM (Figure 1.3) in the imagery pre-

processing stages to compensate for the atmospheric effects (scattering and absorption 

of the signal) from the measured at-sensor radiance. Such a process is termed 

atmospheric correction or compensation (AC) or inverse modelling (IM) and is 

generally carried out using physics-based models such as MODTRAN, 6S, for 

example(Ientilucci & Bajorski, 2006; Ientilucci & Adler-Golden, 2019). It is common 

to use the AC mode of data pre-processing for numerous remote sensing applications 

(Agapiou et al., 2011b; Martins et al., 2017). AC approach for quantifying remote 

sensing products involves intensive computing resource and are often time-consuming 

(pixel-by-pixel inversion), which can prove to be a bottleneck for time-critical 

applications. An alternative approach, termed forward-modelling (FM), uses in-situ 

reflectance data of the objects at the ground so as to approximate their at-sensor spectral 

radiance (Matteoli et al., 2009; Ientilucci, 2017). The FM approach requires less 

computational resources as the modelling process is limited to generating a few spectral 

vectors corresponding to a gamut of atmospheric parameters, unlike the AC approach, 

which would require the generation of several data cubes for the same (Matteoli et al., 

2010). 

 

Physics-based models typically require multiple parameters to approximate the 

atmosphere, such as columnar temperature, pressure, water vapor, ozone, gaseous 

transmittance, scattering model, aerosol optical thickness, etc. The reliability of remote 

sensing-based studies is often directly dependent on the quality of estimation of these 
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atmospheric parameters (Nia et al., 2015; Marcello et al., 2016; Sabater et al., 2017; 

Seong et al., 2020). In terms of data models and hardware capability, substantial 

developments in computing infrastructure have encouraged research in exploring 

efficient methods to expedite on-board methods of the various recurrent problems in 

remote sensing (Bue et al., 2015). Although some studies have been reported on onboard 

AC, their scope remains limited due to the exhaustive resource required for such 

implementations. On the other hand, accelerated hardware components such as Field 

Programmable Gate Arrays (FPGA) have shown that real-time applications, such as 

object detection and classification, can be carried out given computational overheads are 

optimized (Gyaneshwar & Nidamanuri, 2020; Nascimento et al., 2020). One of the 

limiting factors for carrying out such operations is uncertainties in modelling the 

atmospheric parameters. Although few studies have been carried out to analyse the 

impact of modelling the atmospheric parameters on remote sensing derived products, 

exhaustive studies have been less reported in the literature. 

 

In this chapter, fulfilling the final objective of the thesis, results and critical 

analyses on the performance of target detection in multi-platform hyperspectral and 

multispectral imagery under different atmospheric models and parameter scenarios have 

been presented. A hypothetical situation, illustrated in Figure 5.1, in which the target 

cognition-recognition cycle becomes an integral part of such a framework's overall 

applicability, arises in an onboard target detection framework. This chapter aims to 1) 

analyse the impact the atmospheric model has on target detection, and 2) assess the 

applicability of the FM approach for target detection in a multi-platform target detection 

dataset. We have modelled the atmospheric variables using the 6S RT model and 

transformed the in-situ target reflectance target spectra to at-sensor radiance spectra 

using standard atmospheric models containing precomputed estimates of the atmospheric 

parameters. Finally, we carried out target detection using various state of the art target 

detectors (ACE, CEM and MF) and compared the results for all the combinations of 

atmospheric state variables and algorithms. 
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Figure 5.1: Two different space-time target detection scenarios, with differing 

atmospheric conditions (𝐴𝑡𝑚𝑈, 𝐴𝑡𝑚𝐾), leading to a potential mismatch 

of atmospheric parameters. 

 

5.2 Materials and methods 
 
For the present study, we used the dataset described in the Chapter 4 and the details on 

in-situ target reference data processing can be found in the Section 4.2.1 and 4.2.2.    

 

5.2.1 Data pre-processing: reference target spectra and imagery pre-

processing 
 

We deployed two different spectral sensing instruments: a point-based 

spectroradiometer and pixel-based THI, to collect the in-situ reference target 

reflectance spectra. Although the THI captures imagery at about 1cm spatial resolution, 

we have spatially resampled imagery to 20 cm spatial resolution. The THI raw data 

were calibrated using a white reference panel to obtain the radiance data cube and 

subsequently converted the radiance cube to reflectance cube using the in-scene 

empirical line (EL) method (Smith & Milton, 1999). Different patches (ROI) over the 

target were selected, and spectral responses were averaged to yield a THI in-situ target 

spectrum. In addition, we used a field spectroradiometer (Spectra Vista Corporation, 

HR-1024i, USA) to collect the point-based in-situ target spectrum in the 400-2500 nm 

wavelength range as per standard procedure (Field Spectroscopy Guide with SVC I-

Series Spectroradiometers, 2010). Once all the reflectance target spectra are collected 

from the ground, they are further processed to match the spectral range of AVIRIS-NG 

and Sentinel-2 sensors via spectral resampling and convolution operation using 
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respective sensor response function (SRF). In the target spectral data acquired using the 

THI sensor, we omitted spectral data beyond 900 nm due to inherent sensor noise and 

low signal-to-noise ratio (SNR). In the case of THI-based input target reference, we 

resampled the AVIRIS-NG imagery to THI wavelength range which resulted in 

imagery with 104 spectral bands for target detection.  

 

 Since we used forward modelled target spectra for detection in this experiment, 

the target imagery needed to be of the top-of-atmosphere (TOA) radiance. We used the 

level-1 TOA radiance product for executing target detection using simulated target 

reference spectra in this chapter. Sentinel-2 was converted from original level L1C 

(TOA reflectance) to TOA radiance using the SNAP tool processor called Sen2Cor 

(Louis et al., 2016). We removed the bands in the water vapour absorption region of 

the AVIRIS-NG imagery between 1348–1443 nm,1804–1954 nm, and 2485–2500 nm. 

The resultant imagery contained 370 spectral bands. We resampled the Sentinel-2 

satellite imagery to 10 m spatial resolution to match the target size.  

 

5.2.2 Target signal simulation: Atmospheric processor 
 

Since the electromagnetic radiations in the optical region undergo perturbation caused 

by atmospheric components such as aerosols, water particles, clouds, dust, etc., various 

physical-based radiative transfer models approximate different parameters to 

compensate for the net atmospheric effects. 6S incorporates various standard 

atmospheric models defined by approximation of climatic conditions, such as Tropical, 

Midlatitude Summer, etc. The atmospheric profiles have predefined columnar profiles 

(0-100kms) of different variables such as atmospheric pressure (mb), temperature (oK), 

water vapor (g/m3), and ozone concentrations (g/m3) as a function of height (km). 

Further, based on aerosol properties such as AOT, the mean radius of the aerosol 

particle, real/imaginary refractive indices, particle distribution function, and angstrom 

coefficient, several standard aerosol models (continental, urban, maritime, desert, etc.) 

are defined in 6S model. As shown in equation (2.29), the values of 𝜌𝑎𝑐 for the targets 

are known a priori from the in-situ measurements, we can simulate 𝐿𝑇𝑂𝐴  reaching the 

sensor owing to different atmospheric variables using equation (2.3).  In literature, the 

form of TOA radiance described by equation (2.29) is known as the FM. The radiance 
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spectral library is constructed by running multiple runs of 6S on the input in-situ target 

surface reflectance. A schematic diagram of the overall process is shown in Figure 5.2.  

 

 

 
Figure 5.2: 6S RT model-based target modelling system design for evaluating spectral 

target detection performance in multi-platform remote sensing imagery 

setup. 

 

We considered two cases of target radiance spectra simulation: (i) simulation 

corresponding to a grid of different AOT values (0-5) for a predefined atmospheric 

(Tropical) and aerosol (Continental) profile, and (ii) simulation corresponding to 

different combinations of atmospheric and aerosol profile at a given AOT = 

{0.48,0.89,4.94} corresponding to equivalent visibility of approximately 15km, 7km, 

and 1 km respectively (Bhatia et al., 2018). Considering the geographical location of 

the target scene (Tamil Nadu, India), a tropical atmospheric profile with a continental 

aerosol model were selected (Mishra et al., 2020) for the predefined parameters of the 

case (i). Denoting different atmospheric profiles as 𝐏𝑎𝑡𝑚= {Tropical, Midlatitude 

Summer, Midlatitude Winter, Subartic Summer, Subartic Winter, US62}, aerosol 

profiles as  𝐐𝑎𝑒𝑟 ={No aerosol, Continental, Maritime, Urban, Desert), TOA radiance 

𝐓𝐎𝐀RAD(𝑟)𝑖 , for case (i) is represented as:  
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 𝐓𝐎𝐀RAD(𝑟)𝑖 =  𝛙𝐏𝑎𝑡𝑚𝑇𝑟𝑜𝑝𝑖𝑐𝑎𝑙,𝐐𝑎𝑒𝑟𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡𝑎𝑙
 (𝐀𝐎𝐓𝑣𝑎𝑟), 

where, 

𝐀𝐎𝐓𝑣𝑎𝑟 = {0, 0.5,  1,  1.5,  2,  2.5,  3,  3.5,  4,  4.5,  5}, and subscript i= 

values of TOA radiance at different AOT values  

(5.1) 

An example illustrating the simulated radiance spectra from the atmospheric processor 

following equation (5.1) is shown in Figure 5.3. 

 

 
Figure 5.3: FM approach for simulation of the N1G target radiance spectra using 

Equation (5.1) for various AOT values using the in-situ reflectance spectra  

 

Further, 𝐓𝐎𝐀RAD(𝑟)𝑖 for case (ii) at different discrete values of AOT is given as:  

 𝐓𝐎𝐀RAD(𝑟)𝑖 =  𝛙𝐀𝐎𝐓𝑓
 (𝐏𝑎𝑡𝑚𝑝

, 𝐐𝑎𝑒𝑟𝑞
), 

where, 𝐀𝐎𝐓 = {0.48,0.89,4.94}, subscripts 𝑝 and 𝑞 represent different 

atmospheric and aerosol profiles. 

(5.2) 

 

5.2.3 Target detection algorithms  
 

Since targets in this experiment fall under both the full-pixel and sub-pixel category, 

we used MF, ACE, and CEM detectors. A detailed discussion on the formulation of 

these detectors can be found in the Section 2.2.  

 

5.2.4 Quantitative evaluation of detection performance and spectral 

analysis  
 

The target detection results using the algorithms described above from airborne and 

space-borne imagery were compared for all the simulated target reflectance spectra 

(shown as radiance spectral library in Fig. 5.2). We have used the receiver operating 

curve ROC, a graph between the probability of false alarm (PFA) and the probability of 
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detection (PD), for reporting the detection performance, as described in the Section 4.2.5 

(equation 4.1). 

 

We have carried out a quantitative spectral analysis of the simulated target 

spectra compared to the imagery target radiance spectra since both spectra's conformity 

is often found to influence the detection results. The spectral analysis also gives an 

insight into the underlying physical process that might result in a mismatch between 

imagery derived target spectra and the input reference target spectra caused by a 

mismatch of the atmospheric model assumption. For each of the simulated target 

radiance spectra, we have applied multiple spectral matching metrics: spectral angle 

mapper (SAM) (Kruse et al., 1993b), and spectral information divergence (SID) 

(Chang, 2000b), and compared it to the image derived (both from the airborne and 

space-borne platforms) target radiance. The mathematical formulation of SAM and SID 

is described in the section 4.2.5 (equation 4.2 and 4.3).  

 

5.3 Results 
 

In this section, we present the results of target detection for various TOA radiance 

spectra simulated under different atmospheric conditions. For ease of comparison of 

the performance by various algorithms, we benchmarked the  𝑃𝐹𝐴 for detection results 

at 𝑃𝐷 = 75% for airborne image and 𝑃𝐷 = 50% for space-borne image (Jha and 

Nidamanuri 2020). To illustrate this, we present an example (result for N1G by MF 

under various AOT conditions), shown in Figure 5.4, showing the approach used to 

report results in this chapter. We fixed the 𝑃𝐷 at 75% (shown by the horizontal dotted 

line) and noted the first intersection point of the ROC curve and the 𝑃𝐷 = 75% line to 

identify the respective 𝑃𝐹𝐴.        
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Figure 5.4: An example target detection result for the N1G target under varying AOT 

conditions by the MF target detection algorithm. 

 

5.3.1 Target Detection performance from airborne imagery for 

simulated target spectra induced by AOT and atmospheric model 

assumption 

  

5.3.1.1 Target detection performance under varying AOT condition 

 

This section presents the target detectability at various AOT values in the range 0 - 5 

for two different input target reference sources, i.e., point and pixel mode with a tropical 

atmosphere and continental aerosol model.  

 

5.3.1.1.1 Detection statistics for point-based field spectra 

 

Figure 5.5 shows the target detection performance by various target detectors for 

different target materials as a function of AOT. The input reference spectrum was 

simulated using the point-based in-situ reflectance spectra. The influence of AOT on 
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the detection performance is evident as the degree of detectability amongst the used 

algorithms varies significantly from one another and also differs from material to 

material of the targets used in the experiment. The robustness of detection due to the 

target spectra mismatch between reference and image spectra depends substantially on 

the AOT. As shown in Figure 5.5, AOT's effect is profound after a certain threshold, 

such as after AOT=2.5 in the case of N1G (Figure 5.4(a)). The detection rate is least 

affected by the variation of AOT for the CEM detector. ACE, which detects materials 

based on spectral features (geometry-based), misses the target in most cases, even at 

low AOT values (higher visibility). For instance, for targets N2R, N3Y, and N4B, the 

𝑃𝐹𝐴 is unusually high (0.35, 0.674, 0.39 at even low values of AOT).  Moreover, in the 

cases where MF has detected targets unambiguously (e.g., for N1G, C1W), the change 

in AOT has resulted in a substantial increase in the number of FAs. 

     

 
Figure 5.5: Target detection in airborne imagery: variation of PFA due to changes in 

AOT for target detection in airborne imagery. Illustrated are PFA values 

when the  𝑃𝐷 = 75% for targets (a) N1G, (b) N2R, (c) C1W, (d) N3Y, and 

(e) N4B with simulated TOA target radiance spectra at different AOT 

values between 0 and 5 using point-based target reflectance.  
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5.3.1.1.2 Detection statistics for pixel-based target spectra 

 

Figure 5.6 shows the target detection performance for different target materials as a 

function of AOT, when spectra from THI were used as the input reference spectra. The 

input reference spectra were simulated from the THI based reflectance spectra. In 

general, target detectability in airborne imagery using THI-based reference spectra in 

the radiance domain seems to have been substantially influenced by target contrast and 

background components (i.e., we see a variation with all materials, even at lower 

AOT’s). It is evident from Figure 5.6 that although N1G and N2R are satisfactorily 

detected from all three algorithms (𝑃𝐹𝐴 ~ 10
−2 − 10−3), we might conclude that the 

MF and ACE detectors failed to detect the target. The failure of ACE and the MF can 

be attributed to a mismatch of the simulated spectra and image spectra. In the case 

where successful detection of targets is possible, algorithms are almost impervious to 

change of AOT value up to 2.5.    

 

 
Figure 5.6: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for targets (a) N1G, (b) N2R, (c) C1W, (d) N3Y, and (e) N4B 

with simulated TOA target radiance spectra at different AOT values 

between 0 and 5 using pixel-based THI target reflectance. 
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5.3.1.2 Target detection performance as a function of standard aerosol models for 

different standard atmospheric models at various AOT values 

 

In this section, we analyse the effects of varying the aerosol model (e.g., continental, 

maritime, etc.) within a given atmospheric model (e.g., tropical, US62, etc.) at different 

levels of AOT. Similar to section 5.3.1.1, we present the result for point and pixel-based 

source of the target reference sources.    

 

5.3.1.2.1 Detection statistics for point-based field spectra 

 

Figure 5.7-5.11 shows the target detection performance of different detectors for the 

targets N1G (Figure 5.7), N2R (Figure 5.8), C1W (Figure 5.9), N3Y (Figure 5.10), and 

N4B (Figure 5.11). The x-axis represents different aerosol models (i.e., N-Aero = no 

aerosol, Cont. =continental, Mar. = Maritime, Urb. = Urban, and Des. = Desert) 

wherever applicable. Detection results indicate inherent randomness in the 

performance. The performance is heavily penalized when choosing the “wrong” 

atmospheric model compared to a mismatch related to the aerosol model. For a lower 

AOT value (0.48 and 0.89), we see the aerosol models’ influence at a given atmospheric 

model is not significant. However, at a high AOT value, the detection performance 

stability reduces to a purely random phenomenon. Generally, for most of the targets, 

such as N2R, N3Y, and N4B, the performance of the ACE detector is poor since the 

number of false alarms (FAs) for detection at 𝑃𝐷=75% is staggeringly high, possibly 

caused by the sensitivity of the ACE detector to the spectral variability introduced in 

the reference target signal by the TOA radiance signal simulation process. MF and 

CEM are least affected by the aerosol model’s variation, albeit different atmospheric 

models yield different results. A tropical atmospheric model produces the best results 

for the MF detector, whereas CEM performs best for the Subarctic winter atmospheric 

model. We observe that the MF yields the best detection results (𝑃𝐹𝐴 ~ 10
−4) for a 

particular atmospheric model (Tropical), but at the same time is very sensitive to 

changes in an atmospheric model (FAs amplify to 10-100 times). Although CEM yields 

inferior results compared to the MF for some of the targets (FAs in the range of 

10−2~10−3 for N1G, C1W), the general takeaway is that the results are relatively 

stable and robust across various atmospheric models. This can be attributed to the 
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nature of the MF detector, which is more sensitive to spectra shape in contrast to CEM, 

which can discriminate targets based on signal contrast of targets and background.       

  

 
Figure 5.7: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for the N1G target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric models 

(i.e., coloured line) using point-based target reflectance.  
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Figure 5.8: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for the N2R target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric models 

(i.e., coloured line) using point-based target reflectance.  
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Figure 5.9: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for the C1W target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using point-based target reflectance.  
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Figure 5.10: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for the N3Y target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using point-based target reflectance.  
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Figure 5.11: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for the N4B target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using point-based target reflectance. 
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different changes in aerosol and atmospheric models at several values of AOT, 

suggesting the robust nature of the detector. In Figure 5.13, we see that the performance 

levels of both ACE and MF change from a high detectability rate for N1G (Figure 5.12) 

to a complete failure for the case of N4B (Figure 5.13). As observed for the case of 

point-based in-situ target spectra, spectral detectors like ACE and MF fail to detect most 

of the targets, whereas the CE delivers a 𝑃𝐹𝐴~ 10
−3  for a tropical atmospheric model 

and a maritime aerosol model at all AOT levels.   

 

 

 
Figure 5.12: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for the N1G target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using pixel-based THI target reflectance.  
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Figure 5.13: Airborne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 75% for the N4B target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using pixel-based THI target reflectance. 
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all the targets, the CEM detector delivers an overall satisfactory performance with FAs 

in the range of 10−2~10−4. In particular, detection of N1G by CEM shows a highly 

random nature of detection using TOA radiance spectra. In contrast, successful 

detection of N2R, C1W (albeit high FA than N2R), and N3Y indicate the possibility of 

target detection from a space-borne platform. Missed targets such as N4B indicate the 

limited use of the space-borne remote imagery to detect dark materials, i.e., materials 

with low spectral radiant intensity for a point-based target reference. 

 

 
Figure 5.14: Space-borne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 50% for the targets (a) N1G, (b) N2R, (c) C1W, (d) N3Y, and (e) 

N4B with simulated TOA target radiance spectra at different AOT values 

between 0 and 5 using the point-based target reflectance.  
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materials. Unlike the previously observed low detection using point-based reference 

spectra for different AOT values, we now observe much-improved detection results 

using the pixel-based THI reference target spectra with lower FAs. Except for N3Y, all 

the target detectors can detect the targets with an acceptable 𝑃𝐹𝐴 (10−2~10−6) at lower 

values (e.g., in the range 0 – 1) of the AOT, which is a clear advantage of pixel-based 

THI spectra over point-based spectra. Specifically, for targets N1G and N2R, there is a 

gradual change in detectability performance with AOT variation. In the case of N1G, 

FAs are low (10−2 ~ 10−3)  for AOT ≤ 0.5; while for N2R, there is minimal 

performance degradation on changing AOT until 2.5, and all the three detectors 

detected both the targets. Detection of N4B by the MF and CEM at a low FA (𝑃𝐹𝐴 =

0 ~ 10−5, although for AOT≤1.5) is encouraging. In contrast to the poor detection of a 

dark target (Section 3.2.1.1), while using the point-based in-situ target spectra, 

detection results from the pixel-based THI target reference spectra are comparatively 

superior. This suggests that the acquisition of ground target reference spectra using an 

imaging spectroradiometer is a better alternative over the general point-based 

spectroradiometer, especially in difficult and inaccessible terrain.  

 

 
Figure 5.15: Space-borne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 50% for the targets (a) N1G, (b) N2R, (c) N3Y, and (d) N4B with 

simulated TOA target radiance spectra at different AOT values between 0 

and 5 using pixel-based THI target reflectance.  
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5.3.2.2 Target detection performance as a function of standard aerosol models for 

different standard atmospheric models at various AOT values 

 

5.3.2.2.1 Detection statistics for point-based field spectra 

 

We present the best-case scenario of detection performance in Figure 5.16, while the 

worst-case scenario, where all the targets are missed, is shown in Figure 5.17. As 

observed in the previous section 5.1.2.1.1, the detection of targets using the FM 

approach from a space-borne platform for point-based in-situ target reference remains 

a challenge. For N3Y, CEM's performance is satisfactory (Figure 5.15(b-h)), and at a 

lower value of AOT (0.48 and 0.89), no significant impact of atmospheric-aerosol 

models is observed. 

 

  

 
Figure 5.16: Space-borne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 50% for the N3Y target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using the point-based target reflectance.  
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Figure 5.17: Space-borne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 50% for the N4B target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT=4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using the point-based target reflectance.  

 

However, at AOT=4.94 (Figure 5.15(h)), we observe that, for all the atmospheric 

profiles, aerosol models such as continental, desert, and maritime yield a low number 

of FAs. In contrast, for the urban aerosol model, FAs depend upon the atmospheric 

profiles. Since most of the targets are not detectable by ACE and MF (high FA rate), 

the analysis of patterns in FAs for different combinations of atmospheric conditions 

and aerosol models becomes trivial.             

 

5.3.2.2.1 Detection statistics for pixel-based THI spectra 

 

We now present the best-case scenario related to detection performance in Figure 5.18 

(observed for N2R), while the worst-case scenario is shown in Figure 5.19, where the 

spectral detectors miss N3Y. A combination of AOT values, aerosol models, and 

atmospheric models plays a crucial role in determining target detectors' performance 

for pixel-based input reference. As observed in Figure 5.18, although all the target 
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detectors detect N2R at lower AOT values with 𝑃𝐹𝐴 ~10
−3,  the impact of aerosol 

models is evident.  For instance, in the case of N2R detection by ACE (Figure 5.18(a)), 

the performance degradation between maritime aerosol and an urban aerosol model is 

50%. Also, at AOT = 4.94, detection is most difficult by all detectors. Interestingly, for 

AOT ≤ 0.89, the pattern of FA change is almost identical for all detectors. As observed 

in previous sections, CEM is least affected by choice of aerosol models (~ 5-10% 

increase of FAs). Whereas other spectral detectors such as ACE and MF are 

substantially affected. As observed for the case of point-based target reference, 

detection of N3Y using radiance spectra with the FM approach did not yield a better 

result, especially for the ACE and MF detectors.    

 

 

 
Figure 5.18:  Space-borne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 50% for the N2R target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using pixel-based THI target spectra.  
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Figure 5.19:  Space-borne imagery detection results. Illustrated are PFA values when the  

𝑃𝐷 = 50% for the N3Y target with simulated TOA target radiance spectra 

at (a-c) AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different 

standard aerosol models (i.e., x-axis) at given standard atmospheric 

models (i.e., coloured line) using pixel-based THI target spectra.  

 

5.3.3 Quantitative spectral similarity analysis of simulated Vs. image 

spectra 
 

The spectral similarity analysis between the target image spectrum from airborne 

imagery and the respective point-based in-situ reference spectrum is presented in Figure 

5.20 and 5.21. The result provided in this section is limited to the airborne imagery with 

AOT=0.48 and 0.89, as sufficient inferences can be drawn about the underlying 

physical state of the atmospheric conditions, and the finding can be generalized for 

other cases as well. As evident in Figure 5.19 and 5.20, we can identify the atmospheric 

conditions i.e., probable aerosol models (i.e., x-axis) for a given atmospheric profile 

(coloured lines) which would yield successful detection results in unknown 

atmospheric conditions. For example, we find the Tropical and Midlatitude Summer 

atmospheric profile in the present experimental setup, with either the Continental or 

Maritime aerosol model, the best suited for the given experimental site. As observed 

from the results in Section 3.1.2, indeed, the Tropical atmospheric profile with the 
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Continental aerosol model does provide better results compared to other combinations 

of models. Furthermore, we find the spectral matching different across the targets, 

suggesting that there is an effect related to the spatial neighborhood, which is separate 

from parameters related to the atmosphere.   

 

 
Figure 5.20: Spectral similarity score for the point-based in-situ target reference target 

spectra and the corresponding image spectra for (a, f, k, p) N1G, (b, g, l, 

q) N2R, (c, h, m, r) C1W, (d, i, n, s) N3Y, and (e, j, o, t) N4B targets at 

(a-j) AOT = 0.48 for different atmospheric (i.e., coloured lines) and 

aerosol models (i.e. x-axis where NA= no aerosol, C= Continental, 

M=Maritime, U=Urban and D= Desert).  
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Figure 5.21: Spectral similarity score for the point-based in-situ target reference target 

spectra and the corresponding image spectra for (a, f, k, p) N1G, (b, g, l, 

q) N2R, (c, h, m, r) C1W, (d, i, n, s) N3Y, and (e, j, o, t) N4B targets at 

(a-j) AOT = 0.89 for different atmospheric (i.e., coloured lines) and 

aerosol models (i.e. x-axis where NA= no aerosol, C= Continental, 

M=Maritime, U=Urban and D= Desert).  

 

5.4 Discussion 
 

On-board methods for problems ranging from classification, anomaly detection, 

unmixing to target detection, etc., are projected to be future endeavours in the field of 

remote sensing. FM approach, operating in the radiance mode, helps to design an on-

board computational framework for atmospheric effect with minimal time lag for 

realizing remote sensing based real-time target detection system. Spectral target 

detection by its nature involves sparsely populated pixels of the imagery, which 

increases the chance of a target miss with even a slight miscalculation of atmospheric 

parameters. Few seminal studies on target detection have shown the FM approach as a 

potential solution for a computationally efficient framework, although the effect of 

atmospheric variables on detection performance has not been taken into account. A 

study by  Matteoli, Ientilucci, and Kerekes (2010) has laid out a detailed analysis of the 
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computational and operational aspects of the FM approach for target detection. They 

simulated different radiance spectra (81 in total) for various geometric and illumination 

parameters, but atmospheric variability parameters such as atmospheric models and 

aerosol models were not tested or evaluated. Axelsson et al. (2016) implemented the 

FM method for target detection but used in-scene information rather than the physics-

based RT models to derive target information. Also, the dataset used in that study had 

a limited spectral channel range (400-1000 nm) acquired from an altitude of only1000 

m, which inhibits observable effects of atmospheric variables on target detection 

performance. In this chapter, we have presented the FM approach to account for 

atmosphere-induced target uncertainty and variability in multi-platform target detection 

data, which to the best of our knowledge, has not been reported in the literature. We 

have also presented results from a hypothetical perspective where the spectral 

knowledge of a target in one given space-time frame can be transferred for detection in 

a different space-time framework. This involves two different sets of atmospheric 

components, and as a result, a mismatch of atmospheric parameters may hamper the 

detectability of the target. The experimental findings from this chapter could be used 

for drawing important inferences and to gain a comprehensive insight into the extent 

and nature of the atmosphere influences and impacts parameter mismatch and 

ultimately affects target detection performance.     

 

5.4.1 Influence of spectral variation caused by varying AOT 

assumption on detection performance 
 

AOT, which corresponds to columnar visibility, is among several atmospheric variables 

that could impact the sensor reaching radiance. Several studies have been conducted to 

establish the uncertainty caused by AOT while estimating biophysical parameters 

(Gillingham et al., 2013; Marcello et al., 2016). Most of the reported studies related to 

the reflectance uncertainty caused by AOT are focused on objects covering a large 

portion of the image (a class such as vegetation or forest). We found that there is no 

reported study on its impact on engineered material detection. Since AOT is sensitive 

to wavelength, absorption feature, surface albedo (Bhatia et al., 2015),  and pixel to 

pixel differences in AOT levels (i.e., spatial variability)(Wilson et al., 2015), it is 

natural to expect that these effects would be reflected in target detection performance.  
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For the most efficient target detector (CEM) in detection from airborne imagery 

(Figure 5.5, section 5.3.1.1.1) for point-based in-situ target reference, the overall 

variation in detection performance is 2% -15% across all the targets for the simulated 

spectra at AOTs ≤ 2.5. For spectral detectors, MF and ACE, where targets can be 

deemed as detected (with lower FAs), the variation in detection range is found to be 

between 10% - 90% for most of the targets. A similar trend is observed in detection 

from space-borne imagery for point-based in-situ target reference. However, for pixel-

based target reference, detection from airborne imagery shows substantial variation in 

detection with variation in AOT levels (e.g., ACE for N1G varies by 200% with AOT≤ 

2.5). The variation is linear with a change in AOT levels for detection from space-borne 

imagery for pixel-based target reference.  

 

Overall, detection performance and FAs are found to vary moderately across all 

the targets, albeit with different scales. Results indicate that the AOT mismatch effect 

yields different detection results for targets having different surface properties. 

Although the given targets in this experiment vary predominantly only in the visible 

portion of the EM spectrum, the varying effects of AOT mismatch across the targets 

suggest an involvement related to the background pixels and an AOT influence which 

seems to impact overall detection performance.   

 

5.4.2 Influence of atmospheric model assumption and respective 

mismatch on target detection performance 
 

Apart from the AOT, the other two critical parameters seen in several radiative transfer 

codes are the choice of atmospheric, and aerosol models. Typically, atmospheric 

models in 6S are modelled on the basis of fixed columnar profiles, which are pre-

computed using standard models such as that by Goody and Yung (1995), Malkmus 

(1967), and McClatchey et al. (1971) for estimating gaseous transmittance, columnar 

water vapour, temperature, pressure, and ozone concentrations as a function of altitude. 

Similarly, aerosol models are formulated based on models by Lenoble (1985), 

D’Almeida et al. (1991). These models estimate the macroscopic properties of EM 

signal propagation in the atmosphere, which is beyond the scope of this chapter.  For 

these reasons, they are often treated like a “black box” (Bhatia, 2018). However, since 
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these global models are widely used in remote sensing for atmospheric compensation 

and represent the atmospheric state in a given space-time, we have investigated their 

impact on target detection in this chapter. Results in section 5.3.1.2.1 for detection from 

airborne imagery using the point-based in-situ target reference indicate that the overall 

detection and levels of FAs are predominantly determined by choice of atmospheric 

profile. A mismatch of atmospheric profile can potentially lead to detection failure. We 

have noticed that for a given atmospheric profile (e.g., Tropical), there is an observable 

pattern related to the aerosol models on the number of FAs, which indicates the need 

for estimation of local aerosol models in all automated target detection frameworks. 

Interestingly, spectral target detectors such as ACE and MF have yielded low FAs for 

a tropical atmospheric profile. In contrast, the CEM detector offers a better result for 

the Subarctic winter atmospheric profile. This insinuates that the target detection results 

can be different across various detection algorithms for different atmospheric state 

variables.  

 

We suggest that a detection framework for applications utilizing the FM 

approach for target detection must be designed keeping in mind the nature of the 

detection algorithm and its sensitivity to atmospheric state variables. A pixel-based 

target reference in airborne derived targets indicated that detection of dark targets (i.e., 

targets with lower reflection intensity) is a challenge and is prone to be influenced by 

choice of atmospheric parameters. On the other hand, although the detection is low for 

space-borne imagery using both a point-based and pixel-based target reference, the 

pattern observed in the levels of FAs was concurrent with the observations in Section 

5.3.1.2 for the for the ACE and MF target detectors.  

       

5.5 Chapter Conclusions 
 

There have been considerable efforts to develop signal processing-based detection 

algorithms in this field. However, to a lesser degree, the underlying physical 

phenomena have largely been overlooked. The trivialization of the electromagnetic 

signal propagation model, ignoring the subtle atmospheric process, can produce 

ambiguous target detection results from various remote sensing platforms. In this 

chapter, assessment of hyperspectral target detection from a radiative transfer 
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perspective, further extending the FM approach for target detection to a multi-platform 

(airborne - space-borne) target detection setup, is presented. Accepting the notion that 

FM approach is computationally inexpensive, we recommend the FM approach for all 

kinds of on-board processing methods for detecting non-critical targets (i.e., 

environmental pollution surveillance, infrastructure build-up in strategic areas, 

unauthorized construction in protected forest areas, geochemical exploration, mineral 

prospecting, etc.).  

 

From an atmospheric parameter modelling perspective, spectral target detection 

is susceptible to AOT, atmospheric profile, and aerosol model. AOT is found to be the 

most dominant factor among the parameters considered, having substantial implications 

on the detectability of targets. At a given AOT, the choice of atmospheric and aerosol 

profiles has a bearing on the levels of FAs. The wrong choice of atmospheric models 

can lead to a high rate of FAs. The variations in target detection due to AOT can be 

reduced to a moderate degree by choosing an appropriate detection algorithm (e.g., 

CEM for the present application). The validity of the hypothesis that targets can be 

detected by transferring target spectral knowledge from a known atmospheric state to 

an unknown state is case-specific. We found that a lack of a priori knowledge on the 

exact atmospheric condition can limit the target detection process. Tackling such 

problems requires a learning approach to model the targets that account for the 

atmospheric processes’ induced spectral variability.  

 

Two significant findings from this research, apart from the atmospheric 

perspective on target detection, are establishing the efficacy of the pixel-based in-situ 

target reference and the potential of detection of engineered targets from space-borne 

platforms. We have observed that the ground-based imaging spectroscopy method of 

target reference spectra acquisition has performed well with detection from space-borne 

imagery. The FM approach for space-borne imagery has yielded unambiguous 

detection of several targets in the experiment, which we find very encouraging for 

developing automatic satellite-based spectral target detection frameworks. We believe 

that the formulation of more experimental datasets and additional testing at different 

sites would further enhance our understanding of the target detection process and its 

intricate relation to atmospheric influences. 
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CHAPTER 6 
 

 

SUMMARY, CONCLUSIONS, AND FUTURE 

DIRECTIONS 
 

 

Prelude: This chapter presents an overall summary of the main conclusions and 

findings of the research activities carried out as part of this doctoral study. Further, 

contributions of this thesis in the context of spectral target detection in dynamic 

atmospheric conditions are presented. Finally, recommendations and directions for 

future research in this area are highlighted in this chapter.   

 

6.1 Summary of the Chapters  
 

Theoretically, algorithms for target detection using various simulated and ideal imagery 

scenarios shows substantial feasibility. On the other hand, realistic scenarios with 

complex target neighbourhoods and dynamic atmospheric conditions make it 

challenging to detect engineered targets. The performance from detection algorithms is 

a function of numerous variables such as atmospheric path effects, sensor properties, 

and target-background dynamics. This thesis has assessed the detectability of 

engineered targets in a multi-platform setup and quantitatively evaluated the influence 

of the various atmospheric parameter on spectral target detection. The pursuance of 

thesis objectives has led to the formulation of a region-sensitive open-end atmospheric 

correction model and novel benchmark dataset crucial for evaluating target detection 

performance of various algorithms.  

 
The summary of the thesis is presented below chapter-wise. 

 
Chapter 3: A open-ended region-sensitive atmospheric correction method named 

FACT was developed for various optical sensors and platforms. The chapter has laid 

out the methodological framework for the development of 6S based open-source 
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atmospheric correction method. Various techniques for the estimation of atmospheric 

parameters such as CWV and AOT from the satellite/airborne imagery were explored 

and have been successfully adapted for the FACT atmospheric correction method. A 

LUT approach was adapted for generating correction coefficients from the 6S RT code 

for various input parameters’ combinations. Further, FACT has been exhaustively 

evaluated using various spatio-spectral statistical error measures against standard 

atmospheric correction methods such as FLAASH across various multispectral and 

hyperspectral sensors. The FACT yielded comparatively better results for the space-

borne sensors than the airborne hyperspectral sensors, indicating the need for more 

robust atmospheric parameter estimation techniques. To produce more robust surface 

reflectance pertaining to regional scales, new atmospheric profiles are added to the 

FACT. The FACT offers a viable atmospheric correction alternative to commercially 

off-the-shelf atmospheric correction methods.  

 

   
Chapter 4: In this chapter, the experimental setup for a multi-platform remote 

sensing benchmark dataset for the quantitative assessment of the spectral target 

detection was elaborated. Target detection performance as a function of sensor, 

platform, source of in-situ target spectral information, target-background dynamics, and 

algorithm was studied. Various statistical and subspace detection algorithms were 

applied on the benchmark dataset for the detection of targets, considering the different 

sources of reference target spectra, background, and the spectral continuity across the 

platforms. The accuracy of detection, is substantially influenced by the source of 

reference spectra and it is not true that ground-based point spectra offers best results. 

In addition, local background influences the confidence of target detectability, although 

not a deciding factor. Imaging spectroscopy-based in-situ target reference yields 

detection results at par with point-based non-imaging spectroscopic instruments, 

suggesting that a ground-based hyperspectral imager can be used for rapid acquisition 

of target reference spectra. The results also indicate the potential usage of satellite 

imagery-based target detection, although further experiments are required to bolster the 

generalization. 
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Chapter 5: We have extended the FM approach for target detection for the multi-

platform target detection benchmark dataset formulated in Chapter 4.  Some of the 

critical atmospheric parameters such as AOT, standard atmospheric profiles, and 

standard aerosol models are considered to quantify their influence on sensor reaching 

radiance signal. The targets acquired from platforms with different operational altitudes 

(airborne and space-borne) provides two different sets of concomitant atmospheric 

conditions, enabling us to assess atmosphere-induced uncertainty in target detection in 

its entirety. We have formulated the radiance spectral library by simulating TOA 

radiance spectra using the 6S RTM. Considering two cases of target radiance spectra 

simulation corresponding to a grid of different AOT values, atmospheric and aerosol 

profiles target the detection has been carried out using multiple target detection 

algorithms. Results indicate that knowledge based spectral targets can be detected in 

remote sensing data under different atmospheric model scenario using FM approach. 

Change in the magnitude of AOT across atmospheric models leads to decision-

changing implications in the target detection modelling. The selection of a wrong 

atmospheric profile can potentially aggravate the numbers of FAs produced by a 

detection algorithm. 

 

6.2 Major Contributions 
 

The major contribution of this thesis, researching on spectral target detection and 

atmospheric modeling methods for detecting engineered targets, are listed below. 

 

• Development of a region sensitive atmospheric correction model for 

hyperspectral and multi-spectra remote sensing sensors. 

 

• Establishment of multi-platform optical remote sensing benchmark dataset for 

target detection in complex imaging environment. 

 

• Analyses of target-background interactions influence on detection performance 

 

• Quantification of the influence of atmospheric parameter on detection 

performance of engineered materials. 
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6.3 Recommendations for Future Research 
 

We present some of the recommendations and directions of future research to extend 

and enhance the finding of the studies carried out in this thesis. 

 

• At present, the developed atmospheric correction method FACT supports 

regional atmospheric models. Atmospheric models incorporating local aerosol 

models based on AERONET data can be included to make the atmospheric 

correction models sensitive to fine scale regional parameters. 

 

• Complex target detection scene in this thesis can be used to extend the idea of 

setting up more experimental dataset for an exhaustive evaluation of detection 

algorithms. 

 

• Accommodating neighborhood/background effect in target detection has been 

done using global background statistics. Using the concept of local 

context/background of a target and incorporating its effect in detection 

algorithm can be an interesting future work.   

 

• The effect of atmospheric processes on spectral target detection can be further 

evaluated and used to formulate atmospherically invariant target detection 

algorithms. 

 

• Target detection methods predominantly use statistical or subspace-based 

methods. Use of evolving machine learning techniques for target detection can 

also be tested. 

 

• Close range hyperspectral imagery-based target detection is one of the 

challenging areas and experimental setting used in this thesis can be extended 

to formulate more UAVs/THI based benchmark dataset.  
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