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Abstract

Compressed Sensing (CS) empowers the signal processing landscape to acquire sub-

Nyquist measurements of real-world signals by exploiting their underlying sparse nature

in suitable domains. Sparse recovery algorithms are integral to CS as they facilitate the

reconstruction of higher dimensional signals from such compressed measurements. The

recovery speed and hardware complexity has been a major focus of research in the de-

sign of such sparse recovery algorithms, with the computational effort for successful signal

recovery remaining high, even for moderate sized problems. Dedicated hardware-driven

sparse recovery has been pursued in the literature to offer swifter and cost-effective so-

lutions for signal recovery compared to software implementations, but are restricted by

the slow convergence or hardware complexity of the underlying algorithm. To solve this

problem, the research work described in this thesis focuses on the development of a novel

reconstruction algorithm to swiftly and accurately decode CS measurements. Further, this

work presents the design of two distinct hardware architectures related to the goals of pro-

cessing speed improvement and resource minimization respectively by employing suitable

hardware-friendly optimizations on the proposed algorithm.

The preliminary work is concentrated on the design of a novel sparsity independent CS

reconstruction algorithm that employs parallel index selection and regularization to curtail

the number of iterations required to reconstruct the signal and thereby enhance the recon-

struction speed at the algorithmic level. A restricted isometry property (RIP) based analysis

is provided to guarantee the exact recovery of k-sparse signals. A rigorous experimental

evaluation of the proposed algorithm is carried out in high-dimensional, sparsity blind and

noisy scenarios. The proposed algorithm is found to achieve a significant speed-up with

respect to the state-of-art while maintaining the reconstruction accuracy.

Subsequently, our next focus of research has been to exploit the achieved algorithmic

speed-up on dedicated hardware. Complexity reduction techniques are adopted to opti-
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mize the proposed algorithm with the specific goal of maximizing the reconstruction speed.

The reformulated algorithm incorporates a cheaper regularization strategy and a modified

Gram-Schmidt (MGS) based incremental QR decomposition (QRD) approach to augment

the support set. The proposed design incorporates an iterative QRD architecture with feed-

back circuitry to exploit the parallelism of the multi-atom support augmentation step at

increased hardware costs. Additionally, a fast inverse square root block circumvents the

need for parallel divider blocks giving considerable hardware and latency savings. The de-

sign reuses the iterative QRD block to implement the interdependent computations of the

algorithm by sophisticated scheduling techniques. The proposed design is found to acceler-

ate sparse reconstructions respective to the state-of-art for similar problem sizes by a factor

of 2 at least. Based on the achieved reconstruction speed for 36-sparse vectors, the pro-

posed hardware is able to attain a processing throughput of roughly 13100 Vectors/second

or equivalently 13.4 million samples per second (MSPS). The proposed implementation

does not require prior knowledge of k for termination or signal estimation such that the

reconstruction process can remain unmonitored for signals of varying k. It is observed

that for lower sparsity levels, reconstruction speed is greatly improved without significant

change in RSNR.

In order to significantly curtail hardware consumption by allowing a relaxation in recon-

struction time, we subsequently focus on developing an improved version of the proposed

algorithm where a gradient descent inspired least-mean-squares (LMS) approach is pro-

posed to replace the complex least squares (LS). The proposed architecture bypasses ma-

trix transpose requirement for parallel access to each row of the measurement sub-matrix

by interleaving row write operations with the pipelined LMS process. The proposed im-

plementation is found to curtail DSP and logic slices by 3× and 2× respective to the im-

plementation in the state-of-art possessing comparable reconstruction time. An alternate

row based LMS update scheme is proposed to reduce the latency cost and leads to a 28%

improvement in the recovery time with a 12% degradation in the RSNR with respect to the
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full LMS update.
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xviii



4.13 Internal hardware architecture of the DP block . . . . . . . . . . . . . . . . 78

4.14 Internal hardware architecture of the TP block . . . . . . . . . . . . . . . . 79

4.15 Iterative architecture of the Incremental QRD . . . . . . . . . . . . . . . . 80

4.16 Signal estimation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.17 Finite state machine diagram . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.18 Timing overhead of the sub-blocks in the proposed architecture. ‘s’ repre-
sents the number of indices selected in each iteration and ‘t’ represents the
total number of selected indices . . . . . . . . . . . . . . . . . . . . . . . . 87

4.19 ECG hardware reconstruction from 50% measurements . . . . . . . . . . . 96

4.20 High level design overview of the PCIe based CS reconstruction system . . 98

4.21 Chip layout of SIRP sparse reconstruction engine in 65 nm CMOS technol-
ogy node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Reconstruction performance comparision (a) Success rate vs SNR (b) Av-
erage iterations vs SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Proposed hardware architecture for the modified SIRP algorithm . . . . . . 109

5.3 Internal organization of a 512×128 block RAM showing the stored elements 110

5.4 Memory bank structure of the measurement matrix Φ . . . . . . . . . . . . 111

5.5 Folding architecture of the cluster maximum compute block . . . . . . . . . 113

5.6 Architecture of the regularizer block . . . . . . . . . . . . . . . . . . . . . 113

5.7 Architecture of the cluster maximum finder . . . . . . . . . . . . . . . . . 114

5.8 Architecture of the cluster maximum finder . . . . . . . . . . . . . . . . . 115

5.9 Structure of the shared cluster maximum compute block . . . . . . . . . . . 116

5.10 Architecture of the residual register bank . . . . . . . . . . . . . . . . . . . 118

5.11 State machine diagram of the control block . . . . . . . . . . . . . . . . . . 119

xix



5.12 Timing diagram showing the latencies of each state of the FSM . . . . . . . 121

5.13 Recovery performance of the proposed algorithm under varying fractional
precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.14 Reconstruction of ECG signals in MIT-BIH database from 50% measure-
ments with wavelet sparsifying basis[82] . . . . . . . . . . . . . . . . . . . 124

xx



LIST OF ALGORITHMS

1 Matching Pursuit (MP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Orthogonal Matching Pursuit (OMP) . . . . . . . . . . . . . . . . . . . . . 24
3 Regularized Orthogonal Matching Pursuit (ROMP) . . . . . . . . . . . . . . 24
4 Compressive Sampling Matching Pursuit (CoSaMP) . . . . . . . . . . . . . 25

5 Sparsity Independent Regularized Pursuit (SIRP) . . . . . . . . . . . . . . . 43

6 Improved SIRP with incremental QRD . . . . . . . . . . . . . . . . . . . . 64

7 Refined SIRP with block LMS update . . . . . . . . . . . . . . . . . . . . . 104

xxi





Chapter 1

Introduction

1.1 Motivation

The digital revolution driving the present technological age was heralded by the seminal

Shannon-Nyquist sampling theorem [1, 2] which demonstrated the recovery of any kind of

data from uniformly spaced samples acquired at a rate twice that of the highest frequency

present in the data under consideration. The bulk of signal processing has hence switched

from the analog to the digital domain and has been democratised by the increase in com-

puting efficiency described by Moore’s law. This has led to the development of robust,

inexpensive and flexible acquisition and processing systems capable of realizing sophisti-

cated functionalities.

The advent of big data and artificial intelligence has drastically increased the amount

of data generated by sensors owing to the exceptionally high Nyquist rates, resulting in

a data deluge. To address the challenges associated with transmitting and storing such

high dimensional data, various compression schemes have been devised to represent the

data with fewer dimensions in appropriate transform domains. Most natural signals can be

adequately approximated by applying a threshold on their corresponding representations in

a suitable domain. For instance, the image of the ISRO GSLV-MKIII spacecraft shown in

Fig. 1.1 can be transformed to the wavelet domain where a major portion of the coefficients

are relatively small and a simple thresholding operation can be employed to obtain a sparse

representation. The practice of sampling at such high Nyquist rates and then discarding a

major share of the coefficients seems wasteful of the sensing resources.
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Figure 1.1: Image representation via multi-scale wavelet transform (a) Original image
(b) Wavelet representation with white pixels depicting large coefficients and dark pixels
depicting small coefficients

Moreover, the prospect of sampling at very high Nyquist rates for certain applications

becomes too expensive or infeasible [3]. In other cases like magnetic resonance imaging

(MRI), the duration of the acquisition process in order to satisfy the Nyquist rate is too

long, which renders it susceptible to motion artefacts and prevents wider patient coverage.

Compressed Sensing presents a paradigm shift in signal processing that aims to sam-

ple and compress simultaneously in order to exploit the inherent redundancy in the Nyquist

strategy. The goal of CS is to facilitate the precise or approximate reconstruction of high di-

mensional data from much fewer linearly acquired non-adaptive samples. It is well known

from linear algebra that this formulation is an ill-posed problem with an infinite number

of solutions. However, the sparse or compressible nature of real world signals raises the

possibility of recovery from such incomplete measurements. The task of identifying the

indices of the non-zero or significant components of the signal given its sparsity in a par-

ticular basis is not trivial. The basis pursuit (BP) algorithm [4] has been widely adopted to

decode the compressed measurements of the CS framework.
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1.2 Sparse recovery formulation

An N -dimensional signal b is said to have a sparsity level k provided it has k or fewer

non-zero terms

b ∈ RN , ‖b‖0 = |supp(b)| ≤ k � N (1.1)

where |supp(b)| denotes the cardinality of b’s support and the ‖ · ‖0 quantity represents the

number of non-zero components in b. CS measures sparse or compressible signals as a

set of non-adaptive linear samples with dimension M < N , where each measured sample

is the inner product between the signal b ∈ RN and the sensing vector φi ∈ RN , i =

1, · · · ,M . The linear samples collected in this manner can be constructed as the product of

anM×N sensing matrix whose rows are effectively the sensing vectorsφi’s and the signal

of interest to yield the measurement vector y = Φb ∈ RM . While reconstruction of signals

from such incomplete measurements seems impossible, the l0 minimization problem can

be theoretically used to arrive at the sparsest solution satisfying y = Φb as follows

min
b∈RN

‖b‖0subject toΦb = y (1.2)

Though the concept of leveraging l0 minimization theoretically works to perfectly re-

construct b, solving it is computationally NP-Hard [5].

1.2.1 Recovery methods

Candes and Tao [6] demonstrated the potential of randomly encoding naturally sparse in-

formation resulting in sampling rates significantly lower than the Nyquist criterion. The

seminal work in [6] demonstrated the effectiveness of a relaxed l1 minimization to per-

fectly reconstruct the sparse information, as shown below

min
b∈RN

‖b‖1subject to Φb = y (1.3)
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Over the years, there has been significant research towards practically implementing CS

in various fields of applied sciences and mathematics. The random encoding ensures the

preservation of the sparse information irrespective of the basis upon which it lies. Thus, the

CS framework facilitates acquisitions in cost and power sensitive applications by directly

sensing data in a compressed manner.

The reduction in sensing effort is compromised by the complexity of signal recovery

which conventionally requires to solve optimization based basis pursuit problems to con-

struct the sparsest vector from the randomly encoded measurements. The reconstruction

task in CS involves high computational effort and memory access intensity which deems

any software based approach inefficient for applications with time, cost and energy con-

straints. There exists a plethora of CS algorithms to reconstruct the original sparse in-

formation that vary in their hardware complexity, reconstruction speed and dependence

on sparsity prior. The basis pursuit strategies based on the traditional l1 norm minimiza-

tion have proven reconstruction capabilities with theoretical guarantees and approach the

optimal solution over multiple iterations. The computational effort of these methods is sig-

nificantly high, and the required precision levels as well as complex structures make them

infeasible for dedicated hardware implementations.

A new class of CS reconstruction algorithms termed greedy pursuits emerged to mini-

mize the hardware complexity of the recovery task by iteratively approaching sub-optimal

solutions. Of the existing greedy pursuits, the orthogonal matching pursuit (OMP) [7]

has been widely targeted for hardware design in the literature owing to the simple regular

structure of the algorithm. The state-of-art designs have investigated distinct strategies for

the least squares step coupled with architectural optimizations to improve the achievable

recovery speed. However, the OMP is inherently slow as it augments the support set by

one column in each iteration. Sophisticated parallel greedy pursuits capable of performing

multiple column updates in order to reduce the number of iterations have been proposed,

but have very high associated hardware complexity.
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1.3 Applications

1.3.1 Compressive Imaging

Digital image acquisition is naturally a good candidate for employing compressed sensing

as the images of interest are generally sparse over some domain. The digital cameras in

existence acquire images by deploying a 1:1 ratio of sensors to pixels, followed by com-

pressing the images acquired in this way, which is definitely wasteful. Through compres-

sive imaging, random measurements can be acquired by the sensors at a much lower sensor

to pixel ratio which have been demonstrated through the design of a single pixel camera in

works like [8]. It consists of a lens which focuses light on to a digital micro-mirror device

(DMD) where each mirror corresponding to every pixel can be configured to contribute

or not to the current measurement. The light is combined by the lens and measured by

focusing onto the photon detector. This is similar to the inner product operations described

earlier to yield the measurement vector y successively. The measurements obtained this

way are transmitted to a dedicated system that performs the reconstruction. The advantage

of the ingenious single pixel camera is that it can operate over a broader spectrum than

conventional cameras built on silicon.

One of the prominent application areas of CS has been magnetic resonance imaging

(MRI) where the acquisition process in the two-dimensional Fourier domain is inherently

slow. While certain MR images are sparse in their original representation like angiograms,

others are sparse over some other basis such as the wavelet basis or learned over-complete

dictionaries [9]. The application of CS in MRI can afford to reduce the number of mea-

surements without sacrificing the quality of the image. This in turn reduces scan times and

costs by being available for a wider patient group. Further, CS can also be extended to

improve the diagnostic quality of the images for the same number of measurements. There

has been considerable research in the field of compressive MRI for various body imaging
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modalities [10] which has led to the development of real CS based MRI machines.

1.3.2 Radar Signal Processing

Radars operate by transmitting a properly designed radar pulse and the received signal is

correlated with the pulse and a time-frequency grid is constructed. Radar frameworks are

ideal for CS applications as the number of targets in the discretized time-frequency grids

will be small enough to employ CS techniques to recover the target scene [11, 12, 13].

Assuming there are W targets in a discretized N ×N time-frequency grid with their range

velocities unknown and an Alltop sequence is being sent by the transmitter, the received

signal can be expressed in the form of a CS acquisition. If W � N2, the original scene

can be reconstructed using CS recovery even when targets are collocated.

Recently, super-resolution techniques have been employed in high-resolution synthetic

aperture radar (SAR) and inverse SAR imaging applications to alleviate the resolution prob-

lem of traditional Fourier-based methods [13]. These techniques exploit the sparsely dis-

tributed nature of scatterers, using CS-based recovery to suppress sidelobes and noise.

1.3.3 Wireless Sensor Networks

CS can offload the local computation and sensor volume transmission burden in wireless

sensor networks (WSNs) by performing random sampling at the sensor nodes [14]. The

CS-WSN framework has been shown to deliver similar performance to traditional data

compression mechanisms at significantly lower data volume that dominate the received

signal and computations [15, 16].

Biomedical telemetry is an evolving application area that tremendously benefits from

data acquisitions modelling the CS framework. The transmission energy costs in such

biomedical sensor nodes are far more significant than the other functionalities enabled by

the circuits. CS based data reduction strategies are found to be more efficient than data

compression and filtering techniques in minimizing the energy cost of the sensor nodes
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[14]. The signal structure of many biophysical signals enable the CS-based sampling at

rates relative to the information content of the signals instead of the frequency contents.

Another key advantage to leveraging CS-based sampling at the sensor nodes is avoiding

the requirement of decision-making, instead transferring the complexity of signal recovery

to centralized servers.

1.3.4 Biomedical Signal Processing

Wireless health monitoring is gaining importance in the age of internet-of-things (IoT) [17]

and low power sensing devices are critical to ensuring sustainability. Real-time and contin-

uous monitoring of the biological signals in patients with increased risk of cardiovascular

diseases can aid in early detection. Wearable devices have gained recent traction for such

constant monitoring scenarios, which acquire and transmit the signals for further analyses.

Traditional sampling hardware significantly reduces the lifetime of such wearable devices

and motivates the need for low cost acquisition devices. CS promises solutions for low

power wearable devices that compressively acquire biomedical signals and perform the

recovery on dedicated reconstruction engines [18, 19, 20].

1.4 Important challenges

The field of compressed sensing is still evolving with considerable research being under-

taken towards three principal aspects of the CS framework. First, the design of efficient

matrices that can produce the compressed measurements at low costs as well as guaran-

tee recovery at the receiver is challenging. Second, reconstruction algorithms that can

effectively decode the information at low computational costs and satisfactory recovery

guarantees without requiring any prior knowledge of the nature of the signal. Third, the

application of CS in a low cost, energy efficient and resource constrained regime dictates

the meticulous design of hardware architectures targeting the suitable reconstruction algo-
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rithms which vary in their complexity.

1.4.1 Construction of explicit matrices

Probabilistic sensing matrices like the random Gaussian, Bernoulli or partial Fourier ma-

trices have demonstrated empirical recovery guarantees, but it is known to be computation-

ally NP-Hard to determine if any given matrix satisfies the criteria for uniform recovery

guarantees of all K-sparse signals. In recent years, much research has been involved in

the design of deterministic sensing matrices that can meet the performance guarantees of

random sensing matrices while also considerably reducing the underlying complexity of

incoherent sampling.

1.4.2 Decoding algorithms with provable guarantees

In the compressed sensing literature, the basis pursuit (BP) algorithm which employs a

relaxed l1 minimization has garnered much attention due to its strong theoretical guaran-

tees and stability. However, the optimization strategies used to implement the basis pursuit

like linear programming are generally slow and the time complexity grows cubically in

the signal dimension. Software solvers based on such methods are not time, energy and

cost efficient, which highlights the need for faster algorithms. Greedy pursuits were devel-

oped with the intention to speed up the reconstruction by probing for sub-optimal solutions

which often corresponds to exact or accurate versions of the signal. But many of these

methods have weak theoretical performance guarantees. Advanced greedy algorithms pos-

sessing stronger recovery bounds do not work well in practical settings. This signifies a

key research gap in the greedy pursuit literature that this thesis will seek to address.
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1.4.3 Dedicated hardware architectures for the pursuit process

There has also been a significant effort in the direction of developing low cost and energy

efficient hardware solutions in contrast to the CPU or DSP based software solvers. Despite

a plethora of CS reconstruction algorithms in existence, greedy pursuits have attracted

considerable attention due to their relative ease of implementation in hardware compared

to optimization based basis pursuit strategies. Greedy pursuits characteristically consist

of three main operations: inner product between Φ and b, support set augmentation and

residual update.

Orthogonal Matching Pursuit (OMP) has been prominent among the greedy pursuits

because it offers a simple and regular structure from the hardware perspective. Albeit, it re-

quiresK iterations in order to arrive at the sparse solution. There have been research efforts

towards accelerating these methods on CPU, GPU and DSP platforms [21, 22] achieving

reconstructions in few tenths of a second for 1024-dimensional signals. OMP has also been

used in retrieval mechanisms of big data analytics systems where the signal dimensions are

huge [23]. Despite using GPUs to speed up the OMP, it takes about 1 second for finding the

topK entries in data vectors sized tens of thousands. The need for accelerating OMP recon-

struction by at least two orders of magnitude and the emergence of power-constrained CS

applications in wireless medical telemetry has driven very large scale integration (VLSI)

designs of OMP based on field programmable gate arrays (FPGAs) or application specific

integrated circuits (ASICs). However, the serial nature of OMP prohibits further acceler-

ation that is desired in applications like radar detection [24] where timely decisions based

on the reconstructed information needs to be taken. This drawback of OMP has led to

more advanced algorithms that typically require fewer iterations than the signal sparsity by

employing varied support augmentation strategies. However, this significantly adds to the

hardware complexity costs to realize the complex mechanisms involved. This motivates

the need for designing efficient architectures in tandem with the design of fast decoding
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algorithms in order to realize the higher speed-ups mandated by realistic CS applications.

1.5 Scope and objectives

The scope of the work is on the design of a novel fast decoding algorithm for CS which

is also independent of the sparsity level and reconstructs signals reasonably well with re-

spect to the state-of-art. It further covers the design of efficient architectures for the novel

pursuit devised for achieving two distinct design goals. The first goal is to develop an

architecture for a hardware friendly adaptation of the proposed decoding algorithm that

trades off hardware resources in order to achieve significant improvement in reconstruc-

tion speed compared to the existing works. The problems tackled in this research work

are the multi-atom support augmentation and residual update operations that are handled

by a complicated and well-designed scheduling mechanism. The second design goal is

to devise a hardware friendly adaptation that sacrifices reconstruction speed for achieving

considerable reduction in hardware resources.

The objectives of the work are to realize high throughput and low complexity architec-

tures for designing CS reconstruction engines respective to the desired design goals, which

decode the compressed measurements to yield vectors with a sufficient level of accuracy.

1.6 Contributions of this thesis

The research work focuses on the development of a sparsity independent fast CS recon-

struction algorithm and proposing two hardware architectures targeting high recovery speed

and low resource utilization respectively. The major contributions of the work are the fol-

lowing

• A novel sparsity independent CS reconstruction algorithm is proposed that employs

parallel index selection and regularization to curtail the number of iterations required
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to reconstruct the signal and thereby enhance the reconstruction speed. A restricted

isometry property (RIP) based analysis is provided to guarantee the exact recovery

of k-sparse signals. A rigorous experimental evaluation of the proposed algorithm is

carried out with the state-of-art.

• A novel reformulation of the SIRP algorithm from the hardware perspective, incorpo-

rating a cheaper regularization strategy and a modified Gram-Schmidt (MGS) based

incremental QR decomposition (QRD) approach. The proposed design incorporates

an iterative QRD architecture with feedback circuitry to exploit the parallelism of

the triangularization step in MGS. Additionally, a fast inverse square block circum-

vents the need for parallel divider blocks giving considerable hardware and latency

savings. The design reuses the iterative QRD block to implement the interdependent

computations of the algorithm by sophisticated scheduling techniques.

• An improved version of the sparsity independent regularized pursuit (SIRP) is pro-

posed that improves reconstruction speed in addition to being sparsity independent

and hardware-feasible. A pipelined gradient descent inspired least-mean-squares

(LMS) architecture is proposed to replace the complex least squares (LS) step in

SIRP and incorporates hardware-sharing for the interdependent steps of the algo-

rithm. Further, an alternate row LMS scheme reduces the cycles per iteration to

improve reconstruction speed by trading off the reconstruction quality.

1.7 Thesis outline

This thesis investigates the compressive sensing reconstruction framework with a focus on

improving the recovery speed and further striving to achieve a balance between the resource

utilization and recovery speed. The remainder of the thesis is structured as follows.

Chapter 2 discusses the CS framework in depth, with specific attention to the recon-

struction algorithms and the spectrum of existing hardware implementations targeting the
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prominent pursuit

Chapter 3 draws attention to the formulation of a novel pursuit algorithm which em-

ploys parallel index selection and a methodical regularization strategy to curtail the number

of iterations in CS reconstruction, which is discussed in depth with theoretical guarantees

and rigorous experimental analyses.

Chapter 4 investigates a novel adaptation of the sparsity independent regularized pur-

suit favouring accelerated reconstructions. The proposed design incorporating a cheaper

regularization strategy and a modified Gram-Schmidt (MGS) based incremental QR de-

composition (QRD) approach is prototyped on FPGA. An ASIC design of the improved

algorithm in UMC 65 nm technology is presented.

Chapter 5 investigates a distinct adaptation of the sparsity independent regularized pur-

suit that trades off the reconstruction speed in order to significantly curtail the hardware

resources. A pipelined gradient descent inspired least-mean-squares (LMS) architecture is

proposed to replace the complex least squares (LS) step in the proposed algorithm.

Chapter 6 presents the conclusions of the research work and the future perspectives.
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Chapter 2

Literature review of algorithms and architectures

This chapter presents a brief introduction to the reconstruction method in compressed sens-

ing with emphasis on greedy pursuits. The persistent challenges in the state-of-art are

clearly discussed which drives us to identify potential modifications that can achieve much

better tradeoffs between hardware complexity and reconstruction speed.

2.1 Preliminary

2.1.1 Notation

The conventions mentioned below apply to the notations that will be used in this thesis. An

M ×N matrix is denoted as an upper case bold letter (e.g. Ψ) whereas a vector is denoted

as a lower case letter (e.g. ψ). The notation ψi implies the ith element of an arbitrary vector

ψ, while its bold version ψi implies the ith column of matrix Ψ. A set of indices is denoted

by an upper case Greek or English letter (e.g. Λ), which when used as a subscript of a

matrix ΨΛ represents the set of columns in Ψ indexed by Λ. |Λ| denotes the cardinality of

the set Λ, while ΛC refers to the complement of Λ.

2.1.2 lp norm

Given a vector b ∈ Rn residing in an n-dimensional space, its l2 norm is defined as

‖b‖2 = (
n∑
i=1

|b(i)|2)1/2 (2.1)
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Figure 2.1: Examples of lp norms for the unit circle

which is representative of the Euclidean length of b. The lp norm can then be interpreted as

the length of the vector in an lp space. The lp norm of a given vector b ∈ Rn is defined for

all real numbers p ≥ 1 as

‖b‖p = (
n∑
i=1

|b(i)|p)1/p (2.2)

As a special case, the infinite norm l∞ is defined as the limit of the lp norm when p tends

to∞,

‖b‖∞ = max
i=1,2,..,n

|b(i)| (2.3)

It should be noted that for all p ≥ 1, the triangular inequality holds and certain examples

are shown in Fig. 2.1 for unit circles in two-dimensional space. When 0 < p < 1, the

inequality no longer holds which results in concave functions instead of convex.
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2.1.3 Sparsity

A signal is said to be sparse when most of its coefficients are null or negligible. The sparsity

of a signal is defined by the cardinality of its support set, which simply means the number

of non-zero indices that support the signal in the Rn space. The l0 pseudo-norm can be

used to indicate the sparsity level of the signal K by

‖b‖0 ≤ K (2.4)

without providing any information on its energy. In practical signals of interest, the ac-

quired samples typically are not perfectly sparse on any basis owing to the inherent pertur-

bations in the acquisition process. The sorted samples b′ = sort(b) demonstrate a power-

law decay property in a suitable domain, defined by

|b′(i)| ≤ C · i−q (2.5)

with a constant C and q ≥ 0. Equation 2.5 implies that a significant part of the signal’s

energy is held by a few coefficients. Natural signals are often compressible in the sense that

discarding a huge percentage of the coefficients contributes to a minimal information loss.

This suggests that any natural signal can be approximated by a sparse vector in a suitable

domain under bounded error constraints.

2.2 Compressive Sensing framework

2.2.1 Compressed measurements

The CS framework enables signals to be sensed at reduced sampling rates and still performs

reconstructions perfectly. The sensing mechanism is realized in such a way that every

measurement would contain information about the entire signal.
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The measurements in CS are obtained by projecting the signal on to vectors {φi}Mi=1

resulting in the measurements vector y = {yi}Mi=1 computed as the inner product of the

corresponding columns of Φ = [φT1φ
T
2 · · ·φTM ], which can be mathematically represented

as

y = Φb (2.6)

Assuming a sparse representation for b in an orthogonal basis Ω of sizeN×N correspond-

ing to the length of the signal,

y = Φb = ΦΩa = Ψa (2.7)

Φ corresponds to the measurement or sensing matrix which relates each non-zero term in

a to a particular measurements pattern. The basis vectors ψi’s of Ψ are referred to as dic-

tionary elements or atoms. Fig. 2.2 compares the traditional Nyquist and CS acquisitions

in terms of matrix equations. Since the measurement scheme is independent of the signal

under consideration, the measurements in the CS framework are typically non-adaptive.

Figure 2.2: Comparison of traditional and CS acquisitions

The design of measurement matrices that can guarantee reconstruction of a in the CS

framework will be discussed in the following subsection.
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2.2.2 Recovery criteria

The reconstruction of a from compressed measurements is an ill-posed problem as it cor-

responds to an under-determined linear system with infinitely many solutions. However,

enforcing the condition of sparsity on the signal can lead to a unique solution. The ob-

jective of sparse recovery is to produce an accurate representation of the signal in either

the identity basis or the sparsifying orthogonal basis Ω in 2.7. This recovery optimization

problem can be mathematically formulated as

b̂ = min
b
‖b‖0 subject to y = Φb (2.8)

The naive realization of the l0 minimization problem requires exhaustively scouring through

NCK sparse combinations which is infeasible for even small problem sizes as it is NP-hard.

There has been a considerable priority to devising feasible alternatives to realize the viabil-

ity of CS in real-world applications.

The major breakthrough in CS research was the work of Candes and Tao [6] that proved

the convex l1 minimization can reproduce the sparse signal with high probability by enforc-

ing certain conditions on the measurement matrix. This seminal formulation of the sparse

recovery problem has been known as the basis pursuit (BP)

b̂ = min
b
‖b‖1 subject to y = Φb (2.9)

Fig. 2.3 depicts the reconstruction of a signal residing in the x-y plane with a sparsity of

1 which implies it lies on one of the axes. It can be seen that minimizing the l2 norm is

equivalent to growing the l1 sphere till it meets the constraint line. Similarly, minimizing

the l1 norm can be equated to growing the l1 rhombus till it touches the constraint line. Of

the two, it can be observed that the l1 minimization is able to meet the constraint line at the

axes which is where the underlying signal resides. This visual representation demonstrates
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Figure 2.3: Representation of different lp norms

the ability of the basis pursuit strategy to successfully reconstruct the sparse signal and has

considerably less computational complexity compared to the l0 minimization.

Considering the impact of noise in the measurement process, the basis pursuit has been

refined to account for noisy measurements as follows

b̂ = min
b
‖b‖1 subject to ‖Φb− y‖2 ≤ ε (2.10)

The basis pursuit denoising (BPDN) refinement ensures near accurate signal representa-

tions with theoretical bounds on the error.

2.2.2 Null Space Property

The null space of the measurement matrix can be defined as the set of all vectors b that can

be mapped to 0.

N(Φ) = {b : Φb = 0} (2.11)

This can be used to fashion some criteria on Φ for achieving successful recovery. Firstly,

it can be said that two distinct signals of sparsity K cannot produce identical measurement

vector, or mathematically as follows

Φ(b− b′) 6= 0⇔ b− b′ /∈ N(Φ) (2.12)

Secondly, subtracting a K-sparse vector from another results in a vector that is atmost

2K-sparse. If N(Φ) does not contain any 2K-sparse vector, this would imply that b is
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unique and results in a lower bound on the measurement vector size that would facilitate

reconstruction, i.e., M ≥ 2K.

The null space concentration is measured by the null space property (NSP) which is

satisfied when

‖dG‖2 ≤ γ‖dGC‖1,∀d ∈ N(Φ) and γ ∈ (0, 1) (2.13)

for sets G ⊂ 1, .., N having a cardinality of K. A necessary criteria for perfect reconstruc-

tion by basis pursuit is satisfying the NSP which can be shown as a reconstruction error

upper bound for approximate K-sparse signals as in [25]

‖b− b̂‖1 ≤ 2
1 + γ

1− γ
σK(b)1 (2.14)

where σK(b)p is the error corresponding to the ideal K-sparse representation

σK(b)p = min
‖b‖0==K

‖b− b̂‖p (2.15)

2.2.2 Restricted Isometry Property

Also known as the uniform uncertainty principle, restricted isometry property has been

devised to evaluate the robustness of CS in noisy and approximate sparse scenarios [5].

The necessary criteria for a matrix Φ to fulfil the RIP with an isometry constant δk is

1− δk ≤
‖Φb‖2

‖b‖2

≤ 1 + δk (2.16)

Candes et al.[26] provided a theoretical bound for BPDN reconstruction of eq. (2.10) under

bounded error and isometry constant conditions (δ3K + 3δ4K < 2)

‖b− b̂‖2 ≤ C1ε+ C2σK(b)1/
√
K (2.17)
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The above equation has two terms related to the measurement noise ε and imperfect sparsity

σ(b)1 which cannot be avoided in realistic settings. Though this guarantees exact sparse

recovery when δ2k <
√

2− 1, finding the RIP constant is itself an NP-hard problem.

2.2.2 Mutual incoherence

Another condition that can be enforced on the measurement matrix is the measure of co-

herence between Φ and the sparsifying basis Γ which is defined as follows

µ(Φ,Γ) = max
i∈[1,M ],j∈[1,N ]

| < φi, γj > | (2.18)

It would also suffice to measure the coherence of the effective measurement matrix given

by Ψ

µ(Ψ) = max
i∈[1,M ],j∈[1,N ]

| < ψi, ψj > | (2.19)

Rauhut et al. established a relation to the restricted isometry constant in [27]:

δk ≤ (K − 1)µ (2.20)

It is desired to have lesser coherence between the bases to facilitate better reconstructions.

An outcome of this property is that signals sparse in one basis cannot be sparse in the

other basis. Candes and Tao [6] demonstrated the effectiveness of random matrices in

reconstructing sparse signals with high probability. A few good examples are the random

Gaussian, Bernoulli and Fourier matrices which permit CS reconstructions with varying

bounds on the number of required measurements.

2.2.3 Recovery algorithms

The CS reconstruction arena has garnered significant attention in the last decade with a

plethora of algorithms introduced to reconstruct b from compressive measurements y by
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solving the optimal BP problem (2.9) or sub-optimal variations. In this section, a broad

class of CS recovery algorithms are discussed elaborating their merits and demerits in order

to propose novel algorithms with a prime focus on suitability for hardware implementation.

The major features essential for efficient realization on hardware are fixed-point suitability,

regular structure, simplified flow and low memory requirements.

2.2.3 Convex optimization

Convex optimization algorithms were deployed immediately to solve the BP problem (2.9)

and are well-developed [28]. The earliest works used iterative approaches like simplex

and interior-point methods to solve the convex formulations. Many approaches solve the

Lagrangian form of the BPDN

b̂ = min
b

1

2
‖y −Φb‖2

2 + λ‖b‖1 (2.21)

Prominent methods solving this formulation are primal-dual interior-point [28] and fixed-

point continuation [29]. While the class of convex relaxation algorithms are known to pro-

duce optimal solutions for moderate to large sized problems, they are associated with very

high computational complexity and sophisticated structures that prohibit their mapping on

custom hardware. The computational complexity is generally of the order of O(N3) [25]

which results in slower recovery when signal dimensions N , m and k grow.

2.2.3 Greedy Approaches

Greedy approaches have received significant attention in the literature due to their speed

and ease of implementation to design hardware that can potentially realize CS recovery in

real world settings. Greedy algorithms iteratively approach the sub-optimal solution with

significant reduction of the computational complexity. Due to this, they typically possess

weaker theoretical guarantees than l1 minimizers. Few greedy approaches use sophisticated
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techniques to match the theoretical performance of the basis pursuit methods.

Greedy algorithms generally function in an iterative approach and consist of three main

operations:

• Support set augmentation

• Signal estimation

• Residual update

The first operation involves selecting the column(s) of the measurement matrix Φ that most

likely contribute to the measured vector y. The selected column(s) are augmented to the

estimated support set which is then used to estimate the signal corresponding to the support

in the estimation step. In the final residual update step, the contributions of the estimated

signal are removed from the measured vector y to identify the remaining columns of the

true support set.

2.2.3 Matching Pursuit (MP)

MP proposed in [30] was one of the first algorithms employed to solve the sparse recov-

ery problem due to its very simple structure. MP selects the column possessing highest

correlation with y in each iteration and updates the corresponding signal coefficient with

the correlation product itself. Since only the current element is updated and it is typically

non-orthogonal to previous elements, multiple updates of the same coefficient might occur

resulting in poor performance. The algorithm pseudo-code is shown below Due to the very

simple update procedure, MP is well-suited for hardware optimizations and implementa-

tions. However, the non-orthogonality of the selected indices yields slow convergence and

offers no guarantees of reconstruction. Due to the possibility of repeatedly selecting the

same element, the iteration count can render it inefficient.
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Algorithm 1: Matching Pursuit (MP)
procedure MP ( y, Φ, d )

Initialization x̂0=0N×1, r0 = y, n = 1, Γ0 = φ while n < K do
un = ΦTrn−1

jn = arg maxi |un| . Identify
Γn = Γn−1 ∪ jn . Support Set Augmentation
x̂n = x̂n−1 + ejnu

n
jn . Estimate Update

rn = y−Φx̂n . Residual Update
n = n+ 1

end
return Estimated sparse signal x̂n

end procedure

2.2.3 Orthogonal Matching Pursuit (OMP)

OMP [7] is one of the rudimentary algorithms in arena of sparse recovery and selects the

index of u corresponding to the highest correlation magnitude to be part of Γn similar to

MP. However, it fundamentally differs in the signal estimation step wherein all estimated

support set elements of Γn are updated in each iteration. The estimation is composed of a

least squares (LS) optimization in the span of the currently estimated support set

x̂n = min
b
‖ΦΓnb− y‖2 (2.22)

This forces the new estimate to be orthogonal with respect to the residual and avoids re-

peated selection of a column, unlike MP. This enables OMP to reconstruct the signal in

ideally K iterations. The pseudo-code for the OMP algorithm is shown below. The LS

update is computationally more complex than the MP update which can be simplified by

adopting efficient matrix decomposition methods like QR or Cholesky, which imparts a

regular structure to OMP. While this makes it feasible for hardware implementation, run-

ning time increases drastically with rising k due to its serial nature. Further, recovery

deteriorates under noisy conditions, which necessitates running the algorithm for greater

number of iterations than the true sparsity of the signal to reasonably reconstruct it.
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Algorithm 2: Orthogonal Matching Pursuit (OMP)
procedure OMP ( y, Φ, d )

Initialization x̂0=0N×1, r0 = y, n = 1, Γ0 = φ while n < K do
un = ΦTrn−1

jn = arg maxi |un| . Identify
Γn = Γn−1 ∪ jn . Support Set Augmentation
x̂n = minb ‖ΦΓnb− y‖2 . Estimate Update
rn = y−Φx̂n . Residual Update
n = n+ 1

end
return Estimated sparse signal x̂n

end procedure

2.2.3 Regularized Orthogonal Matching Pursuit (ROMP)

There have been concerted efforts to accelerate the serial pursuing process of OMP which

have resulted in works like stagewise OMP (StOMP) [31] and stagewise weak OMP (SWOMP)

[32]. These try to extend the number of columns selected in each iteration based on a fixed

size or threshold. Regularized OMP [33] proposed a novel regularization step on the K

largest coefficients of u to augment an optimal subset with maximum energy to Γ in each

iteration. The pseudo-code of the ROMP algorithm is shown below

Algorithm 3: Regularized Orthogonal Matching Pursuit (ROMP)
procedure ROMP ( y, Φ, d )

Initialization x̂0=0N×1, r0 = y, n = 1, Γ0 = φ while n < K do
un = ΦTrn−1

Choose K biggest coordinates of u inJ
Form disjoint subsets J0 ⊂ J such that
|u| ≥ 1

2
|u| ∀ a, b ∈ J0

Choose J0 with the highest average correlation energy
∑

b∈J0
|u|2 .

Regularize
Γn = Γn−1 ∪ jn . Support Set Augmentation
x̂n = minb ‖ΦΓnb− y‖2 . Estimate Update
rn = y−Φx̂n . Residual Update
n = n+ 1

end
return Estimated sparse signal x̂n

end procedure
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Since ROMP possesses a similar structure to OMP, it could benefit from many of

the simplifications adopted in OMP. However, despite proven theoretical guarantees [33],

ROMP exhibits poorer empirical performance than OMP and SWOMP as observed in [32].

Nevertheless, it paved the way for more multi-element pursuit methods to accelerate sparse

recovery.

2.2.3 Compressive Sampling Matching Pursuit (CoSaMP)

With a view to considerably speed up the reconstruction process by employing a parallel

estimation of the support set based on the sparsity parameter K, CoSaMP [34] selects 2K

columns in each iteration and augments it to the K best columns after signal estimation in

the previous iteration. This amounts to solving an LS problem of size 3K which is compu-

tationally much more intensive than the previously discussed greedy algorithms. However,

it entails a provision to eliminate false choices and continuously refine the support set. The

algorithm’s pseudo-code is outlined below:

Algorithm 4: Compressive Sampling Matching Pursuit (CoSaMP)
procedure COSAMP ( y, Φ, d )

Initialization x̂0=0N×1, r0 = y, n = 1, Γ0 = φ while n < K do
un = ΦTrn−1

Γn = Γn−1 ∪ LargestIndices(|un|2, 2K) . Support Set Augmentation
x̂n = minb ‖ΦΓnb− y‖2 . Estimate Update
Γn = LargestIndices(|x̂n|2, K)
rn = y−Φx̂n . Residual Update
n = n+ 1

end
return Estimated sparse signal x̂n

end procedure

2.2.3 Subspace Pursuit (SP)

SP [35] was proposed to reduce the complexity of CoSaMP by augmenting onlyK columns

instead of 2K with slightly poorer theoretical reconstruction guarantees but better empirical

performance than CoSaMP.
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Parallel pursuit methods like CoSaMP [34] and SP [35] are highly dependent on the

choice of sparsity level for good performance, which is not known in advance and can

constantly vary in realistic scenarios. Furthermore, their computational complexity puts a

significant burden on hardware resources even for moderate problem sizes.

2.2.3 Other greedy algorithms

Backtracking OMP (BaOMP) [36] alleviates the need for sparsity prior, but requires tuning

of parameters for optimal performance. The performance of Sparsity Adaptive Match-

ing Pursuit (SAMP) deteriorates on wrong choice of step size [37]. Modified Regularized

Adaptive Matching Pursuit (MRAMP) [38] involves a combination of modified mean en-

ergy regularization strategy and the divide-and-conquer policy of SAMP, however, the step

size parameter introduces a trade-off between recovery performance and fast convergence.

Moreover, these sophisticated algorithms forbid efficient hardware realizations due to their

irregular structure.

Threshold based strategies like Iterative Hard Thresholding (IHT) [39] and Approxi-

mate Message Passing (AMP) [40] are swifter and less complex than BP. However, com-

putational complexity of IHT rises on adopting an adaptive step size for better performance

while, AMP performs well for highly structured Φ. Bayesian approaches like Bayesian

compressive sensing (BCS) [41] depend on an appropriate choice of signal prior and are

computationally complex. Swift expander graph based strategies like [42, 43] use the ad-

jacency matrix to reduce complexity of storing Φ only when the signal of interest is sparse

in the canonical basis [44].

The prominent algorithms discussed above will be experimentally evaluated in Chap-

ter 3 for clearly understanding their merits and demerits under different settings. Table

2.1 shows the distinction between three broad classes of greedy algorithms: serial (like

OMP [7], SGP [45] etc.) , multi-element like ROMP [33], BaOMP [36] etc. and parallel

methods like CoSaMP [34], SP [35] etc. Serial pursuits select the column with the high-
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est correlation to the residual in each iteration while multi-element and parallel methods

employ a candidate list of K maximum correlation terms or more. Support augmentation

involves matrix decomposition or inversion techniques whose complexity only incremen-

tally increases with iterations in serial methods but has a fixed high complexity in parallel

methods. The nature of the decomposition or inversion algorithm has a bearing on the com-

plexity of the least squares based signal estimation. For instance, incremental QR updates

can be employed to bypass signal estimation in each iteration to directly update the resid-

ual and perform signal estimation once after the algorithm terminates. These incremental

schemes are not effective for multi-element or parallel strategies due to the varying nature

of their support sets in every iteration.

Table 2.1: Sub-phases of greedy algorithms

Sub-phase Serial Multi-element Parallel

Index selection
Correlation
Maximum

Subset of K largest
correlation terms

2K/3K largest
correlation terms

Support augmentation

Incremental QR or
Cholesky decompositions,

Conjugate gradient pursuits,
Matrix inversion methods

like Guass-Siedel
or Jacobi

May or may not permit
incremental decompositions

or pursuits

Not suited for
incremental pursuits

Signal estimation Least squares Least squares Least squares
Residual update Incremental or full Incremental or full Full

2.3 Existing Art

There has been substantial research in CS theory to propose swifter and less complex

sparse recovery algorithms with theoretical convergence guarantees. Concurrently, efforts

were underway to build physical systems capable of compressively sensing signals and

efficiently reconstructing them. Here, the CS space is reviewed in terms of the existing

acquisition and reconstruction systems with more focus attributed to the implementation of

sparse recovery algorithms in hardware.
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Figure 2.4: Single pixel camera architecture [46]

2.3.1 CS acquisition

From the CS preliminaries, it can be concluded that signal acquisition has to occur in a

domain that is incoherent to the sparsifying basis of the signal under consideration. In

certain applications, the sampling functionality ensures incoherence, for instance in MRI,

where the 2-D Fourier space is sampled. However, other applications would need special-

ized acquisition devices that can handle the incoherence requirement of CS for facilitating

successful reconstructions.

The single pixel camera [46] was the first imaging device built on CS principles that has

vast applications in complex and expensive spectral imagers. It used a digital micro-mirror

array as shown in Fig. 2.4 to compressively capture pixel information using a single sensor

and acquires multiple measurements in this way to reliably reconstruct the original scene.

CS also finds tremendous application in the field of wideband signal acquisition where

fewer number of samples will be sufficient for acquiring signals with sparse spectrum use.

The random demodulator [47] carried out the acquisition by mixing the wideband signal

with a pseudorandom±1 sequence and integrated to obtain sub-Nyquist samples, as shown

in Fig. 2.5.

The random demodulator was implemented as an actual system in [14] where project-

ing onto PN sequences in the digital domain showed energy efficiency. An analog-to-
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Figure 2.5: Block diagram of random demodulator [47]

information structure was presented in [48] that claimed better energy efficiency than the

prior implementations.

There have been significant efforts to designing acquisition systems for radar [49] [50],

EEG/ECG [20] and other interesting fields.

2.3.2 CS recovery implementation

The above discussed applications mandate real-time signal reconstruction which is often

very complex despite the plethora of available algorithms. Further, the advent of many-core

central processing units (CPUs) and graphics processing units (GPUs) can accelerate these

reconstruction algorithms at significant power consumption and below real-time constraints

[51].

In certain applications, cloud computing can be used to process the compressed data, al-

beit at longer latencies, higher computing power and data privacy risks [52]. Many medical

and wireless communication applications necessitate energy efficient reconstruction of the

compressed data to facilitate timely predictions or decisions. Custom FPGA or application-

specific integrated circuit (ASIC) implementations can meet the time and power constraints

of critical applications, compared to CPU or DSP implementations. A detailed review of

the state-of-art algorithms in CS recovery are presented below to motivate the need for

faster, inexpensive and energy-efficient implementations.

An early hardware implementation of the MP for acoustic channel estimation has been
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presented in [53]. Since MP is prone to errors arising from repeated index selection, it

has received little attention in the hardware literature since the introduction of OMP. One

of the very first FPGA implementations [54] employed a two-stage variant of OMP on a

Virtex-5 FPGA to estimate a 128-dimensional 5-sparse signal in 24µs, where the first stage

utilizes a modified Gram Schmidt (MGS) process to determine the support set and update

the residual followed by an alternating Cholesky least squares (LS) step in the second stage.

Stanislaus et al. presented a 65nm ASIC and Virtex 5 FPGA implementation based on a

two-stage OMP approach in [55] and [56] that reconstructed a 256-length signal having

sparsity 8 in 14µs and 27µs respectively.

Bai et al. [57] utilized the MGS strategy of [54] to implement an incremental QR

decomposition (QRD) instead of a full QRD for the LS update in each iteration, for the

reconstruction of a 1024-length signal with a sparsity of 36 in 620µs on a Virtex 5 FPGA.

The Cholesky strategy has also been exploited by works in [58] [59] to implement the

LS block of OMP since it bypasses the need for costly inverse square root operations that

arise in the QRD process. However, an increase in matrix dimensions increases the latency

exponentially, contributing to lower speeds and throughputs.

Ren et al. [60] presented a single-precision OMP reconstruction engine on a Kintex-7

FPGA for 10× more sparse coefficients, requiring approximately 40µs per iteration of the

OMP. Knoop et al. [61] investigated a high-level synthesis (HLS) based design of OMP

which utilizes a rank-1 updating scheme for Q and R−1 matrices to reduce the cost of R

matrix inversion in the final estimation step. Although HLS based design enables rapid

prototyping on the FPGA, it incurs higher hardware costs for reconstructing a 256-length

vector on a Virtex-7 device. Cheng et al. [62] proposed a matrix inversion free architec-

ture based on QRD for a variable orthogonal multi matching pursuit (vOMMP) in 90 nm

CMOS achieving an execution time of 232 µs for 128-dimensional signals, whose recon-

struction performance is dependent on a good initial support set, which is not extendable

to all signals.
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Ren et al. [63] further proposed a sparse approximation engine based on OMP in 40

nm CMOS technology for reconstructing compressively acquired physiological signals at a

maximum throughput of 237 kS/s. [64] utilized a matrix inversion bypass (MIB) technique

to effectively decouple algorithmic steps and exploit the resulting parallelism to enforce

faster reconstructions of around 250µs on a Kintex-7 FPGA. Kulkarni et al. [65] imple-

mented application-specific architectures of the OMP for signal size ranging from 128 to

1024 on 65nm CMOS technology. While recovery of 8-sparse 256 dimensional vectors

takes 10µs, timing results for 1024 dimensional vectors are absent. Fardad et al. [66] pro-

posed low complexity hardware based on OMP using deterministic measurement matrices

attaining a reconstruction speed of 333µs on a Virtex-6 device. Liu et al. [67] proposed

an index selection scheme to curb the number of iterations by a factor of 2 and employed

a complex Cholesky decomposition architecture to estimate a 1024-length 36-sparse sig-

nal in 170µs on a Virtex-6 FPGA. Roy et al. [68] employs a partial incremental QRD to

bypass the normalization step in the computation of Q and achieves recovery in 327µs for

identical problem sizes on a Virtex-6 device.

Ge et al. [69] incorporated square-root-free transformations to the incremental QRD

algorithm to achieve recovery of the 36 non-zero coefficients of the 1024-length signal x

in 238µs on a Kintex-7 FPGA. Li et al. [70] reported an HLS based design of OMP that

achieves a recovery time of 423µs on the Zynq Ultrascale+ MPSoC at exorbitant hardware

costs. Chen et al. [71] presented a CS reconstruction engine in 40 nm CMOS employing a

two-stage process of blind sparsity estimation (SE) based on OMP followed by non-blind

SP based fine reconstruction called SE-SP. Wang et. al. [72] proposed an architecture

based on the alternating direction method of multipliers (ADMM) to reconstruct signals

of length 128 in 44µs, whose arithmetic operations are quadratic in N2. Liu et al. [73]

also proposed an SP processor on a Virtex-7 FPGA for the recovery of 256-length signals

having a sparsity of 8 with an expected heavy toll on hardware resources.

Table 2.2 tabulates the state-of-art hardware implementations targeting different greedy
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Table 2.2: State-of-art hardware implementations on the FPGA platform

Reference
Algorithm

Problem Size Time Frequency Target

& Year M N K (µs) (MHz) FPGA

[57] (’12) OMP 256 1024 36 622 100 Virtex 6

[59] (’15) OMP 256 1024 36 340 119 Virtex 6

[67] (’18) Imp. OMP 256 1024 36 170 135.4 Virtex 6

[74] (’18) OMP 256 1024 36 450/314 94/135 Virtex 6/7

[68] (’19) OMP 256 1024 36 327 133.33 Virtex 6

[69] (’19) OMP 256 1024 36 238 210 Kintex 7

[70] (’20) Imp. OMP 256 1024 36 423 113 Zynq Ultrascale

[73] (’20) SP 58 256 8 22.5 15.4 Virtex 7

algorithms on various FPGA platforms with their targeted problem sizes and corresponding

reconstruction time.

2.4 Summary

From the study of the state-of-art in CS recovery algorithms and their implementations, it is

surmised that CS recovery in general is very complex and needs improved algorithms that

can achieve a good balance between hardware feasibility, reconstruction speed and scala-

bility with higher dimensions. Being the most prominent algorithm in CS recovery, OMP

suffers from poor reconstruction speeds in higher dimensional CS problems. SP introduced

a parallel pursuit strategy to speed up reconstruction in such scenarios, but is dependent on

knowledge of sparsity level for satisfactory performance, which would require a form of

serial sparsity estimation in such blind or varying scenarios.

Despite a plethora of greedy reconstruction algorithms developed in recent years, the

state-of-art hardware implementations have been mainly restricted to the OMP. This is

because OMP possesses a regular structure compared to the other algorithms which use
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complicated structures to reduce the iteration count and realize sparsity adaptiveness. In

this context, it is summarized that algorithm development should also consider the hard-

ware deployability aspect and involve simple as well as effective structures to realize higher

reconstruction speed and sparsity independence.
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Chapter 3

Sparsity Independent Regularized Pursuit algo-

rithm

This chapter deals with the development of a novel sparse reconstruction algorithm which

possesses the desired features of faster convergence, sparsity independence, hardware fea-

sibility and scalability.

3.1 Introduction

OMP [7] sequentially estimates the support of the signal in k iterations, which consumes

long operating cycles. Parallel pursuits like subspace pursuit (SP) [35] lower the number of

iterations at the expense of elevated computational complexity and require sparsity infor-

mation for good reconstructions. Though methods like sparsity adaptive matching pursuit

(SAMP) [37] were devised to achieve sparsity independence, they are not amenable to

hardware implementations owing to the complicated structures involved in attaining spar-

sity independence.

In this context, the development of a novel sparsity independent regularized pursuit is

presented which scales well on hardware, significantly reduces the number of iterations

and does not involve sophisticated mechanisms to estimate the sparsity. The mathematical

guarantees for successful recovery and the associated computational complexity are dis-

cussed. A rigorous experimental evaluation of the algorithm’s features are carried out to

demonstrate its performance with respect to the state-of-art algorithms.
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3.2 Proposed algorithm

For signal recovery of x from noisy measurements y by greedy pursuits, it is observed that

the observation vector u = ΦTy serves as a fair approximation to the signal x. However,

construction of u is computation intensive particularly for large N . OMP [7] selects the

index of u with the highest magnitude to be augmented to the estimated set Γ, while ROMP

[33], CoSaMP [34] and SP [35] employ sorting of the indices according to their descending

correlation magnitudes and select k, 3k and 2k best candidates for further pruning. Greedy

pursuits vary primarily in the selection of support set indices to be augmented to Γ.

The SIRP algorithm proposes to speed up the identification stage which is constrained

by the complex matrix-vector multiplication ΦTy and sorting operation in certain cases,

without degrading the reconstruction performance. SIRP adopts a two-stage approach of

identification and regularization to ensure this. The identification stage fundamentally dif-

fers from that of existing methods in that the atoms of Φ are clustered allowing for a par-

allel estimation of support set candidates. The atoms are clustered into nc groups ( where

nc < N ) using any ordered or random clustering rule, which unravels the m×N measure-

ment matrix Φ into nc sub-matrices Φd1 ,Φd2 , · · · ,Φdnc
. The residual is correlated with

each group of atoms in parallel and the index with maximum correlation in each group is

chosen as a candidate. A regularization on the correlation magnitudes of these nc parallel

indices is to be performed in order to prune out any false candidates before augmenting to

the estimated Γ.

3.3 Choice of regularization strategy

In order to optimize the choice of k candidate atoms of Φ with maximum residual cor-

relation, ROMP [33] employs a maximal energy criterion on subsets J0 with comparable
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coordinates according to

u(i) ≤ 2u(j) ∀ i, j ∈ J0 (3.1)

The optimum subset J0 is augmented to Γ and the procedure is iteratively repeated till the

residual falls below a given threshold or the support set cardinality exceeds 2k. This how-

ever requires a prior knowledge of k which becomes unreasonable in practical scenarios

where k can constantly vary and cannot be determined prior. In such cases, the sparsity

parameter for the ROMP algorithm is set to the upper bound which can be supported by the

specified number of measurements M . However, this causes ROMP to erroneously select

a group of atoms with comparable coordinates according to (3.1) having poor individual

correlation but possessing maximum group correlation energy due to their sheer volume.

This restricts the applicability of ROMP in sparsity blind scenarios.

This motivates the need for improving the regularization strategy for the SIRP algo-

rithm to avoid such errors. Intuitively, the highest average correlation energy of the group

becomes a good choice for the regularization criterion. This stringent condition would se-

lect true support set atoms instead of false ones. ROMP [33] shows that employing the

maximal energy criterion would provide an optimal subset which captures a significant

portion of the correlation energy of the original k-element candidate set according to

‖y|A‖2 ≥
1

2.5
√

log k
‖y‖2 (3.2)

where A is the subset of k largest correlation energies of u chosen according to (3.1) that

possesses maximum energy. This is improved by the choice of highest average energy

regularization as shown in Lemma 2.1 below.

Lemma 3.3.1. Let y be any vector in Rm,m > 1. Then there exists a subset A ⊂ 1, ...,m

with comparable coordinates:

|y(i)| ≤ 2|y(j)| for all i, j ∈ A (3.3)
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and with high energy

‖y|A‖2 ≥
1

2

√
|A|

logm
‖y‖2 (3.4)

provided it holds the maximum average energy.

Proof. A is partitioned into at most O(logm) disjoint sets Aq with comparable coordinates

as in (3.3) such that at least one of these sets will have large energy as in (3.4). Aq is defined

as

Aq := {i : 2−q‖y‖2 < |yi| ≤ 2−q+1‖y‖2}, q = 1, 2, ...∞

Let q0 =
⌈
logm

⌉
+ 1, so that |yi| ≤ 1

m
‖y‖2 for all i ∈ Aq, q > q0. Then if the set U is

defined as U =
⋃
q≤q0 Aq, then the energy content of U c is given by

‖y|Uc‖2
2 ≤ (m(

1

m
‖y‖2)2) =

‖y‖2
2

m
=⇒ yavg(U

c) =
‖y‖2

2

m2

It is evident that
∑

q≤q0 yavg(Aq) ≥ yavg − yavg(U
c)

⇒
∑

q≤q0 yavg(Aq) ≥
‖y‖2

2

m
− ‖y‖

2
2

m2
=
m− 1

m2
‖y‖2

2 ≥
‖y‖2

2

4

If |Aq| is the cardinality of set Aq, there exists some q ≤ q0

yavg(Aq) ≥
‖y‖2

2

4q0

=
‖y‖2

2

4 logm

⇒ ‖y|Aq‖2 ≥
1

2

√
|Aq|

logm
‖y‖2

(
∵ yavg(Aq) =

‖y|Aq‖22
|Aq |

)
which completes the proof.

A simple comparison of the correlation energy retained in the optimal subset for the

maximal energy and the highest average energy criteria in (3.1) and (3.4) respectively reveal

that the latter achieves a better bound and hence its chosen optimal subset would most

likely lie in the true support of the signal, unlike the former. This is empirically validated

in simulations shown in Fig. 3.1 where the estimated support set includes the true support

set while ROMP employing (3.1) selects more false indices than the true support set when

sparsity prior is unknown.

37



3.4 RIP based Recovery Condition Analysis

It is undertaken to prove that the proposed SIRP algorithm will yield exact recovery of

k-sparse signals x in RN from measurements y = Φx under the condition that the mea-

surement matrix Φ satisfies the Restricted Isometry Property, which produces an estimated

support set such that supp(x) ⊂ Γ. Recovering the signal is simplified by computing

x̂ = (ΦΓ)−1y, where ΦΓ represents the measurement matrix Φ restricted to atoms indexed

by Γ. We prove a more powerful version of this statement in Theorem 2.2, which states

that at least half of all freshly selected atoms in each iteration belong to the true support of

x.

Theorem 3.4.1. Assume Φ satisfies the Restricted Isometric Property (RIP) with parame-

ters (2k, δ) for δ = 0.04√
log k

. Let x 6= 0 be a k-sparse vector with measurements y = Φx.

Then at any iteration, after the regularization step of SIRP J0 6= ∅, J0 ∩ Γn−1 = ∅ and

|J0 ∩ supp(x)| ≥ 1

2
|J0| (3.5)

This states that at least 50% of candidate indices in J0 are part of the true support of x.

Proof. SIRP finds at least one new atom belonging to the support set of x in every itera-

tion. Incorrect atoms may also be estimated, but (3.5) establishes that the number of such

incorrect atoms will always be lower than the number of atoms belonging to the true sup-

port. This consequently implies that provided Φ satisfies RIP, SIRP guarantees exact sparse

recovery.

RIP necessarily states that every k columns of Φ approximately incorporate an orthog-

onal system and hence every k coefficients of the N -dimensional observation vector u

appear as correlations of the M -dimensional measurement vector y with this approximate

orthonormal basis [33]. Therefore, every k coefficients of the original sparse vector x and

corresponding k coefficients of u are close in the Euclidean norm, as detailed in Lemma
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3.4.2.

Lemma 3.4.2. Assume a measurement matrix Φ satisfies the RIP with parameters (2k, δ).

Then for every k-sparse x ∈ RN and every set Γ ⊂ {1, ..., N} , |Γ| ≤ k, then the observa-

tion vector u = ΦTΦx will satisfy

‖u|Γ − x|Γ‖2 ≤ 2.03‖x‖2 (3.6)

Theorem 3.4.1 is proved by induction on the iteration of SIRP by which it is claimed

that in all previous iterations, J0 is non-empty, disjoint from the previously estimated sup-

port set Γ and inequality (3.5) holds. If Γ be the set that contains indices selected in the

previous iteration, it is inferred that

|supp(x) ∪ Γ| ≤ 2k (3.7)

Let J0 and J be the regularized and initial candidate sets respectively of the current

iteration and by definition, J0 is not empty. Suppose r 6= 0 is the residual during current

iteration and the signal to be identified presently, its measurements and observation vector

be considered as follows

x0 := x|supp(x)\Γ; y0 := Φx0; u0 := ΦTy0 (3.8)

where x0 denotes the coefficients of x that have not yet been estimated, y0 denotes the

contribution of those coefficients in the original measurement y and u0 denotes the obser-

vation vector obtained by correlating y0 with Φ. Lemma 3.4.3 deals with approximation of

the observations and shows that u and u0 are close in the Euclidean norm when restricted

to a small enough subset [33].

Lemma 3.4.3. Consider the observation vectors u0 = ΦTy0 and u = ΦT r. Then for any
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set Λ ⊂ {1, ..., N} with |Λ| ≤ 2k,

‖(u0 − u)|Λ‖2 ≤ 2.4δ‖x0‖2 (3.9)

In the following lemmas, it is shown that energy of the observation vector when re-

stricted to the candidate set J and further to the optimal set J0 is not trivial. It needs to be

proved that SIRP correctly identifies a fixed percentage of the correlation energy of the yet

unselected part of the signal and subsequently through regularization selects a part of the

true support as well, which is the desired conclusion.

Lemma 3.4.4. ‖u|J‖2 ≥ 0.8‖x0‖2 (localizing the energy)

Proof. Assuming I = supp(x) \ Γ and thus the cardinality of set I i.e. |I| ≤ k, the

construction of set J using the group maximums implies

‖u0|J‖2 ≥ ‖u0|I‖2 (3.10)

Since x0|I = x0 and from the proposition in [33], we have

‖u0|I‖2 ≥ (1− 2.03δ) ‖x0‖2 (3.11)

This yields the following inequality on combining the inequalities in (3.10) and (3.11) and

employing Lemma 3.4.3

‖u|J‖2 ≥ (1−2.03δ)‖x0‖2−2.4δ‖x0‖2 ≥ (1−4.43δ)‖x0‖2 ≥ 0.8‖x0‖2

(
∵ δ = 0.04√

log k

)
(3.12)

which completes the proof

The regularization strategy yields the optimal subset J0 from the candidate set J and
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Lemma 3.3.1 provides a bound on the energy retained by J0 as follows

‖u|J0‖2 ≥ 1
2

√
|J0|
log k
‖u|J‖2 (3.13)

Putting inequalities (3.12) and (3.13) together yields Lemma 3.4.5

Lemma 3.4.5. ‖u|J0‖2 ≥
0.4
√
|J0|√

log k
‖x0‖2

In order to validate the first claim of Theorem 3.4.1 that J0 is not empty, it is assumed

that J0 = ∅. However, it is noted that x0 6= 0, otherwise by inequality (3.8), supp(x) ⊂ Γ.

This indicates the residual r=0 at the beginning of present iteration, which is a contradic-

tion. The claim that J0 6= ∅ is validated by observing Lemma 3.4.5. The second claim is

established by the fact that the observation vector u = ΦT r satisfies uΓ = 0. Since J is

defined to contain non-zero coefficients of u, it follows that J∩Γ = ∅. As J0 ⊂ J, it easily

implies that J0 ∩ Γ = ∅.

To prove the final claim of the theorem in inequality (3.5), it is contrarily assumed that

the inequality in (3.5) fails, i.e., |J0 ∩ supp(x)| < 1

2
|J0|. Then it follows that

|J0 \ supp(x)| > 1

2
|J0| (3.14)

Suppose Ω = J0 \ supp(x); then due to the property of comparable coordinates in J0 and

since Ω >
1

2
|J0|, there is a fraction of energy in Ω obtained as

‖uΩ‖2 >
1√
5
‖u|J0‖2 ≥

√
|J0|

5.6
√

log k
‖x0‖2 ≥

1

5.6
√

log k
‖x0‖2 (3.15)

by employing Lemma 3.4.5. Whereas u can be approximated using u0 as

‖u|Ω‖2 ≤ ‖u|Ω − u0|Ω‖2 + ‖u0|Ω‖2 (3.16)

41



Since Ω ⊂ J and from Lemma 3.4.3, it follows that

‖(u− u0)|Λ‖2 ≤ 2.4δ‖x0‖2 (3.17)

By the definition of x0 in inequality (3.8), x0|Ω = 0. Therefore, by Lemma 3.4.2 it is seen

that

‖u0|Ω‖2 ≤ 2.03δ‖x0‖2 (3.18)

Employing inequalities (3.17) and (3.18) in inequality (3.16), it is concluded that

‖u|Ω‖2 ≤ 4.43δ‖x0‖2 (3.19)

This is a contradiction to inequality (3.15) as long as δ ≤ 0.04√
log k

and hence Theorem 3.4.1

is proved. Thus, SIRP guarantees exact sparse recovery of all k-sparse signals x in at most

k iterations by yielding a set Γ such that supp(x) ⊂ Γ. However, SIRP is experimentally

validated to require much fewer than k iterations to achieve exact recovery.

3.5 Algorithm formulation

This section details the basic operation of the proposed SIRP algorithm which takes the

measurements y and the measurement matrix sub-groups Φg1,··· ,gnc
as input. The estimated

N -dimensional signal x̂ is initialized to 0 and the initial residual r0 is set to y, while the

estimated support set is initially empty. The algorithm involves three main stages: support

identification, regularization and residual update. In every iteration, the index of the atom

corresponding to the highest correlation with the residual r from each cluster is selected

and added to an intermediate set J, which contains the indices of nc group maximums.

This concludes the identification stage.

SIRP constructs disjoint subsets from J with comparable correlation energies according

to (3.1), which ensures that the least energy in a given subset will be greater than the highest
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energy within the same subset. SIRP then employs the highest group-average-energy based

regularization criterion among the disjoint subsets of J to obtain the optimal subset of

comparable correlation energies and their corresponding indices form the optimal index set

J0. This is augmented to the estimated support set Γn in the current iteration.

The final stage involves estimating the signal using the currently estimated columns

of ΦΓn and given measurements y by employing least squares minimization. This can

accomplished by adopting matrix decomposition methods like QR or Cholesky that effi-

ciently compute the pseudo-inverse of the estimated sub-matrix i.e. Φ†Γn . Invoking these

strategies simplifies the signal estimation process. The residual rn is updated using this

currently estimated signal to eliminate its contribution from the original measurement and

the process repeats till the residual norm falls below a given threshold. The pseudo code of

the algorithm is given in Algorithm 5. It is to be noted that it does not require knowledge

of the sparsity level k to be passed as input unlike state-of-art techniques like ROMP [33],

CoSaMP [34], SP [35] etc. Further, the number of clusters nc and the corresponding group-

ing of Φ are fixed for a specific choice of signal dimensionN and number of measurements

M , and remains independent of any change in the sparsity level of the underlying signal.

Algorithm 5: Sparsity Independent Regularized Pursuit (SIRP)
procedure SIRP ( y, Φ, d )

Initialization x̂0=0N×1, r0 = y, n = 1, Γ0 = φ while ‖r‖2 > Tr or n < nmax do
Ji = arg max |ΦT

gi
rn−1| ∀ i ∈ [1, nc] . Identify

Sort J = {J1, · · · , Jnc} in descending order . Sorting
Form disjoint subsets Jj0 of the sorted J such that for every subset Jj0
|ΦT

a rn−1| ≥ 1
2
|ΦT

b rn−1| ∀ a, b ∈ Jj0
Choose Jj0 with the highest average correlation energy

1

|Jj0|
∑

b∈Jj
0
|ΦT

b rn−1|2 . Regularize

Γn = Γn−1 ∪ J0 . Support Set Augmentation
x̂nΓn = [ΦT

ΓnΦΓn ]−1ΦT
Γny . Estimate Update

rn = y−ΦΓn x̂nΓn . Residual Update Step
n = n+ 1

end
return Estimated sparse signal x̂n

end procedure
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Figure 3.1: (a) Original signal (b) Reconstructed signal using ROMP given true k (c)
Reconstructed signal using ROMP given kmax (d) Reconstructed signal using SIRP

Before proceeding further, the choice of the highest average-group-energy regulariza-

tion criterion in SIRP over the maximum energy criterion employed in ROMP is vindicated

using a simple experiment, as demonstrated in Fig. 3.1 where a 20-sparse 1024-length sig-

nal is recovered from 256 measurements using ROMP and SIRP. As in realistic scenarios

wherein the sparsity level k cannot be known prior, the sparsity upper bound of 50 is passed

as an input to ROMP. Fig. 3.1 (b) shows how ROMP wrongfully reconstructs a higher

dimensional signal (which also happens to be one of the infinite solutions of the under-

determined system y = Φx), but SIRP successfully estimates the signal demonstrating its

independence of sparsity prior knowledge.
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3.5.1 Implementation and Complexity Analysis

This section deals with the implementation and running time complexity of the proposed

SIRP algorithm. Unlike existing greedy methods, SIRP refines the identification stage

by adopting a divide-and-conquer strategy to parallelize the complex matrix-vector multi-

plication and yields nc parallel indices having the highest correlation energy within their

respective groups. The inherent parallelism here make it attractive for targeting parallel

hardware architectures or GPU implementations for swift completion of the correlation

step. Sorting the correlation energies of the nc parallel indices can be accomplished in

O(nc log nc), whereas the sorting step in ROMP, CoSaMP and SP costs O(N logN).

The regularization process can be carried out swiftly by observing that it is sufficient

to look for the optimal subset of correlation energies J0 ⊂ J among O(log nc) successive

intervals whose endpoint magnitudes fall by a factor of 2 respectively. Thus, the regular-

ization process can be completed in O(nc).

In addition to these costs, all the least squares problems for the unstructured sub-matrix

ΦΓn can be completed in O(k2M) using Modified Gram Schmidt (MGS) to incrementally

update Q and R matrices [75, 76] due to the regular structure of the SIRP algorithm. This

is significant compared to strategies like CoSaMP and SP that have varying support sets

for every iteration, which results in running time of O(k2M) in every iteration. Further,

SIRP considerably brings down the number of iterations compared to OMP, which leads to

tremendous savings in matrix-vector multiplications and least squares computations. The

incremental QR update strategy using MGS has been adopted in the implementation of the

algorithm.

When resource area is critical, the correlation and identification steps have to be per-

formed serially for each cluster, using the same resources. In this scenario, the cluster

centroid vector can be correlated with the residual to ignore the correlation and identifica-

tion of certain clusters of Φ whose centroid poorly correlate with the residual. An adaptive

45



threshold µ is adopted to select only those clusters whose centroid correlation magnitude

is greater than µ times the maximum centroid correlation value. This variant of SIRP is

called SIRP-II and can perform faster than the serial version of SIRP. Thus, SIRP’s novel

strategy of identifying support set locations based on clusters coupled with the enhanced

regularization step ensure fast convergence, good scalability and robustness to noise, which

is demonstrated in Section III.

3.5.2 Key insights

Convex optimization strategies are able to provide stable and uniform reconstruction guar-

antees, but do not possess the speed of greedy approaches. However, OMP fails to provide

such uniform guarantees [77] as opposed to basis pursuit algorithms. Another weakness

of the OMP despite its relative simplicity is the sequential pursuit process which forces

significant amount of the reconstruction time to be consumed by the costly correlation step

in high dimensional scenarios. Further, noisy conditions demand running the algorithm for

considerably more iterations than the sparsity of the underlying signal [78]. There have

been numerous attempts to accelerate the reconstruction process by selecting multiple in-

dices in each iteration, but possess weaker theoretical guarantees than BP.

ROMP [33] emerged as the first multi-element pursuit that provided uniform recon-

struction guarantees at complexities similar to that of OMP. However, its empirical perfor-

mance was found to be weaker than OMP in certain cases [79] particularly in scenarios

where the true sparsity is unknown. Parallel pursuit strategies like CoSaMP [34] and SP

[35] also offer faster convergence by requiring fewer iterations, but are computationally

very complex owing to least squares updates that are of the order of 3K and 2K terms in

each iteration. Further, their heavy dependence on the knowledge of exact sparsity [45] for

superior convergence presents a challenge in scenarios where the prior information is not

available or the sparsity continuously changes.

The above discussed methods demonstrate tradeoffs between different system consid-
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erations like uniform recovery, hardware feasibility, sparsity independence and reconstruc-

tion speed. SIRP promises to achieve a good balance of all these key considerations in its

pursuit process by being sparsity independent, possessing uniform recovery guarantees like

ROMP, hardware feasibility similar to OMP and fast convergence like the parallel strate-

gies.

3.6 Experimental Evaluation

The performance of the proposed SIRP algorithm is compared with the state-of-art algo-

rithms comprising OMP [7], BaOMP [36], ROMP [33], SP [35], SWOMP [32], MRAMP

[38] and AMP [40] under varying experimental settings in order to comprehensively evalu-

ate its competence. The experimental simulations are carried out in Matlab 2018a executing

on Intel(R) Xeon(R) CPU at 3.7 GHz with 64-bit Windows 10 operating system.

The elements of the measurement matrix Φ ∈ RM×N are independently drawn from the

standard normal distribution. The undersampling ratio given by M/N represents the level

of compression in the acquisition. An N length k-sparse signal is generated by choosing

the support set of size k uniformly at random from [1, N ] and drawing the coefficients

from the Gaussian distribution. For experiments carried out in noisy environments, the

measurements y are generated according to y = Φx + w, where noise w belongs to the

standard normal distribution with zero mean and standard deviation σ. This can also be

realized by Matlab’s inbuilt additive white gaussian noise (AWGN) function to generate

noisy measurements corresponding to specified signal-to-noise ratio (SNR) levels.

The normalized root-mean-square-error (NRMSE) is an important metric used to eval-

uate reconstruction accuracy and is defined as

NRMSE =

√
1
N

∑N
i=1(xi − x̂i)2

xmax − xmin

(3.20)
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where xmax and xmin correspond to the largest and smallest elements in x. The number of

successful reconstructions having NRMSE below a certain threshold ε are averaged over

the total trials to yield the percentage of successful recovery, while average recovery time

is computed by averaging the running time of the respective algorithms for each case. The

NRMSE threshold ε is set to 10−9 in noiseless settings, while it is set according to the

perturbation level ‖w‖2 in noisy scenarios, following the usual approach.

The parameters chosen for the algorithms are discussed here. BaOMP’s parameters are

set as µ1=0.4 and µ2=0.1 as these perform better in our experimental setup than the val-

ues in [36]. The parameters for ROMP and SWOMP can generally vary between 0 and

1, where ’1’ makes them effectively like OMP, while small values make them like thresh-

olding algorithms. Hence, the parameter values for ROMP and SWOMP are set to 0.5 to

achieve a trade-off between the reconstruction performance of the OMP and faster recovery

time. MRAMP employs a divide-and-conquer approach to reconstruct the signal without

knowledge of sparsity by using a step size parameter. Large step size can result in over-

estimation or under-estimation of the signal, whereas small step size would involve higher

running time. The step size is set to 20 in our simulation in order to achieve a trade-off

between these two characteristics. The parameter for SIRP-II which plays a significant part

in the task of bypassing groups of atoms in the correlation step that have weak centroid cor-

relations with the residual, is set to 0.2 based on empirical analysis and is used throughout

all experiments.

3.6.1 Recovery under noiseless scenario for varying k

In order to evaluate the performance of the algorithms for varying sparsity levels under

noiseless scenarios for higher dimensions, a 1000×10000 dimensional system is realized

using a random Gaussian measurement matrix Φ where N = 104 and M = 103. For

given sparsity level k and signal dimension N , the traditional Basis Pursuit (BP) requires

just O(k ln N
k

) measurements to recover the signal. While greedy algorithms theoretically
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require much higher number of measurements for guaranteeing recovery, they are empir-

ically found to perform well even with this bound. The sparsity upper bound kmax is the

maximum sparsity level that can be supported for recovery with the given number of mea-

surements by BP. Since kmax can be determined prior based on M and N , it can be used as

sparsity information in cases where k cannot be known exactly or is constantly known to

vary. OMP [7], ROMP [33] and SP [35] are provided with kmax as sparsity parameter for

realistic comparison.

The true sparsity k of the signal is made to vary from 100 to 320 in steps of 20 and 1000

N -length Gaussian signals are generated as described earlier for each level of k. OMP,

ROMP and SP are provided with kmax = 320 as explained earlier. The other algorithms

do not require any sparsity information. The cluster size for SIRP-I and SIRP-II is chosen

to be 100 as this is found to perform well empirically (analysis included in subsection

3.7). The percentage of successful reconstructions and the reconstruction time are plotted

versus the sparsity level in Figs. 3.2 (a) and (b) respectively. A reconstruction is considered

successful if the NRMSE of the recovered signal lies below 10−9.

It is observed that MRAMP achieves better recovery for moderately sparse signals (i.e.

higher k) in this noiseless setting followed by OMP and SIRP-I as shown in Fig. 3.2 (a).

MRAMP is able to achieve 100% recovery up to k = 280 and OMP achieves 100% sparse

recovery up to k = 260. This can be attributed to the back-tracking nature of MRAMP

which enables it to prune out wrongly selected atoms. However, MRAMP requires sig-

nificant computational resources as described earlier to achieve this. Further, its weak

performance in noisy settings as will be discussed in the following section discourage its

applicability in realistic scenarios. The OMP implementation in this setting performs re-

markably better than its existing implementations in the literature due to the fact that it is

run for more iterations (kmax) than the true sparsity k of the signal, which has also been

demonstrated in [78]. SIRP-I attains 100% recovery up to k = 220 following which it be-

gins to dip. SIRP-I’s recovery curve is considerably better than those of SWOMP, SIRP-II,
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Figure 3.2: Recovery analysis of 10000-length signals under ‘noiseless’ conditions using
1000×10000 dimensional CS system with kmax = 320 for OMP, ROMP and SP (a) Success
rate vs true sparsity k (b) Average recovery time vs true sparsity k

SP, BaOMP, ROMP and AMP. SIRP-II performs slightly worser than SWOMP, but much

better than SP. It is noticed that ROMP and AMP fail completely in this range of sparsity

levels due to the unavailability of exact k and inadequate number of measurements respec-

tively. The BaOMP strategy fails to reconstruct the signal accurately as the backtracking

step prevents it from identifying few true indices, which leads to higher reconstruction

errors.

Analysis from the average running time graph plotted in Fig. 3.2 (b) shows that SWOMP

has fastest recovery speed followed closely by SIRP-I. MRAMP and SIRP-II take moder-

ately higher time than SIRP-I in recovering signals with the difference becoming more

pronounced as k becomes higher. SIRP-I performs significantly better than SP, OMP and

AMP as observed in Fig. 3.2 (b). For instance, when k = 160, SIRP-I achieves a speed-up

of 2×, 3.5× and 6× over MRAMP, SP and OMP respectively. The advantage of SWOMP

in terms of recovery time fails in noisy settings, as will be shown later. Thus, a com-

prehensive evaluation of the algorithms validates the superiority of the proposed SIRP in

significantly bringing down reconstruction time while achieving 100% sparse recovery up

to signal sparsity of 220.
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3.6.2 Analysis of the number of measurements

In order to study the impact of number of noise-free measurements M on the success rates

of different algorithms for fixed sparsity levels, experiments were carried out for 10,000-

length random gaussian signals for two specified values of sparsity level k. The number

of measurements in the first case for k=200 is varied from 500 to 1250 and in the second

case for k=400 from 1000 to 1750. The success rates of the algorithms at each of these

levels averaged over 1000 trials is plotted in Figs. 3.3 (a) and (b) for k = 200 and k = 400

respectively. The algorithms which require sparsity information are provided the true value

of k, since k does not vary. Fig. 3.3 (a) demonstrates that in the noiseless setting, when

k = 200, MRAMP requires the fewest number of noise-free measurements (i.e. 850) to

achieve 100% success rate, whereas SIRP-I and SP require 950. However, from the earlier

analysis in noisy scenarios, it is known that MRAMP performs worse than SIRP-I in recon-

structing the signals. Fig. 3.3 (a) also shows that SWOMP, SIRP-I and OMP require higher

number of measurements for attaining full recovery. ROMP requires much higher mea-

surements to guarantee exact sparse recovery. Similarly, when sparsity k=400, MRAMP

requires 1350 measurements to guarantee 100% recovery whereas SIRP-I requires 1450

measurements, as shown in Fig. 3.3(b). The success rate curves of the other algorithms

follow similar trends observed earlier with OMP not able to achieve 100% recovery with

1750 measurements.

3.6.3 Recovery under noisy scenario for varying k

In order to study the performance of the algorithms in varying sparsity conditions for simi-

lar data sizes under noisy settings, N and M are retained as 10,000 and 1,000 respectively.

As in the earlier case, N -length Gaussian signals having sparsity k varying from 20 to 240

in steps of 20 are generated. The 1000×10000 random Gaussian measurement matrix is

generated as earlier, which is multiplied with each signal to obtain the respective noise-free
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Figure 3.3: Recovery analysis of the number of measurements M to reconstruct 10000-
length signals under noiseless conditions for fixed sparsity values (a) Success rate for
k=200 (b) Success rate for k=400

measurements. These are corrupted by AWGN such that the SNR of the resulting noisy

measurements is 10dB. The percentage of successful reconstructions and the average re-

covery time over 1000 trials is plotted versus the different sparsity levels in Fig. 3.4 (a)

and (b) respectively. Due to high noise levels, the NRMSE threshold is relaxed to 10−2 to

permit approximate sparse recovery.

It is observed from Fig. 3.4(a) that SIRP-I and BaOMP perform best in this noisy

scenario than their competitors. It is seen that MRAMP’s performance drastically degrades

in the noisy framework. SIRP-II and OMP have almost similar success rate curves which

are better than that of SP and worse than that of AMP. An analysis of the running time

graph plotted against sparsity k reveals that SIRP-I retains its time efficiency and remains

almost constant for the chosen range of sparsity. This can be contrasted with the running

time of BaOMP which increases with higher k. SIRP-I improves the reconstruction time

by factors of roughly 20×, 7× and 5× over OMP, AMP and SP respectively.

Fig. 3.5 shows the corresponding graphs for similar experiments carried out for rela-

tively less noisy environments with measurements having SNR of 30dB. Fig. 3.5(a) depicts

the efficiency of the proposed algorithm in this scenario as well, with SIRP-I and SIRP-II

outperforming the other algorithms. BaOMP now fails within the chosen range of spar-
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Figure 3.4: Recovery of 10,000-length signals from 1,000 noisy measurements with SNR
of 10dB (a) Successful recovery curve (b) Average running time

sity similar to its performance in the noisy setting. The running time graph offers similar

conclusion to the time efficiency of the proposed algorithm.

3.6.4 Recovery under varying noisy scenarios

To highlight the performance of the algorithms under various noisy environments, noise-

free measurements generated by multiplying the 1000×10000 random Gaussian measure-

ment matrix with 10000-length signals of fixed sparsity, are corrupted by additive white

gaussian noise (AWGN) to obtain noisy measurements with a specified signal-to-noise ra-

tio (SNR). The experiment is set up to measure the percentage of successful recovery versus

SNR, averaged over 1000 trials, for three distinct sparsity levels of 50, 100 and 200. A trial

is regarded as successful if its NRMSE falls below a threshold of 10−2.

Fig. 3.6(a) depicts the performance of the algorithms when k = 50 for SNR levels

varying from 0dB to 8dB. It is observed that SIRP-I, SP and OMP perform remarkably

well achieving 100% sparse recovery from noisy measurements having SNR upwards of

3.5dB, demonstrating their robustness in low SNR regimes. It is seen from Figs. 3.6(b)

and 3.6(c) that as the sparsity level increases, slightly higher levels of SNR are necessary to

ensure 100% recovery if the number of measurements remains fixed. For instance in Fig.
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Figure 3.5: Recovery of 10,000-length signals from 1,000 mild noisy measurements with
SNR of 30dB (a) Successful recovery curve (b) Average running time

3.6(b), when k = 100, SIRP-I achieves 100% from SNR of 7dB closely followed by OMP

and SP. When k = 200, OMP and BaOMP attain 100% recovery at SNR of 14dB whereas

SIRP-I achieves it at 16dB. Increasing the number of measurements can drive down the

required SNR levels for higher k values.

3.6.5 Phase transition

Phase transition (PT) diagrams were first articulated in the field of CS by Donoho and

Tanner [80] to inspect the success of CS applications in certain settings. Each point in

a PT diagram represents a concrete setting of the parameters, namely, signal dimensions

N , number of measurements M and sparsity level k. Every point reflects the probability

of success of the reconstruction process for the specific N , M and k by measuring the

number of faithful reconstructions of k-sparse vectors x ∈ RN when it is providedM linear

measurements corresponding to y = Φx, where Φ ∈ RM×N . The y-axis can represent

number of measurements M , whereas the x-axis represents the sparsity k. The PT diagram

comprises three main regions: low success denoted by blue, high success denoted by red

and the thin transition region between them.

Fig. 3.7(a) depicts the phase transition of the proposed SIRP-I algorithm for chosen

54



0 1 2 3 4 5 6 7 8

SNR (dB)

0

20

40

60

80

100

%
a

g
e

 s
u

c
c
e

s
s
 r

e
c
o

v
e

ry

SNR analysis for N=10000, M=1000, k=50

OMP

BaOMP

ROMP

SP

SWOMP

MRAMP

AMP

SIRP-I

SIRP-II

(a)

0 5 10 15 20 25

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

%
a
g
e
 s

u
c
c
e
s
s
 r

e
c
o
v
e
ry

SNR analysis for signal with N=10000, M=1000, k=100

OMP

BaOMP

ROMP

SP

SWOMP

AMP

SIRP-I

SIRP-II

(b)

0 5 10 15 20

SNR (dB)

0

20

40

60

80

100

%
a

g
e

 s
u

c
c
e

s
s
 r

e
c
o

v
e

ry

SNR analysis for signal with N=10000, M=1000, k=200

OMP

BaOMP

ROMP

SP

SWOMP

AMP

SIRP-I

SIRP-II

(c)

Figure 3.6: SNR analysis
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(a) Phase transition width of the SIRP-I algorithm
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Figure 3.7: 3.7(b) Phase transition curve of the SIRP-I algorithm 3.7(a) Phase transition
curves for OMP, SP, SIRP-I and SIRP-II algorithms

signal dimensionality N = 600 and M as well as k are made to vary from 1 to 600 in

steps of 5. To measure the probability of successful reconstructions at each (k,M ), 100

independent trials are carried out. Fig. 3.7(a) shows a sharp transition between regions of

high and low success probabilities as expected [80] and indicates concrete settings (i.e. M

and k) for guaranteed success of the algorithm in CS applications.

Fig. 3.7(b) shows the phase transition curves for OMP, SP, SIRP-I and SIRP-II for

similar signal dimensionality N=600, averaged over 100 trials, to contrast the state-of-art

greedy algorithms with the proposed SIRP variants. For each algorithm, area enclosed by

the corresponding curve represents regions of its certain failure, whereas the other region

corresponds to its certain success. It is observed that the region of success is highest for

SIRP-I followed by SIRP-II, SP and OMP.
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3.6.6 Recovery under noisy high dimensional settings

In order to validate the performance of the algorithm in high dimensional settings, this

section deal with experiments conducted for signals with dimension N = 1, 000, 000 and

10,000 noisy measurements generated using random gaussian measurement matrix of ap-

propriate dimensions, such that the SNR of measurement vector y is 10dB. The sparsity

k is made to vary from 100 to 600 and the sparsity upper bound is set as kmax = 1000

for algorithms requiring information of k, to realize scenarios where k cannot be known

exactly. The number of clusters parameter nc for the proposed SIRP-I is set to 500 in order

to deal with the huge N . The performance of SIRP-I in terms of percentage of successful

reconstructions and average recovery time is compared with that of OMP and SP in Table

3.1 to motivate the benefit of SIRP-I in high dimensional settings.

It is observed from Table 3.1 that SIRP-I achieves 100% success rate upto a sparsity of

400, while OMP and SP attain only 20% and 50% recovery at the same level respectively.

Further, SIRP-I achieves remarkable improvement in reconstruction speed over OMP and

SP by factors of approximately 60× and 2.5× respectively. The experimental simulation

justifies the large dimensional applicability of the proposed algorithm owing to its superior

reconstruction performance and running time efficiency.

3.6.7 Analysis on the number of clusters

In order to analyze the impact of the number of clusters nc on the performance of the

proposed SIRP-I algorithm, this section performs experiments on reconstruction of 10,000-

dimensional signals from 1,000 compressed measurements with sparsity k varying from

200 to 320. It should be noted that SIRP-I achieves full recovery for lower sparsity values

as well, but the range 200 to 320 is chosen to clearly contrast the performance of the

algorithm for different cluster number choices. Fig. 3.8(a) shows the success rate of the

proposed algorithm for four different choices of the number of clusters parameter nc (viz.
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% Success Average recovery time (sec)

True
Sparsity k

OMP [7] SP [35] SIRP-I OMP [7] SP [35] SIRP-I

100 100 100 100 1856.5 84.6 29.0
150 100 100 100 1857.4 84.0 31.4
200 90 100 100 1854.2 88.7 32.0
250 80 90 100 1859.4 86.6 33.4
300 60 80 100 1905.1 82.3 32.8
350 60 70 100 1863.2 83.0 36.3
400 20 50 100 1903.1 91.6 35.6
450 10 0 50 1865.2 87.4 32.1
500 10 0 30 1904.0 82.0 36.5
600 0 0 0 1904.0 67.0 34.4

Table 3.1: Comparison of OMP, SP and SIRP-I in recovery of 1000000-length signals
using 10000×1000000 dimensional CS system with kmax=1000 for OMP and SP in terms
of success percentage and average recovery time over 100 trials

50, 100, 200 and 250). It is observed that the curves almost coincide with nc = 50 slightly

performing better than nc = 100, nc = 200 and nc = 250 respectively. For instance, when

sparsity is 260, nc = 50 attains 87.2% recovery followed closely by nc = 100 with 85%,

nc = 200 with 80.6% and nc = 250 with 80.4% successful recovery. Fig. 3.8(b) plots the

average recovery time versus the sparsity k. It is observed that upto k = 240 where all

curves attain 99% recovery, the running times are almost similar with nc = 100 achieving

the least average recovery time in all the cases. As sparsity increases and the success rate

falls down, it is observed that nc = 250 requires lower time to terminate than nc = 200,

nc = 100 and nc = 50 respectively.

3.6.8 Applications in compressive imaging

In order to analyze the reconstruction efficiency of the proposed algorithm in a real setting,

experiments are carried out on binary and natural images with significant dimensionality.
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Figure 3.8: Recovery of 10,000-length signals from 1,000 noisy measurements for varying
k and different choice of the number of clusters parameter nc (a) Success rate curve (b)
Average running time

3.6.8 Binary image recovery

Fig. 3.9(a) depicts a 100 × 100 black and white image of a person and recovery of the

vectorized 10, 000 × 1 signal from noisy projections onto a random Gaussian matrix Φ ∈

R2000×10000 is attempted using OMP[7], SP[35] and the proposed SIRP-I (noise standard

deviation σ = 0.05). The sparsity level kmax for OMP and SP is set to 900, as discussed

in Section 3.1, such that M = O(k lnN/k). The cluster number parameter nc for SIRP-I

is set to 200, as this has similar performance to the case when nc = 100 (from Fig. 3.8).

Their respective reconstructed images as well as the peak signal-to-noise ratio (PSNR)

metric and running times are shown in Figs. 3.9(b), 3.9(c) and 3.9(d). It is observed that

SIRP-I achieves approximately 2dB improvement in PSNR over OMP in roughly 1/40th of

the time required by OMP. SIRP-I also achieves approximately 3 dB gain in PSNR over SP

and is 5× faster than SP.

3.6.8 Natural image recovery

CS theory facilitates recovery of compressible vectors as well, which implies that, x need

not be exactly sparse, but can be compressed using a suitable orthogonal transform Ψ
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Figure 3.9: Reconstructed 100×100 images of person using (b) OMP (c) SP (d) SIRP-I
from 2000 measurements with kmax = 900 for OMP and SP

such that in x = Ψz, z consists of only few significant coefficients. As natural images

are known to be sparsified by orthogonal transformations like Discrete Cosine Transform

(DCT), Wavelets etc., these can be employed to test the efficiency of the algorithm in

a realistic setting. Compressed measurements are generated by stacking the columns of

the q × q sized image and projecting the resultant q2 × 1 vector onto a random Gaussian

measurement matrix of size p × q2 where p < q2. From the perspective of the algorithm

which receives these measurements i.e. y = ΦΨz, it has to decode the compressible vector

z using y and the overall sensing matrix Ω = ΦΨ. Finally, the image can be reconstructed

by reshaping x̂ = Ψẑ back to the image dimensions.

The experiment in Fig. 3.10 follows this approach to compressively sample the 128 ×

128 Lena image 3.10(a) by 50% and employs the DCT basis to realize Ψ. The sparsity

level kmax for OMP and SP is set to 1500, as described earlier and the cluster number nc is

taken to be 128. Reconstructions using OMP, SP and SIRP-I are shown in Figs. 3.10(b),

3.10(c) and 3.10(d) respectively. The structural similarity index measure (SSIM) metric is

also used to measure the reconstructed image quality with reference to the original image,

with 1 indicating the highest similarity. The given recovery times indicate the time taken by

the respective algorithm to reconstruct ẑ. It is observed that SIRP achieves a tremendous

improvement in recovery speed over OMP and SP by factors of approximately 60 and 3

respectively with marginal improvement in PSNR as well.

In order to study the impact of the kmax values on the performance of the algorithms,
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Figure 3.10: Reconstructed 128×128 ’Lena’ images using (b) OMP (c) SP (d) SIRP-I
from 50% compressed measurements, setting kmax=1500
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Figure 3.11: Reconstructed 128×128 ’Mandrill’ images using (b) OMP (c) SP (d) SIRP-I
from 50% compressed measurements, setting kmax=500

the experiments in Figs. 3.11, 3.12 employ 50% undersampling and the Discrete Wavelet

Transform (DWT) based on Daubechies db10 wavelets to realize Ψ. The reconstructions of

the 128× 128 standard Mandril image 3.12(a) using OMP, SP and SIRP-I for kmax = 500

are shown in Figs. 3.11(b), 3.11(c) and 3.11(d) respectively. SIRP-I again achieves remark-

able improvement in recovery speed over OMP and SP with comparable PSNR and SSIM.

The reconstructions of OMP, SP and SIRP-I when kmax is set to 1000 are depicted in Figs.

3.12(b),3.12(c) and 3.12(d), which show slightly reduced visual distortions than oberved in

Fig. 3.11. This is evidenced by the fact that the SSIMs of the respective reconstructions

by OMP, SP and SIRP-I improve from the earlier case. SIRP-I maintains its running time

advantage over OMP and SP in this case as well.
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Figure 3.12: Reconstructed 128×128 ’Mandrill’ images using (b) OMP (c) SP (d) SIRP-I
from 50% compressed measurements, setting kmax=1000

3.7 Summary

In this work, the SIRP algorithm is proposed which employs a novel identification and

enhanced regularization step to considerably speed up pursuit while ensuring recovery per-

formance at par with the state-of-art algorithms. The rigorous experimental evaluation es-

tablishes its independence of the sparsity prior, robustness in noisy frameworks, significant

speed-up and feasibility for real world problems. These merits pave the way for realizing

efficient hardware implementations in the future that can offer swifter off-line recovery for

real-world applications.
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Chapter 4

High throughput architecture for sparsity inde-

pendent regularized pursuit

The motivation behind work presented in this chapter is to evaluate the VLSI design as-

pects of the sparse reconstruction engine for the sparsity independent regularized pursuit

proposed in Chapter 3. An algorithm-architecture co-design strategy is adopted in order

to induce hardware specific optimizations that allows for lower resource burden and reuse

wherever possible. The reformulated algorithm is evaluated in terms of its computational

complexity, experimental reconstruction performance and profiling results. Further to this,

a detailed architecture design is presented encompassing the crucial steps of the algorithm

and finally the implementation results on FPGA and ASIC are discussed.

4.1 Reformulated algorithm

SIRP employs parallel index selection and an effective regularization procedure to speed up

the reconstruction process. To reduce the hardware burden, the regularization strategy and

the LS update steps in SIRP are simplified to give the improved SIRP algorithm. As shown

in Algorithm 1, SIRP clusters the columns of Ψ into c disjoint clusters by any random

or ordered clustering (denoted by Ψ1, ...,Ψc) and finds the index Ji within each cluster

that possesses the highest correlation with the residual (step 3). Disjoint sets of the cluster

maximums are constructed based on the overall maximum as in step 4, which can be done

by simple shift and comparison operations. Cluster maximums with values less than 1/16

times the overall correlation maximum will be allotted to the final Υ5, as they are highly

63



unlikely to be part of the true support. A maximal energy per index-based criterion is then

employed on these subsets Υp to choose the optimal set Π to be added to the estimated

support set Γn.

Algorithm 6: Improved SIRP with incremental QRD
Input: y, Ψ
Output: ẑ

1 Initial: r0 = y, n = 1, Γ0 = ∅,Q0 = ∅,R0 = ∅, t = 0
2 while ‖r‖2

2 > Tr or t ≤ kmax do
3 Ji = arg maxj | < Ψi

j, rn−1 > | ∀ i ∈ {1, ..., c}
4 Form disjoint subsets Υp of J = {J1, · · · , Jc} such that for every subset Υp

where p = 1, ..., 5 |ΨT
a rn−1| ≥ 1

2p
max |ΨT rn−1| ∀ a ∈ Υp

5 Choose Υp with the highest average correlation energy as optimal set Π

6 Γn = Γn−1 ∪Π
7 for l=1 to |Π| do
8 [Qt+l,Rt+l] = MGS(ΨΠl

,Qt+l−1,Rt+l−1)

9 rt+l = rt+l−1 − (Qt+l)(Qt+l)
T rt+l−1

10 end
11 t = t+ |Π|
12 n = n+ 1

13 end
14 ẑ = R−1QTy

The newly selected columns of Ψ in each iteration ΨΠ are successively passed through

an MGS procedure and a residual update step shown in steps 8 and 9 of Algorithm 1. Since

the updated columns inQ can be used to determine the new residual, the partial estimation

of ẑ is avoided until the algorithm terminates. These incremental updates however require

storage of the Q and R matrices for subsequent computations. Estimation of the signal

can be performed after iterations have terminated by solving the triangular system of equa-

tions given by Rx̂ = QTy. The algorithm is terminated either when the squared norm

of the residual falls below a threshold Tr or when the estimated support set size reaches a

maximum kmax.

OMP [7], SIRP [81], improved SIRP, SE-SP [71] and ADMM [72] are decomposed into

different computing steps and the arithmetic operations of each step in the ith are tabulated
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Table 4.1: Computational Complexity comparison of the ith iteration of OMP, SIRP, Im-
proved SIRP, SE-SP and ADMM (M is the number of measurements, N is the signal size,
k is the sparsity level and |Γ|n is the support set size in the ith iteration of SIRP)

Algorithm Steps Multiplications Additions

OMP

Index searching MN (M − 1)N

Least squares
C = ΨΓn

TΨΓn Mi (M − 1)i

C−1 i(2i− 1)− 1 3(3i+ 1)(i− 2)

ẑ (i+ 1)(i− 1) 1
2
i(i− 1)

Residual update Mi Mi

SIRP

Index searching MN (M − 1)N

Least squares
C = ΨΓi

TΨΓi M |Γi| (M − 1)|Γi|
C−1 |Γi|(2|Γi| − 1)− 1 3(3|Γi|+ 1)(|Γi| − 2)

ẑ |Γi|2 − 1 1
2
|Γi|(|Γi| − 1)

Residual update M |Γi| M |Γi|

Improved SIRP
Index searching MN (M − 1)N

MGS 4M + 2M |Γi| 2(M − 1) + (2M − 1)|Γi|
Residual update 2M |Γi| (2M − 1)|Γi|

SE-SP [71]

Phase 1
Index search MN (M − 1)N

l2 min 2Mi+ i (M + 1)i

Residual update Mi M

Phase 2
Index search MN (M − 1)N

l2 min 2Mk + k (M + 1)k

Residual update Mk M

ADMM [72]
Sparse coefficient update N2 2N

Primal variable update - N

Dual variable update - 2N
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in Table 4.1. The index searching operation in OMP, SIRP, Improved SIRP and SE-SP

costs MN multiplications every iteration. Since OMP is serial, it would require at least

k iterations to complete the reconstruction process. SE-SP performs sparsity estimation

similar to OMP in the first phase which requires k iterations while the second phase of

subspace pursuit based fine reconstruction can be accomplished in much fewer iterations.

SIRP require fewer overall iterations for reconstructions as can be seen later from Fig. 4.3.
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Figure 4.1: Growth trend of the number of multiplications and additions versus the sparsity
level

This contributes to corresponding slower growth rates of the number of arithmetic op-

erations for higher sparsity levels compared to OMP. The LS update in each iteration of

OMP and SIRP involve computing the inverse of C as seen in Table 1 which is quadratic

in i and consequently has a complexity of O(i3) over all iterations. In the improved SIRP,

the LS update is substituted with a QRD which is linearly proportional to the number of

selected columns denoted by |Γi| and thus has a worst-case complexity of O(i2) over all

iterations.
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4.2 Performance evaluation of the improved SIRP algo-

rithm

Numerical simulation was carried out using MATLAB 2018a running on an Intel Xeon(R)

CPU at 3.7 GHz to observe the performance of the improved SIRP algorithm with respect

to OMP and SP. The experiment was set up for a sparse signal of dimensionality N=1024

and compression ratio of 0.25 such that M=256. The support set of the non-zero coeffi-

cients of each signal is randomly chosen and random Gaussian entries are used to build the

measurement matrix Φ while the non-zero coefficients belong to the normal distribution.

The number of clusters c is analysed empirically in terms of reconstruction performance

and running time, and found to be optimal at 32 for the given problem setting. The per-

centage of successful reconstructions over all trials is measured as the success rate of the

algorithm.

Figure 4.2: Success rate comparison of OMP, SP and improved SIRP

It can be seen from Fig. 4.2 that the improved SIRP performs better than OMP and at

par with SP with increasing sparsity levels. It should be noted that the par performance

of the improved SIRP with SP is achieved at significantly lower computational costs. In

order to compare the efficiency of the iterations of each algorithm, the average support

cardinality error (ASCE) metric is plotted versus the iteration number for 10 dB, 20 dB and
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Figure 4.3: ASCE versus iterations for (a) 10 dB (b) 20dB and (c) 30 dB noisy measure-
ments

30 dB noisy measurements in Fig. 4.3 with the residual threshold for all the algorithms set

to 10−2. It is seen that compared to OMP, SP and the improved SIRP detect bulk of the

true support in far fewer iterations. Though SIRP requires relatively more iterations than

SP, it is computationally much less complex than SP. This validates the improved SIRP as

an ideal choice for hardware implementations of CS based signal recovery.

In order to evaluate the performance of the algorithm in a real world setting, the prob-

lem of recovering electrocardiogram (ECG) signals from compressed measurements is con-

sidered. The MIT-BIH Arrhythmia database [82] containing 30 minute ambulatory ECG

recordings sampled at 360 Hz with 11-bit precision over a 10mV range is used for this

experiment. Fig. 4.4 (a) depicts a 14 second ECG recording of patient record 100 in the
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database which is divided into 20 segments of length 512. In contrast to the previous exper-

iment, ECG signals are not sparse in time, but can be sparsely represented in the wavelet

domain. The sensing matrix therefore corresponds to the product of the random Gaussian

measurement matrix and the Haar wavelet basis.

(a)

(b)

(c)

Figure 4.4: MIT-BIH database ECG signal reconstruction

The SIRP accepts the sensing matrix and the compressed measurements as input and

performs the reconstruction. Figs. 4.4 (b) and (c) portray the recovery of the ECG signal

from 37.5% and 50% samples in terms of the reconstructed signal-to-noise ratio (RSNR),

structural similarity index (SSIM) and reconstruction time respectively. As observed, the
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SIRP recovered signal shows an RSNR of 13.5 dB and SSIM of 0.4722 from 37.5% mea-

surements within 30 ms. As the measurements are increased to 50%, SIRP attains an RSNR

of 17.5 dB and SSIM of 0.615 within 47 ms.

The proposed algorithm is profiled using MATLAB profiler to track the execution time

of the critical steps involved and the results are depicted in Fig. 4.5. It can be seen that the

processor spends considerable amount of time in the incremental QRD based LS update

step (about 54%). The index searching and back-substitution steps each occupy roughly

20% of the execution time. The total reconstruction time measured by the profiler is 0.013s,

which corresponds to a throughput of 77 vectors/second. From these results, it becomes

evident that accelerating the proposed algorithm on FPGA platforms is quintessential to

realizing swifter reconstruction speeds. Furthermore, it can be understood that the incre-

mental QRD algorithm also needs to be accelerated through intelligent use of parallelism

to overcome the speed limitations.

Figure 4.5: Profiling results of the proposed algorithm

The complexity analysis and performance evaluation subsections raise the prospects

of designing efficient hardware for the proposed algorithm, capable of delivering reliable

reconstructions. Unlike SP, the proposed algorithm does not permit deletion of selected in-

dices from the estimated support set at later stages. This feature imparts a simpler structure

from the hardware perspective and the experimental analyses reinforce the reconstruction

capability of the proposed algorithm. These aspects motivate the requirement of designing

efficient hardware to leverage its merits.
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4.3 Architecture Design

This section details the architecture design of the improved SIRP algorithm targeting a

structure that supports the reconstruction of signals with size N=1024 and a maximum

support set size of 64, from M=256 compressed measurements. Fig. 4.6 presents the high

level block diagram of the proposed hardware which is composed of three major blocks:

1) Index searching block; 2) Support set augmentation block and 3) Refining block. The

measurement matrix Φ is stored in M static random access memories (SRAMs) each of

size 2kb such that a single address will output M elements of the corresponding columns

of Φ at a combined rate of 512 bytes per clock cycle. The dedicated control unit ensures a

seamless interaction between all blocks by generating read/write addresses for the different

memories as well as initiation enable signals for the various processing blocks according

to a well planned schedule.

Figure 4.6: Block diagram of the improved SIRP algorithm
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4.3.1 Index searching block

The function of the index searching block is to determine the optimal set of indices to be

added to the estimated support of the measured data based on ΨT rn. The naive implemen-

tation of the inner product computation would require M parallel multipliers to maximize

parallelism and an M -input adder tree to obtain the dot product. Thus, the critical path

would consist of 1 multiplier delay and log2M adder delays which can significantly de-

crease the operating clock frequency. Moreover, the entire process would require N clock

cycles to complete the inner product computation of all N columns of the measurement

matrix.

The FPGA fabric has dedicated carry logic that can significantly improve the perfor-

mance of carry propagate adders. Carry save adder structures using 4:2 compressors can

potentially deliver greater speed-up for higher word lengths [83], but the gains are not no-

ticeable for word lengths up to 16 bits. Due to this, the work focuses on leveraging the fast

carry chains of FPGAs to implement carry propagate adders for the adder tree unit.

In order to reduce the critical path delay, a six-stage pipelined inner product compu-

tation unit (IPCU) is proposed which consists of M pipelined multipliers and a pipelined

adder tree unit (ATU) to successively compute the N inner products of ΨT rn in N + 9

clock cycles. The architecture of the IPCU block is illustrated in Fig. 4.7 below.

In this way, the index searching block is able to exploit parallelism and pipelining fea-

tures to improve overall system performance. Further, the IPCU block is reused in the

incremental QRD architecture that will be presented later to improve resource sharing.

The regularizer unit (RU) works in tandem with the IPCU to determine the subset of

indices that will be used to incrementally update the matrix decompositions. It does this

primarily by employing a grouper module that keeps track of the maximum correlation

value in every 32 clock cycles and its index, effectively storing 32 cluster maximums and

their indices into the respective RAMs shown in Fig. 4.8.
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Figure 4.7: Architecture of the 256-input IPCU block

The grouper module is also tasked with determining the overall maximum correlation

and passing this value to the range comparator at the end of N + 9 cycles. The clus-

ter maximums are now read sequentially into the range comparator which determines the

accumulator in which its energy will be accumulated. The architecture of the range com-

parator is shown in Fig. 4.9 based on the optimized regularization step of the improved

SIRP algorithm. In order to perform the aggregation into corresponding subsets, the com-

parator array compares shifted versions of the global maximum to identify the range in

which the cluster maximum would lie by employing a priority encoder. This enables the

cluster maximum to be accumulated in the appropriate accumulator in the regularizer unit.

Once all 32 cluster maximums are processed in this manner, the index search block

initiates the average energy computation by employing parallel LUT based dividers to ob-

tain the optimal cluster indices. Since the maximum number of elements in a subset which

would be used to divide the accumulated energy is restricted by the cluster size 32, the fixed

point values of the corresponding fractions are stored in look up tables, so that the average
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Figure 4.8: Architecture of the regularizer unit

energy can be computed by a simple multiplier. The architecture of the LUT divider is

shown below in Fig. 4.10

Once the average energy of each subset is computed in parallel, the control unit initiates

a simple maximum computation loop that determines the subset with the maximum average

energy in 5 clock cycles and the RU stores the indices of the optimal set to be used for later

processing.

Case study of the index search block

In order to demonstrate the computation of the equivalent support set of the sparse signal,

a case study is presented for the reconstruction of a 16-sparse 1024-dimensional signal

shown in Fig. 4.11 from 256 measurements, whose support indices are {137, 145, 212,

222, 376, 395, 406, 561, 563, 606, 620, 756, 775, 954, 989, 1002}. The random Gaussian

sensing matrix of size 256×1024 is clustered into 32 ordered groups in such a way that first

32 columns form the first cluster and so on, as represented in Fig. 4.12.

In the first iteration, the residual vector of size 256×1 is sequentially correlated with

the columns in Ψ, resulting in an overall latency of 1030 clock cycles. The grouper mod-

ule stores the value and index of the column within each cluster exhibiting the highest

correlation energy to form the initial candidate set of size 32, which in this case study is
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Figure 4.9: Architecture of the range comparator unit

determined to be J= {30, 52, 95, 97, 137, 176, 222, 251, 276, 317, 322, 376, 395, 419, 459,

497, 532, 561, 598, 622, 650, 674, 734, 756, 775, 823, 852, 873, 914, 952, 985, 1002}.

The correlation values stored in the associated BRAM are read out sequentially and it is

determined that the column at index 561 possesses the highest correlation umax=1.7838

over all clusters. This is used to construct the subsets according to the following intervals

[umax,umax

2
],(umax

2
,umax

4
],(umax

4
,umax

8
],(umax

8
,umax

16
] and (umax

16
,0]. The subset with highest aver-

age correlation energy is found to be Π1={561, 137, 395, 1002, 775, 222} corresponding

to the interval [umax,umax

2
] and forms the final candidate set of the first iteration. It is ob-

served that all the chosen indices belong to true support set of the sparse signal. These are

written to a support memory for later processing and concludes the operation of the RU

in 42 clock cycles. The subsequent QR and residual update steps are carried out based on

the updated set. If the residual norm remains above the threshold within each cluster, the

algorithm proceeds to add more indices to the support set. The subsequent iterations pro-

ceed in a similar manner to incrementally augment the equivalent set of the sparse signal,

with Π2={563, 145, 756}, Π3={954, 376, 212, 989, 606}, Π4={406} and Π5={620}. The

improved SIRP algorithm rightly detects all the support locations of the original signal and
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Figure 4.10: Architecture of the LUT divider
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Figure 4.11: Original 1024-length signal

the algorithm terminates as the residual norm falls below the threshold.

4.3.2 Support set update block

This block is tasked with computing the QR decomposition of the selected columns of Ψ

represented by ΨΠ whose number can vary in each iteration. The MGS strategy permits

incremental updates to the Q and R matrices as newer columns are added to the signal

support and can be partitioned into two principal steps: triangularization process (TP) and

a diagonalization process (DP) as shown in equations (4.1) and (4.2) respectively

λn = λn − (Qn−1
j )TλnQn−1

j , ∀j ∈ [1, n− 1] (4.1)
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Figure 4.12: Flow of the proposed algorithm in estimating ẑ

rnn = ||λn||2 (4.2)

The simplified hardware architecture of the DP and TP steps are shown in Figs. 4.13 and

4.14 respectively.

These complex processes can be decomposed into a few elementary operations like

vector inner products, multiplication, subtraction, division and square root. As the designed

structure is required to handle a column size of 256, this would entail 256 parallel dividers

in the DP block which would drastically increase the hardware resources and the latency.

In order to mitigate the drawbacks of the diagonalization step, a fast inverse square root

(FISR) block based on Quake’s algorithm [84] is employed in our architecture.

Though the FISR was originally intended for floating-point numbers, there have been

fixed-point implementations as well [55]. Quake’s algorithm employs a right shift on the

floating point number followed by a subtraction from 0x5f3759df to yield a good estimate

for subsequent Newton’s iterations. The fixed point variation consists of performing the

fixed point equivalents of these operations and is laid out in [55]. Based on this fixed point

Quake’s algorithm, the FISR hardware unit is designed to support two Newton’s iterations

and is fully pipelined to yield the inverse square root value in 6 clock cycles.

77



As the shared IPCU yields ||λn||22, the FISR block can easily compute
1

||λn||2
as shown

in Fig. 4.13, which can then be simply multiplied to λn yielding the column qn that can be

stored. Therefore, it can be seen that this results in significant hardware and latency savings

compared to the naive implementation of the traditional diagonal process.

Since, this strategy ends up computing the reciprocal of R’s diagonal coefficients (1/rii),

this yields an added benefit in the final signal estimation step that will be described later.

The DP and TP cannot be executed in parallel due to the interdependencies involved and a

simple structure implementing a sequence of DP and TP steps can exacerbate the associ-

ated latency of the incremental QRD algorithm as the number of TP steps rise linearly with

the support set size.

4.3.2 Diagonal Process block

The DP block shown in Fig. 4.13 is responsible for carrying out the normalization of the

selected columns and outputs the normalized column qjas well as the corresponding 1/rii.

Initially, the input column λi is multiplied with itself throughM parallel multipliers having

a 3-stage pipeline behaviour and an M -input adder tree unit with a 6-stage pipeline to yield

the squared norm of λi represented by ‖λi‖2. After computing this quantity, it is required

Figure 4.13: Internal hardware architecture of the DP block

to compute its square root and perform division with respect to λi. As described earlier,

this is circumvented by deploying the FISR to compute 1/‖λi‖, which can then be simply
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multiplied to λi to properly normalize the column. The FISR computes the inverse square

root by making the initial guess based on Quake’s algorithm and employing two Newton

iterations to improve the guess. The total latency of the DP step is determined to be 18

clock cycles.

4.3.2 Triangular Process block

The TP block shown in Fig. 4.14 is tasked with computing the triangular coefficients of

R and orthogonalizing incoming column λj with respect to current columns in Q. The M

parallel multipliers and M -input ATU with pipeline stages of 3 and 6 respectively ensure

computation of qTj λi which corresponds to rji in R. To orthogonalize λi with qj , it is

required to subtract rji times qj fromλi. This is accomplished by theM parallel multipliers

and subtracters shown in Fig. 4.14. The total latency of the TP step is 13 clock cycles.

Figure 4.14: Internal hardware architecture of the TP block

4.3.2 Iterative incremental QRD architecture

Since the SIRP algorithm permits multiple index selection in each iteration, the support

set update block should be capable of handling the DP and TP tasks leveraging parallelism

wherever possible without drastically increasing hardware resources. It can be seen that

when newly selecting columns need to be decomposed, they must be orthogonalized to

columns stored in Q. When multiple columns need to be orthogonalized in an identical
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Figure 4.15: Iterative architecture of the Incremental QRD

manner, significant time savings can be induced by concurrent updates for each memory

access.

To this intent, a novel iterative incremental QRD architecture using an elaborate feed-

back circuit is shown in Fig. 4.15 that is amenable to the incremental nature of the support

set update of the SIRP algorithm and exploits the inherent parallelism in the TP step, con-

suming higher hardware resources. The proposed architecture comprises one DP block and

three TP blocks labelled TP1, TP2 and TP3 among which the DP and TP1 blocks can be

combined to save resources as depicted in Fig. 4.15. The architecture has four modes of

operation which can be selected by the ipu_sel signal as shown in Table 4.2.

This mechanism is used to share the hardware resources among the independent pro-

cessing steps of the proposed algorithm to induce resource savings. When ipu_sel is 0, the

the first set of M parallel multipliers and the ATU in the combined DP-TP1 block are used

to perform correlation of the columns of Φ with the residual ri. All other compute units

are switched off by generating corresponding low enable signals. The out_sel signal can

be used to send the output of the ATU to the regularizer unit, whose operation has been

discussed earlier.

When ipu_sel is 1, it implies the architecture is configured to perform the operations in

the DP step to normalize the column λi. In this case, the unused hardware in the TP blocks
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Table 4.2: Operation modes of the proposed architecture

ipu_sel Operation modes
0 Correlation of Φ with r
1 Diagonal process
2 Triangular process
3 Residual update

are turned off by appropriate control signals. The new column aj is multiplied with itself

through proper ipu_sel and tp_sel signals. The ATU produces ‖aj‖2
2 which is then passed

to the FISR block by setting dptp_sel high. After computing the inverse square root, the

FISR block passes the ready signal and the output to the parallel multipliers to yield the

orthonormal column qj which is then stored in memory.

When ipu_sel is 2, the architecture is configured to perform the TP operations for 3

columns in parallel using the TP1, TP2 and TP3 blocks, based on the number of incoming

columns. If it is less than 3, then the corresponding TPs are disabled by the control unit.

The incoming columns have to be orthogonalized to the columns read from Q storage. For

instance, if there are 4 stored columns in Q and there are three new columns selected in the

current iteration, a5 to a7 are primarily orthogonalized to q1 concurrently by passing q1 to

the corresponding TP blocks. The modified columns are then fed back to the respective TPs

parallelly through demultiplexers to orthogonalize them with respect to q2 and similarly for

q3 and q4. Once this is completed, the control unit initiates the diagonal process for the

modified column a′′′′
5 to finally obtain q5. As this is stored to the Q memory, it is also

passed to TP1 and TP2 in order to orthogonalize a′′′′
6 and a′′′′

7 with respect to q5. The

demultiplexers ensure that these are fed forward to the corresponding TPs through proper

control signals. The process goes on till the final column q7 is computed and stored.

When ipu_sel is 3, the architecture is configured to estimate the new residual based on

newly augmented columns in Q. The update equation is shown below

ri = ri−1 −QnQT
nri−1 (4.3)
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The new residual vector corresponding to the current column is then used to update the

residual after considering the subsequent columns iteratively.

Each TP block operates in three modes based on the data flow. In the first mode, a

freshly selected column from the previous index searching block is accepted into the TP.

The second mode is a feedback mode where the output of the TP is fed back to itself to

enforce orthogonality to the next column in Q. This permits computation of three respective

triangular coefficients and modified columns λ′
i’s in parallel. In the third mode, the output

of the TP is fed forward to the adjacent TP or DP to compute the subsequent column of

Q. These modes are controlled by the multiplexer and demultiplexer select lines as can be

seen from Fig. 4.15. It should be noted that the estimated support set size can vary in

every iteration and the control unit is required to properly sequence these operations by

producing the corresponding enable signals.

Since vector inner product is ubiquitous in all stages of the algorithm, a hardware shar-

ing scheme is proposed to bring down resource consumption and increase hardware uti-

lization efficiency using a set of multiplexers regulated by the control unit. This scheme

facilitates usage of the same IPCU and ATU blocks for the index searching, diagonalization,

triangularization, residual update and residual norm computation steps of the algorithm.

4.3.3 Refining block

The refining block is tasked with updating the residual in each iteration and computing the

signal estimate after the residual norm falls below the threshold or sparsity maximum is

reached.

4.3.3 Residual Update unit

As shown in equation step 9 of Algorithm 1, the newly updated columns of Q are sufficient

to update the residual for the following iteration without requiring an intermediate estima-

tion of the signal. Since the hardware structure needed to implement the residual update

82



in this manner is similar to the structure of the TP block, it is proposed to control the flow

of data to the TP1 block in the incremental QRD architecture to realize this task. But this

requires to iteratively approach the final residual of each iteration by breaking down the

problem into a series of updates for each newly added column of Q represented by qs.

The residual update in equation (4.3) can broken down into three simple operations

shown below that can be mapped on to TP1 block so that resources can be shared.

v = QT
nri−1 (4.4)

v
′
= Qnv (4.5)

ri = ri−1 − v
′

(4.6)

The operation in equation (4.4) can be mapped to the first set of parallel multipliers in

the dual DP/TP1 block as one input is the column qj and the other input is the residual

ri−1. The scalar product of these quantities is then multiplied to qj through the second

set of multipliers in the TP1 block and the resulting vector is subtracted from the residual

through parallel subtracters also available in TP1.

The residual update is followed by its norm computation to determine if the architecture

should continue to search for possible true support indices or if the current estimated index

set closely matches the true support set of the signal. It would suffice to compute the

squared norm of the residual using the IPCU block in TP1 and a comparison operation

with the modified threshold is carried out to inform the control unit to generate the signals

for carrying out the next iteration or proceed for signal estimation.
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Figure 4.16: Signal estimation block

4.3.3 Signal Estimation unit

The signal estimation unit is tasked with computing the solution of the linear system

Rx̂ = QTy by using a back substitution approach. The architecture implementing this

functionality consists of 64 multiply and accumulate (MAC) modules that permit parallel

substitution of estimated signal coefficients into the upper layers based on the correspond-

ing enable signals, shown in Fig. 4.16. The qTl y quantity is sequentially computed using the

shared IPCU of the TP1 block from the lower to upper layers. A 64×1 multiplexer chooses

which MAC output is to be subtracted from the corresponding qTl y quantity which is then

multiplied by the 1/rii coefficient stored in the R matrix. The conventional division ap-

proach would have consumed longer accumulated latencies which has been circumvented

by computing the reciprocal of the diagonal elements of R and incurring only multiplier

latency costs.

4.3.4 Control Unit

The complex hardware blocks discussed in the previous subsections require a sophisticated

control structure to execute the SIRP algorithm seamlessly. The control unit is responsible
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Figure 4.17: Finite state machine diagram

for carrying out the complex hardware sharing mechanism among the different processing

steps of the algorithm. This is realized through the design of a complex finite state machine

(FSM) shown in Figure 4.17, which will be discussed in detail. A Moore FSM design

is pursued where the output signals are only dependent on the current state. The control

signals for the data paths of the overall architecture are manipulated by each state for syn-

chronizing the various operations of the SIRP algorithm. The ctrn signals that decide state

transitions are controlled by the timing behaviour and/or meeting the iteration constraints

that will be detailed below. The FSM has been highly optimized for the number of states.

State S0 is the initial wait state upon reset, which waits for the ‘new’ signal indicating a

fresh set of measurements have been loaded into the measured data memory. State S1 deals

with the correlation and regularization steps of the algorithm and the number of clock cy-

cles taken to complete this state are fixed in every iteration. The FSM issues the necessary

control signals to sequentially input columns of Ψ into the 256-parallel IPCU unit along

with the residual. The correlation of Ψ with the residual rn−1 takes N + 6 cycles. The reg-

ularizer unit works in parallel during this time slot to find the cluster maximums followed

by an additional 42 cycles to compute the optimal support indices. Since columns of Φ are
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normalized to 1, the first selected column can be written to Q bypassing the orthonormal-

ization step. This is accomplished by a special first iteration (FI) mode characterized by

state S3. The adjudicator module within the control unit is tasked with efficiently carrying

out the transition to subsequent states. Fig. 4.18 corresponds to the timing diagram when

six new columns are being augmented to the support set and the corresponding residual

update.

S2 is a single latency state that transitions to an exclusive first iteration (FI) state S3

or directly to S4 in other iterations. Since all columns of Ψ in the traditional CS recovery

problem possess unit norm, the column corresponding to the first index in the estimated

support set can be written directly to theQmemory without undergoing additional wasteful

operations. This task is accomplished in state S3 which is completed in 5 clock cycles.

State S4 is one of the key states in the FSM as it is required to transition to one of

four states based on the number of selected columns remaining to be orthogonalized. State

S5 is triggered when new columns have to be input from the measurement matrix RAMs

into the incremental QRD unit. State S5 is tasked with reading three new columns a2 − a4

sequentially and orthogonalizing them with respect to the first column of Q (from state

S3), while simultaneously computing and storing r12, r13 and r14. At the end of S5, the

orthogonalized version of a2 viz. a′
2 is transferred from the output of TP1 to the shared

DP unit which computes 1
r22

and subsequently q2. These operations are carried out in state

S7, consuming 18 clock cycles. As S8 starts execution, the orthogonalized a′
3 and a′

4 are

transferred from TP2 and TP3 to TP1 and TP3 respectively, and q2 is also passed as input

to both modules in order to compute r23, r24, a
′′
3 and a′′

4 . The output of TP1, viz. a′′
3 , is fed

to the DP in state S9 in order to compute the corresponding inverse diagonal coefficient of

R and column ofQ. The process to compute r34 and a′′′
4 follows in S10, with a′′′

4 being fed

back to DP in S11 to compute the related coefficients, which concludes the first inner loop

of the 1st iteration.

The new column orthogonalization (NCO) mode is used to fetch new columns from the
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Ψ RAMs and orthogonalize them with respect to q1 while also computing the respective

triangular coefficients of R. The orthogonalized version a′
2 is given as input to the DP

sub-module in order to obtain q2 during state S7. The subsequent states will feed forward

the orthogonalized vectors to the adjacent TP modules for successive orthonormalizations.

At state S11, an iteration end (IE) adjudicator looks at the number of remaining support

columns that need to be augmented and transitions the system back to state S4, and the

process repeats till all new columns have been augmented toQ andR. The existing column

orthogonalization (ECO) mode is undertaken to use TP1, TP2 and TP3 sub-modules to

orthogonalize the new set of columns to the successive columns in Q in a feedback mode.

Towards the end of S11, the IE adjudicator finds that columns stored inQmatch the number

of newly selected support indices. This initiates the residual update (RU) step which utilizes

the TP1 sub-module recursively to update the residual respective to the columns newly

stored in Q. This is followed by the residual norm computation step that determines if a

new iteration is to be pursued or not. Once the stopping criterion is met, signal estimation

is carried out in state S14 in 9t+ 4 clock cycles.

At this stage, the FSM performs a check to ascertain if number of columns stored in

Q match the estimated support set size of the present iteration. If it finds more indices are

present, control is transferred back to S4 to resume the process of orthogonalization. State

S5 is then executed in order to fetch the new columns and simultaneously orthogonalize

them with respect to q1. These have to be subsequently orthogonalized with respect to q2

to q4, which is accomplished by the S4-S6 loop as seen in Figure 4.17. After this process

is completed, the successive DP and TP states are undertaken to obtain the new columns of

Q and corresponding coefficients ofR.

Once the number of columns in Q and the estimated support set size match, the FSM

transitions to state S12 which deals with the residual update corresponding to the newly

added columns ofQ according to equation (7), iteratively. If s is the number of newly added

columns in the current iteration, S12 consumes 9s+2 clock cycles to obtain the residual for
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the subsequent iteration of SIRP. This is followed by a residual norm computation stage that

shares the IPCU hardware in S13 to compute the norm of the new residual and determine

if more iterations are needed. If the residual norm falls below the threshold, support set

estimation can be stopped and the FSP proceeds to state S14 to estimate the signal using

the stored Q and R matrices. The estimation process occurs in 9t+ 4 clock cycles, where

t is the total size of the estimated support set.

It should be noted that the designed FSM is capable of handling variable size of selected

indices in each iteration, using shared hardware to effectively bring down the number of

iterations needed to estimate the signal.

4.4 Experimental Results

In this section, the proposed implementation’s efficiency of signal reconstruction is an-

alyzed for different data precision parameters. The resource utilization profile and the

recovery performance of the proposed hardware is compared with other state-of-art works.

4.4.1 Fixed point analysis

Fixed-point designs are more efficient than their floating-point counterparts with regard to

area, speed and power considerations. In order to estimate an appropriate data precision

format for the proposed design, a series of experiments are performed for different choices

of data widths and number of fractional bits using MATLAB 2018a fixed point toolbox.

The randomly generated Gaussian measurement matrix of size Φ ∈ R256×1024 is used to

compressively sample a randomly generated k-sparse signal to obtain the measurements

vector y. In each experiment, Φ and y are quantized according to the respective data and

fractional widths and given as input to the fixed point version of the improved SIRP algo-

rithm.

The signal recovery efficiency is measured in terms of the reconstruction signal-to-noise
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Table 4.3: Reconstruction efficiency under varying data precision for N=1024, M=256
and k=36

Data width 16-bit 18-bit 20-bit

Fractional RSNR ASCE RSNR ASCE RSNR ASCE
(dB) (dB) (dB)

9 25.88 0.0278 24.79 0.0556 24.17 0.1111
10 30.57 0.0278 35.07 0 32.26 0.0556
11 41.58 0 42.11 0 38.28 0.0278
12 45.47 0 46.72 0 48.35 0
13 55.96 0 53 0 54.20 0
14 25.12 0 62 0 57.76 0
15 8.57 0 67.23 0 64.71 0

ratio (RSNR) and the average support cardinality error (ASCE). The RSNR can be defined

as

RSNR = 20 log10

‖x‖2

‖x− x̂‖2

(4.7)

ASCE refers to ratio of number of undetected support set elements to the total number of

true support elements and can be mathematically written as

ASCE = 1− E{Γ ∩ Γ̃}
k

(4.8)

where Γ and Γ̃ are the true and estimated support sets respectively.

As seen in Table 4.3, for a fixed data width, an increase in the fractional width im-

proves the RSNR and ASCE parameters as expected. However, the RSNR is found to drop

with further escalation in fractional width, as the corresponding integer width would be

inadequate for appropriate representation of data.

4.4.2 Implementation results

In order to compare with existing designs that target sparse signal recovery, the proposed

architecture is implemented for a problem size of N=1024 and M=256 on a Xilinx Virtex

Ultrascale+ xcvu9p FPGA device. The fixed precision adder, subtracter and multiplier
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units occupying either look up tables (LUTs) or DSP48E2 slices are generated by Vivado’s

IP generator , whereas XILINX BRAMs (RAM18E2) are configured as dual port RAMs

or ROMs. The distributed memory within the configurable logic blocks (CLBs) across the

device are used to store intermediate results. The architecture is implemented based on

System Verilog description, using Vivado synthesis and implementation strategies for the

chosen target. In order to validate the functional performance of the design in the presence

of logic and routing delays, post-implementation timing simulation was carried using the

Synopsys VCS simulator.

Since existing approaches present their results for a signal sparsity level of 36, cor-

responding random test signals with amplitude varying between −1 and +1 are used to

test the proposed design. Table 4.4 compares reconstruction time, maximum operating fre-

quency, detailed resource utilization and recovery performance of our implementation with

state-of-art works. It can be seen that the proposed design operates at 190 MHz and is able

to reconstruct 36-sparse signals within 77µs, which considerably excels the prior works.

This can be attributed to the fewer number of iterations required by SIRP to recover the

vector, compared to the 36 iterations needed by OMP. The OMP variant proposed in [67]

which brings down the iterations by a factor of 2, is found to have a reconstruction time

of 170µs. The proposed implementation trades off the hardware resource usage in order

to achieve significant speed-up in the running time, compared to the state-of-art OMP im-

plementations. It should be noted that the SP processor [73] targeting a relatively smaller

problem size (N=256, M=58, k=8) consumes significantly greater resources than the pro-

posed implementation, as seen in Table 4.4. Moreover, while the SP processor requires

approximately 4 iterations on average to reconstruct the 8-sparse signal in 22.5µs, our de-

sign can achieve faster recovery of 8-sparse signals by roughly 15%, as shown in Table 4.7.

Based on the achieved reconstruction speed for 36-sparse vectors, the proposed hardware is

able to attain a processing throughput of roughly 13100 Vectors/second or equivalently 13.4

million samples per second (MSPS). The results of the proposed architecture for the Xilinx

92



Virtex-7 FPGA device are also tabulated. The proposed implementation is able to achieve

a PSNR (RSNR) of 41.1 dB (20.1 dB) which is better than [59], [68] and [69]. It can be

seen that [57] and [73] report better RSNR at considerably higher resource utilization. It is

seen that the proposed implementation incurs an increase in the resource utilization when

using the Virtex-7 FPGA board compared to the Virtex Ultrascale+ board. This can be

attributed to the architecture of the configurable logic block (CLB) in both families. Since

Virtex Ultrascale+ CLBs house 6-input LUTs compared to 4-input LUTs for the Virtex-7,

the former is able to pack logic into fewer slices.

Table 4.5: Virtex Ultrascale+ Resource utilization for varying data widths

Data width DSP48E2 RAM18E2 Slice LUTs Slice Reg.

16 1878 (27%) 290 (13%) 56032 (5%) 22015 (1%)
18 1878(27%) 290 (13%) 66602 (5.5%) 24404 (1%)
20 3736(54%) 420 (19%) 72209 (6%) 27530 (1%)

Table 4.5 shows the increase in resource consumption for increasing data widths. The

DSP48 slices found on Virtex Ultrascale+ and Virtex-7 devices support atmost 27×18 and

25×18 multiplier widths respectively. Therefore, the number of DSP slices occupied dou-

ble as the data width is increased beyond 18. In order to maintain moderate resource con-

sumption, the chosen word size in the proposed implementation is 16 bits with 13 bits

allocated for fractions. Since application specific adjustments to the fractional precision

can be made without impacting resource consumption and timing, this choice is found to

be sufficient for the proposed implementation.

4.4.3 Timing analysis

Timing complexity provides a general idea about the overall time needed to reconstruct the

signal. In the proposed SIRP architecture, the index searching stage comprising correlation

and regularization operations require N + 48 clock cycles. The time complexity estimation

of the incremental QRD process is complicated due to the variable number of columns
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augmented in each iteration. In order to analytically derive the cycle consumption of this

process, it is assumed that s=6 columns are added to the signal support in every iteration.

The time complexity of the incremental QRD, residual update and signal estimation steps

based on this assumption are shown in Table 4.6. Accordingly, reconstruction of 36-sparse

signals is assumed to require 7 iterations to accommodate possible false index choices

as well. It can be seen that substituting N=1024, k=36 and t=7 estimates overall time

complexity as 12879 clock cycles, which can be though of as the lower bound. Similarly,

assuming s=3 columns are augmented in every iteration requires t = 12 iterations and

yields 17152 clock cycles as the upper bound. As the observed average iteration count is

around 8, the overall time complexity will lie between these calculated lower and upper

bounds.

Table 4.6: Clock Cycle consumption for N signal size, k sparsity level and t number of
iterations

Assumption Index Incremental Residual Estimate
search QRD Update x̂

s=6 t(N + 48) 72t2 + 152t 65t 9k + 4

s=3 t(N + 48) 18t2 + 76t 38t 9k + 4

For the results shown in Table 4.4, the proposed Virtex Ultrascale+ implementation

consumes 14525 clock cycles to complete signal estimation. Since time complexity is de-

pendent on the signal sparsity level, tests are performed for different values of k as shown

in Table 4.7. It is observed that for lower sparsity levels, reconstruction speed is greatly

improved without significant change in RSNR. It should also be noted that unlike OMP and

SP based designs, the proposed implementation does not require prior knowledge of k for

termination or signal estimation such that the reconstruction process can remain unmoni-

tored for signals of varying k.
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Table 4.7: Performance under varying sparsity levels with fixed N=1024 and M=256

Parameters k=8 k=16 k=24

RSNR (dB) 24.99 25.6 23.33
Recovery time (µs) 19 29.7 45.2

4.4.4 Power Consumption

Power consumption plays an important role in evaluation of the design performance. The

proposed design employs control enabling of the DSP arithmetic and memory elements to

ensure power savings. The dynamic power consumption of the Virtex Ultrascale+ based

design is estimated by Vivado Power Analyzer for various operating frequencies. Since

the throughputs of the proposed design is calculated as the reciprocal of the respective re-

construction times, the dynamic power efficiency [73] can be determined as the ratio of

dynamic power consumption to the throughput and is measured in µW/Vector. It shows

the power cost to the processor to reconstruct one 1024-length signal. The results tabu-

lated in Table 4.8 show that as the operating frequency is increased, dynamic power also

rises. It can be observed that there is a marked difference in the dynamic power consump-

tion when the operating frequency is raised from 125 MHz to 138 MHz, whereas for the

following increases in frequency the change is not as drastic. Thus, the dynamic power ef-

ficiency rises sharply to 561 at 138 MHz and falls for subsequent values as the throughput

increases. The dynamic power estimated by the Vivado Power Analyzer increases gradu-

ally for higher clock frequencies (after possible power optimizations done automatically by

the tool), while the corresponding throughput gains are more pronounced. Since dynamic

power efficiency is measured as the ratio of dynamic power to the throughput, we see a fall

in the dynamic power efficiency and not the actual dynamic power.
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Table 4.8: Throughput and dynamic power efficiency for various operating frequencies

Frequency (MHz) 125 138 166 190

Dynamic Power (mW) 3898 5517 5683 5835
Throughput (Vectors/sec) 8550 9835 11450 13100
Dynamic power efficiency

455 561 481 445
(µW/Vector)

4.4.5 ECG signal recovery

CS based wireless health monitoring systems have gained significant traction in recent

years [71, 72] pushing for faster and cheaper sparse reconstruction engines. In this exper-

iment, ECG signal reconstruction from the MIT-BIH database is considered. The signal

shown in Fig. 4.19 consists of 20 segments of length 512 and each segment is multiplied

by Ψ = ΦΩ yielding 256 measurements, where Φ is a random Gaussian matrix and Ω is

a 512×512 wavelet basis. The reconstructed ẑ vectors corresponding to each segment un-

dergo a post-processing step ( Ωẑ ) in order to obtain the ECG signal. Fig. 4.19 shows that

Figure 4.19: ECG hardware reconstruction from 50% measurements

the reconstructed signal achieves an RSNR of 13.92 dB and an SSIM of 0.5071 retaining

many of the morphological features present in the original signal, taking a total reconstruc-
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tion time of 1.48 ms. This approximately translates to 30× speed up over the software

implementation of the SIRP algorithm.

4.4.6 SIRP offloading system

In order to realize a working system implementation of the proposed hardware, a periph-

eral component interconnect express (PCIe) bus architecture can potentially be used to

connect the Virtex VC707 FPGA to the host workstation. The interface is implemented by

the Reusable Integration Framework for FPGA Accelerators (RIFFA) [85] which is docu-

mented to be a quick working solution to integrate PCIe communication capability to the

FPGA accelerators.

The high-level design overview of the proposed system is shown in Fig. 4.20, where

the principal components are the the host workstation where pre-processing of the mea-

surements vectors and post-processing of the reconstructed signals from the FPGA would

take place. The communication occurs through a PCIe Gen2-8 lane link with the interrupt

based PCIe driver and the PCIe controller IP on the FPGA.

The system would be designed to support the pre-processing and post-processing func-

tionalities independently. The reconstruction engine wrapper is attached to the channel

interfaces provided by the RIFFA interface, after which RIFFA manages the traffic com-

municated to and from the FPGA through the PCIe link. The SIRP offloading functionality

is responsible for invoking the RIFFA transmit and receive functions and takes care of the

pre/post processing operations. The offloading block transmits the measurements and then

waits for the corresponding ready signal from the FPGA before sending the next measure-

ment vector.
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Figure 4.20: High level design overview of the PCIe based CS reconstruction system

4.5 VLSI design

In this section, the proposed high throughput reconstruction engine implemented for a

smaller problem size of N=256, M=64 and sparsity level of 16. The architecture has

been synthesized and the post-synthesis simulation results are tabulated.

4.5.1 Design Methodology

4.5.1 Front-end design

The SIRP reconstruction engine presented in this section is coded with Verilog hardware

description language (HDL) and the functional verification is carried out with measurement

test vectors using Synopsys verilog compiler simulator (VCS). The functionally validated

HDL code is synthesized from the standard cell libraries of UMC 65 nm CMOS technology

by using the Synopsys design compiler (DC) tool. The generated gate level netlist is anal-

ysed under worst and best corner cases to avoid setup and hold violations. The netlist after

STA verification is subjected to post-synthesis simulations to validate the sparse recovery.
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Figure 4.21: Chip layout of SIRP sparse reconstruction engine in 65 nm CMOS technology
node

4.5.1 Back-end design

The back-end design is carried out using Cadence Innovus where the synthesized netlist

and the synopsys design constraints (sdc) files are input to the back-end tool. UMC 65 nm

technology offers six metal layers of which the lower metal layers are used for Vdd and Vss

power routing, middle layers for standard cell implementation and the top layers for global

routing. The input and output pads as well as the corner pads are placed in the respective

places around the standard cell core area. Further to this, clock tree synthesis (CTS) is

performed to derive optimal clock tree structures with minimum skew. Once special routing

is carried out to connect the standard cells, static timing analysis is performed to ensure

absence of setup or hold violations. Finally, core and I/O fillers are placed in the design to

avoid gaps between cells and I/O pads. A final STA check is performed to validate timing

closure after geometry, connectivity, antenna effects and metal density checks.
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Table 4.9: Design metrics after post-synthesis simulation of sparse reconstruction engine
in 65 nm CMOS technology node

Design metrics Values

Hierarchical cell count 426003 standard cells
Combinational area 1.13 mm2

Non-combinational area 0.66 mm2

Design core area 2.44 mm2

Critical path delay 9.9 ns
Maximum clock frequency 101 MHz

Leakage power @ 101 MHz clock frequency 3.56 mW
Dynamic power @ 101 MHz clock frequency 37.42 mW

Total power consumption 40.99 mW

4.6 Summary

This work presents a sparse reconstruction engine implementation on FPGA for fast CS

recovery. A hardware friendly version of the SIRP algorithm is proposed by simplifying

the regularization and LS update. The architectural design incorporates a linear iterative

QRD block to exploit parallelism in the MGS and fasten the augmentation of newly selected

columns. The implementation results on a Xilinx Virtex Ultrascale FPGA show that design

can operate a clock frequency of 190 MHz permitting reconstructions of 36-sparse signals

within 77µs consuming just 14525 processing cycles, which is a significant improvement

over the existing works. The implementation is also scalable for different sparsity levels

and does not require prior knowledge of signal sparsity. The implementation is capable of

reconstructing 13K vectors of size 1024 per second achieving a dynamic power efficiency

of 445µW/vector.
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Chapter 5

Low complexity architecture for sparsity indepen-

dent regularized pursuit

The major focus of this chapter will be on refining the sparsity independent regularized pur-

suit algorithm to induce hardware savings for area or power critical applications without

severely impacting the sparse reconstruction capability.

5.1 Introduction

Formulating the iterative signal estimation task as a least squares (LS) problem necessitates

efficient matrix decomposition strategies like QR, Cholesky etc. to achieve simplified hard-

ware. The architectures based on Cholesky inversion are known to consume huge resources

and reconstruction time for increasing matrix sizes. QR decomposition based on Givens

rotations significantly trade-off reconstruction time for low hardware consumption [62],

while MGS based QR strategies is capable of swifter recovery at much higher hardware

costs.

From a wireless communication perspective, the LS step is equivalent to the zero-

forcing receiver in multiple-input multiple-output (MIMO) linear detection, whose perfor-

mance can be significantly degraded in noisy scenarios due to amplification. The baseband

model for this environment with nt transmit and nr receive antennas is shown below

y = Hx + n (5.1)
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where y ∈ Cnr×1 is received from the Rayleigh flat fading channel denoted by H ∈ Cnr×nt

from transmission of the symbol vector x ∈ Cnt×1. The channel is assumed to be perturbed

by additive white Gaussian noise n ∈ N(0, σ2
nI).

The symbol vector detection using the zero-forcing receiver can be written as

x̂ZF = (HHH)−1HHy = x + (HHH)−1n (5.2)

Since the ZF receiver is prone to noise amplification when H is ill-conditioned shown by

the last term of equation (5.2).

Contrarily, the minimum mean squared error (MMSE) receiver is capable of suppress-

ing the noise amplification effects when the channel matrix is ill-conditioned . The MMSE

receiver is designed by adding an additional term corresponding to the noise variance in

the filter, as shown below

x̂MMSE = (HHH + σnI)−1HHy (5.3)

It can be seen that noise is suppressed when σn � 1 and the MMSE receiver approaches the

ZF receiver when the noise is minimal. Motivated by this improvement, the LS estimation

in the original OMP algorithm was replaced with the MMSE criterion in [45] to address

the noise vulnerability of OMP.

This motivates the adoption of the linear least-mean-squares (LMS) strategy in the con-

text of sparse signal estimation to approach the MMSE solution as well. An l0 regularized

LMS formulation called l0-LMS [86] has been demonstrated to achieve similar perfor-

mance to the state-of-art Basis pursuit de-noising (BPDN) in noisy frameworks but has

significant hardware complexity. The stochastic gradient pursuit (SGP) [45] and sparsity-

estimation subspace pursuit (SE-SP) [71] algorithms have adopted the LMS to produce the

signal estimate in every iteration of the respective pursuit process. However, SGP pursues

the support set serially as in OMP and thereby has a higher reconstruction time, while
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SE-SP needs an accurate sparsity estimation phase prior to subspace pursuit.

Since the proposed SIRP algorithm is inherently faster owing to the multi-element pur-

suit in each iteration, this chapter will focus on replacing the expensive LS update in the

SIRP algorithm with a simpler LMS process in order to explore a better trade-off between

hardware resources and reconstruction speed. The algorithm refinement, key architectural

design aspects and the experimental details will be detailed in the following sections.

5.2 Proposed algorithm

Since noise robustness has remained a challenge in OMP, [45] proposed the stochastic gra-

dient pursuit (SGP) which retains the pursuing process of OMP and substitutes the LS step

with the minimum mean squares estimation (MMSE). This blind reconstruction algorithm

is still susceptible to measurement noise due to the iterative index updating step similar to

OMP. [71] employs a preliminary blind estimation scheme which provides an approximate

estimate of the sparsity for SP to operate on, with a 10% iteration overhead. SIRP [81]

can perform signal recovery in fewer iterations without requiring sparsity prior. In this sec-

tion, SIRP is optimized for hardware realization by substituting the complex LS step shown

below

x̂nΓn = [ΦT
ΓnΦΓn ]−1ΦT

Γny (5.4)

with a gradient descent approach as discussed in subsection Subsection 5.2.1. The

previous chapter aggressively pursued an incremental QRD approach to implement the

LS step in order to significantly speed up the reconstruction speed by permitting higher

resource usage. The following subsections will focus on adapting the SIRP algorithm to

resource constrained environments by trading off the reconstruction speed.
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5.2.1 Improved SIRP algorithm

The SIRP algorithm [81] decomposes the pursuit process by forming c clusters of the sens-

ing matrix Φ and determining the indices within each cluster that possess the highest cor-

relation with the residual as shown below

Ji = arg max
j
| < Φi

j, r
n−1 > | ∀ i ∈ {1, ..., c} (5.5)

where Φi
j represents the j th column of the ith cluster. CoSaMP [34] and SP [35] augment

the support set by 2K and K highly correlated indices respectively and trim it down to K

terms after a costly least squares step.

Algorithm 7: Refined SIRP with block LMS update
Input: b, Φ, l

1 Initial: r = y, b̂ = 0, t = 0 , n = 0
2 while ‖r‖2

2 > Tr or t ≤ Kmax do
3 Ji = arg maxj | < Φi

j, rn−1 > | ∀ i ∈ {1, ..., c}
4 Form disjoint subsets Υp of J = {J1, · · · , Jc} such that for every subset Υp

where p = 1, ..., 5 |ΦT
a rn−1| ≥ 1

2p
max |ΦT rn−1| ∀ a ∈ Υp

5 Γ = Γ ∪Υ1

6 b̃1 = b̂|Γ
7 for λ =1 to M in steps of l do
8 Φ̃λ = ΦΓ(λ, :)
9 dλ = yλ

10 ελ = dλ − Φ̃λb̃λ
11 b̃λ = b̃ + µελΦ̃

T

λ

12 end
13 b̂|Γ = b̃M+1

14 r = y−Φ|Γb̃M+1

15 n = n+ 1

16 end
Output: b̂

Unlike these parallel pursuit strategies, SIRP regularizes the chosen cluster maximums

into subsets Υp based on their correlation energies and applies a criterion to select the
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subset with the highest average energy Υ1, as shown in steps 4 and 5 of Algorithm 7. The

chosen measurement sub-matrix for the gradient task can be formed as

ΦΓ = {
−→
φj|j ∈ Γ} (5.6)

where
−→
φj is the j th column of Φ. The contribution of the selected columns has to deducted

from the measurements to compute the residual vector. In order to arrive at the residual

at minimum hardware costs, it is proposed to minimize the mean squared error instead of

the squared error. To this end, the stochastic gradient descent can be used to approach the

MMSE solution by reformulating the CS reconstruction problem as a system identification

task [45], where yi can be understood as desired data, ΦΓopt can be regarded as the matrix of

input signals and b̃opt represents the coefficients that the adaptive filter strives to optimize,

after correctly identifying the optimal support set Γopt.

Denoting the size of support set Γ by L, the chosen submatrix of size M ×L forms the

input signal matrix for the LMS process. The error ελ between the desired signal yλ and

the filter output ελ = dλ − Φ̃λb̃λ is used to iteratively approach the MMSE solution as

b̃λ = b̃ + µελΦ̃
T

λ (5.7)

The LMS output is used to compute the residual signal r as r = y − Φ|Γb̃M+1 whose

squared l2 norm is used to determine algorithm termination, in addition to Kmax.

5.2.2 Software Experimental Results

In order to compare the reconstruction performance of the proposed algorithm with state-

of-art methods, the parameters of signal length N , measurements M and sparsity level K

are fixed to (1024, 256, 32) respectively and the measurement matrix is designed to be

random Gaussian with unit normalized columns. The test signal coefficients are chosen

from the normal distribution N (0, 1) having a randomly chosen support set. The SNR of
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the measurement process is varied from 6dB to 28dB in steps of 0.5dB with 10,000 trials for

each case. The halting criterion of OMP, SP and the proposed algorithm is set to 10−2 while

it is set according to the criterion in [45] for SGP and the sparsity maximum Kmax = 64 is

passed to the algorithms.

10 15 20 25

SNR (dB)

0

20

40

60

80

100

S
u

c
c
e
ss

 r
a
te

 (
%

)

N
R

M
S

E
<

0
.0

1

OMP

SGP

SP

Proposed

(a)

10 15 20 25

SNR (dB)

0

10

20

30

40

50

60

70

N
u

m
b

e
r
 o

f 
it

e
r
a
ti

o
n

s

OMP

SGP

SP

Proposed

(b)

Figure 5.1: Reconstruction performance comparision (a) Success rate vs SNR (b) Average
iterations vs SNR

It can be observed from Fig. 5.1 (a) that the proposed method outperforms OMP, SP

and SGP in terms of the success rate curve and requires much fewer iterations than OMP

and SGP (Fig. 5.1 (b)).

5.2.3 Computational complexity analysis

In this subsection, the computational complexity of the proposed algorithm is compared

with the state-of-art methods. OMP requires O(L2) multiplications where L is the size of

support set detected by OMP, compared to justO(L) required by SGP [45], SE-SP [71] and

the proposed algorithm. Table 5.1 highlights the multiplication complexities of different

steps in the algorithms with signal length N , measurements size M , number of iterations T

required by OMP, SGP and SE-SP phase 1, number of iterations t required by SE-SP phase

2 and number of iterations n required by the proposed algorithm. The exact multiplications

required by the different algorithms are tabulated in Table 5.2 for various noise levels,
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Table 5.1: Computational complexity comparison of multiplications for different recon-
struction algorithms

OMP[7] SGP [45] SE-SP[71] Proposed

Correlation
T∑
L=1

NM
T∑
L=1

NM
T∑
L=1

NM +
t∑

k=1

NM
n∑
k=1

NM

LS/LMS process
T∑
L=1

3L2 + (M − 1)(L− 1)− 3
T∑
L=1

M(2L+ 1)
T∑
L=1

M(2L+ 1) +
t∑

k=1

M(4K + 1)
n∑
k=1

M(2|Γk|+ 1)

Residual update
T∑
L=1

ML
T∑
L=1

ML
T∑
L=1

ML+
t∑

k=1

MK
n∑
k=1

M |Γk|

Termination∗
T∑
L=1

M
T∑
L=1

M
T∑
L=1

M +
t∑

k=1

M
n∑
k=1

M

∗ Halting condition set to 10−2 for OMP, SE-SP and proposed method

along with the iterations required and the percentage reduction with respect to OMP. It is

seen that SGP [45] reduces the multiplication count of OMP by upto 45%. [71] reported

a 10% iteration overhead compared to OMP, which is validated here for the noiseless case

and the complexity is exacerbated under noisy scenarios. The proposed algorithm is able to

achieve approximately a 5-fold reduction in the required multiplications compared to OMP

in the noisy regime and a 3-fold reduction in the noiseless case.

Table 5.2: Required multiplications of different algorithms: N = 1024, M = 256, K =
32, Kmax = 64

SNR
Algorithm 20dB 24dB Noiseless

OMP[7]
17,977,216 17,801,154 9,826,056

(T=64) (T=63) (T=36)

SGP[45]
11,725,056 9,676,800 9,967,104

(T=42) (T=35) (T=36)
34.7% 45.6% -1.4%

SE-SP[71]
20,858,880 20,547,328 10,883,328
(T=64, t=8) (T=63, t=8) (T=36, t=3)

-16% -15% -10%

Proposed
3,468,288 3,751,936 2,829,568

(T=12) (T=12) (T=10)
>80% >78% >71%
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5.2.4 Choice of step size parameter

The choice of step size has a great impact on the adaptation speed and accuracy of the

algorithm. [45] arrived at the following bound for µ which guarantees bounded MSE

µ ≤ 2

3
× M

L
(5.8)

where the number of filter taps vary in every iteration. It was proposed in [45] to use

substitute L with Kmax to attain adequate convergence. [71] proposed a hardware efficient

way to realize variable step size by roundingL to the nearest power of 2. In our simulations,

it was revealed that adopting a fixed step yielded relatively better reconstructions.

5.3 Architectural Design and Implementation

This section presents the architectural design of the modified SIRP algorithm targeting a

problem structure of N = 1024, M = 256 and a maximum sparsity of 64 in order to

compare with state-of-art FPGA implementations. The number of clusters c is chosen to

be 8 as it offers a good balance between reconstruction speed and hardware resources.

Higher values of c have been experimentally determined to not significantly improve by

the reconstruction speed while linearly increasing the hardware resources needed.

Fig. 5.2 shows the overall hardware architecture of the proposed reconstruction en-

gine composed of the following major blocks: 1) Measurement matrix memory bank size

managed by a dedicated controller; 2) Cluster maximum compute block that outputs the

highest correlation values and corresponding indices of 8 clusters, in which CMC0 shares

hardware for the subsequent LMS and residual update steps as well; 3) Regularizer block

that outputs the optimal subset of the selected indices and 4) LMS row access memory

bank; and 5) Residual register bank which stores the measurements on initialization and

the updated residuals of subsequent iterations. The control unit regulates the flow of data,
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beginning from the input of measurements into the system till the reconstructed signal is

generated.

Figure 5.2: Proposed hardware architecture for the modified SIRP algorithm

5.3.1 Measurement matrix memory organization

In traditional hardware implementations of pursuit strategies, each row of the 256×1024

measurement matrix is stored in a separate RAM such that each column (from index 0 to

1023) can be accessed in 1024 successive clock cycles. The SIRP divide-and-conquer strat-

egy permits parallel processing of 8 clusters, which can speed up the correlation process.

However, this would give rise to the requirement of 2048 block RAM instances to

access the columns of 8 clusters concurrently, which is very significant. Further, the ar-

chitecture would also entail 2048 parallel multipliers to compute the correlation of each

cluster’s columns with the residual, which considerably increases the hardware burden.

In order to mitigate the hardware burden involved in naively implementing the SIRP

parallel pursuit strategy, the proposed architecture folds the correlation for 8 clusters by a

factor of 4, bringing down the number of multipliers allotted for each cluster to 64. This in
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turn relaxes the memory access requirements as only 64 elements of each cluster need to

be accessed parallelly. In order to satisfy the parallel access requirements, the storage of Φ

is implemented on block RAMs of data width 128 (by combining the 16-bit data widths of

the 8 clusters) and depth 512. Since each cluster consists of 128 columns and each column

can now be processed in 4 clock cycles due to folding strategy, the chosen depth of 512 is

justified. Since parallel access to every 64 elements of the columns of each cluster, 64 such

RAMs would be sufficient to generate the required data for the parallel processing of the

clusters. The structure of a 512×128 block RAM is shown in Fig. 5.3 to clearly highlight

the memory organization.

Figure 5.3: Internal organization of a 512×128 block RAM showing the stored elements

It can be seen that the lower 16 bits correspond to the 1st, 65th, 129th and 193rd rows

of Cluster 1 containing columns 1-128. Similarly, the upper 16 bits correspond to the 1st,

65th, 129th and 193rd rows of Cluster 8 containing columns 897-1024. Similarly, another
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such block RAM would be needed to store the 2nd, 66th, 130th and 194rd columns of the

respective clusters. Therefore, the entire measurement matrix storage can be carried out

with 64 such block RAMs, as shown in Fig. 5.4. The measurement matrix is stored in

memory in this fashion so that the folded correlation operation of each column with the

residual can be undertaken in 4 clock cycles.

Figure 5.4: Memory bank structure of the measurement matrix Φ

In order to control the access to this complex memory bank structure, a dedicated mem-

ory controller is implemented by a 9-bit counter to access the 512 locations of the 64 block

RAMs. The count enable and load signals of the counter are triggered by the type of oper-

ation being performed i.e., correlation or specific memory access for LMS write cycles.

5.3.2 Cluster maximum compute (CMC) block

In order to induce hardware savings, the parallel computation of the cluster maximums are

folded by a factor of 4 in tandem with the memory organization of the measurement matrix.
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The folding architecture of the CMC block is depicted in Fig. 5.5 for the case of the

cluster 0 which includes the first 128 columns of the measurement matrix. Each CMC

block consists of M/4 parallel multipliers with a latency of tmul=1 clock cycles and an

M/4-input pipelined adder tree (with a latency of tadd=3 clock cycles) that yields the par-

tial correlation. For instance, in time slot t0, the first 64 elements of the 1st column of

Φ are correlated with the first 64 elements of the residual vector (which is available from

the residual register bank shown in Fig 5.2). This is registered after (tmul + tadd) clock

cycles and added to ’0’ to yield the partial correlation product pcp0 which is again stored

in 16-bit registers. Since the architecture is fully pipelined, the partial correlation product

corresponding to the subsequent 64 elements of φ0 and r from time slot t1 will be avail-

able in the next clock cycle. The multiplexer ensures that the new partial pcp1 is added

to the previously computed pcp0. In this way, the partial correlations accumulated for 4

clock cycles as well as the corresponding index are then passed to a comparator unit which

computes the cluster maximum and its index, which are then passed to the regularizer unit.

The control unit ensures that the accumulation register is cleared before the next column is

inspected.

Since there are 128 columns in a cluster, the residual correlation for all clusters can be

completed in 512+tmul+tadd clock cycles. In order to promote hardware reuse, the cluster

maximum compute block 0 is also utilized to perform the LMS update operations as will

be discussed later.

5.3.3 Regularizer block

The regularizer block is tasked with determining the optimal indices to be augmented to the

support set, which is done in two stages. The first stage determines the highest value among

the chosen cluster maxima and the second stage uses this global maximum to partition the

eight selected indices into groups based on the rule in step 4 of Algorithm 1. The cluster

maximum finder is implemented by a simple comparator circuit in 8 clock cycles using a
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Figure 5.5: Folding architecture of the cluster maximum compute block

Figure 5.6: Architecture of the regularizer block

8:1 multiplexer and a 3-bit counter, as shown in Fig. 5.7.

The grouper module whose internal architecture is shown in Fig. 5.8 uses a set of

comparators to check the range of the cluster maximum with respect to 1
2

intervals of the

global maximum and stores the cluster values in corresponding group RAMs.

After partitioning the indices, the regularizer block determines the group possessing

the highest average energy using LUT based dividers whose architecure was shown in Fig.

4.10 and stores them into a support set RAM.

Case study

In the first iteration, the residual vector of size 256×1 is correlated with columns in clus-

ters of Ψ concurrently, resulting in an overall latency of 512 clock cycles. The CMC block
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Figure 5.7: Architecture of the cluster maximum finder

stores the value and index of the column within each cluster exhibiting the highest correla-

tion energy to form the initial candidate set of size 8, which in this case study is determined

to be J= {30, 95, 137, 376, 419, 532, 823, 914}. The cluster maximums are compared

sequentially to determine the overall maximum at index 419. This is used to construct the

subsets according to the following intervals [umax,umax

2
],(umax

2
,umax

4
],(umax

4
,umax

8
],(umax

8
,umax

16
]

and (umax

16
,0]. The subset with highest average correlation energy is found to be Π1={419,

95, 532, 914, 137, 376} corresponding to the interval [umax,umax

2
] and forms the final candi-

date set of the first iteration. It is observed that all the chosen indices belong to true support

set of the sparse signal. These are written to a support memory for later processing and

concludes the operation of the RU in 24 clock cycles. The subsequent LMS and residual

update steps are carried out based on the updated set.

5.3.4 LMS row access memory bank

In order to carry out the LMS operation for the selected columns in each iteration, access

is required to each row of the corresponding sub-matrix. This cannot be directly obtained

from the Φ storage as it has been configured to provide parallel column access. Therefore,

a set of LMS row access RAMs are employed to provide the row data in parallel. However,
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Figure 5.8: Architecture of the cluster maximum finder

writing the data retrieved from the Φ matrix would require M clock cycles for each newly

added column. However, this data writing process is cleverly interleaved with the LMS

update operation so as to not have any detrimental effect on the processing latency, as will

explained later.

5.3.5 LMS update operation of the CMC block

The complex task in the algorithm is the LMS update which is governed by two major

update equations given below

ελ = dλ − Φ̃λb̃λ (5.9)

b̃λ = b̃ + µελΦ̃
T

λ (5.10)

From equation 5.9, the term Φ̃λb̃λ is the inner product between the sub-matrix restricted

to the current support set Φλ and the corresponding estimated signal. Since Φλ changes in

respect to each row of Φλ, the CMC block 0 which performs an inner product operation

is reconfigured to support the LMS update operations as well to save hardware resources.
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This is deemed sufficient as the sparsity is assumed to remain below 64 which implies the

shared CMC block can be used to estimate signals with 64 non-sparse coefficients at most.

Equation 5.10 performs a scalar multiplication first on the row of Φλ followed by up-

dating the previous estimate. The shared CMC block is configured to support this operation

as well, to ensure re-utilization of resources. Since (5.9) and (5.10) need to be recursively

computed, the signal estimate b̂ can be obtained every 3 clock cycles [71]. However, the

critical path would be dominated by the size of the adder tree which would be Kmax in

this case. In order to reduce the critical path delay, a three stage pipelined Kmax parallel

multiply adders and a Kmax-input adder tree unit is designed as shown in Fig. 5.9, which

would also function as the cluster maximum compute (CMC) block for cluster 0 during the

correlation stage. The parallel multiply adders first compute ΦΓ in 3 clock cycles to yield

εj which is then used to compute the term µεj in the subsequent clock cycle. The signal

estimate b is then updated in 3 additional clock cycles using the same parallel multiply

adders contributing to a latency overhead of 8 clock cycles for each LMS update of the

rows of ΦΓ. Since it is required to iteratively update M rows of ΦΓ, the total cost of the

LMS process amounts to 8M clock cycles. Since the LMS process requires parallel access

Figure 5.9: Structure of the shared cluster maximum compute block

to each row of ΦΓ, a novel technique is needed to transform the column access nature of
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the selected columns from the memory bank to a row access nature. Since the maximum

sparsity supported in [45] is very low, it employed a 2-D register bank to perform this

transformation without performing any transpose. [71] employs global multi-task buffers

in their design to transpose the newly selected columns using additional clock cycles at

considerable area reduction by using cache, and the LMS process is designed to execute in

3M cycles after all the columns are stored in cache.

Since the LMS process in the proposed pipelined design costs 8M cycles and the upper

bound on the number of newly chosen columns is 8, the system is designed to simulta-

neously store entries of newly selected columns to the LMS row access dual-port RAMs

and read the previously stored row for the LMS computation. This technique helps us to

avoid any additional hardware or clock cycles to perform column transpose by exploiting

the latency associated with the proposed pipelined LMS update. On completion of the

LMS process, the shared CMC block sequentially computes the new residual in M + 3

clock cycles and then the squared norm is computed in 4 clocks to determine algorithm

termination.

In order to enhance the throughput of the proposed reconstruction engine by reducing

the cycles per iteration, an LMS alternate row update strategy is proposed whose recon-

struction performance was experimentally verified to be near that of the standard LMS.

This slight trade-off in recovery performance brings a 2-fold reduction in the LMS cycle

cost.

5.3.6 Residual register bank

The residual register bank is designed in order to support the proposed folding architecture

by self-feeding 4-stage register chain with the added capability of updating the bank with

new residual values at the end of each iteration. Fig. 5.10 clearly depicts the operation of

the residual register bank.

There are three principal modes of operation for the register bank which are controlled
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Figure 5.10: Architecture of the residual register bank

by the select signals to the 3:1 multiplexers. Mode 0 is configured when the system is

initialized and begins receiving the external measurements sequentially. The first measure-

ment yin(0) is registered after the first clock cycle and passed to bottom adjacent register as

input. This implies that at the end of 64 clock cycles, 64 measurements will be available at

the output of Block 1 registers. In the subsequent clock cycle, the enable signals of Block 2

will be asserted so that all 64 measurements are registered by the block and then the enable

signals are de-asserted. The next 64 measurements are sequentially filled up in Block 1

registers in a likely fashion and at the end of 64 more clock cycles, the enable signals of

blocks 2 and 3 are asserted so that the corresponding shift can take place. This process

continues until all 256 measurements are loaded in to the register bank.

Mode 1 is configured by the control block when the new residual produced by the

shared CMC block in 4 successive cycles is loaded into the register bank in 4 similar cycles

by appropriately asserting the enable signals.

The residual bank operates in mode 2 when it is being parallelly correlated with the

columns of each cluster and it is needed to continuously cycle 64 residual elements at a
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time according to the folding architecture of the CMC blocks.

5.3.7 Control Block

The control block is tasked with controlling the operations of all the above mentioned

blocks. The complex scheduling involved in the implementation of this algorithm is made

possible by a carefully designed Moore finite state machine (FSM) that controls the un-

derlying hardware resources through a series of well planned states. The state machine

diagram is shown in Fig. 5.11 with 8 principal states of operation. State S0 is the system

Figure 5.11: State machine diagram of the control block

initialization state in which the internal registers and memories are initialized upon receiv-

ing the system reset signal. The FSM waits in this state until the new signal is triggered

which indicates that new measurements are available to be loaded into the system.

State S1 waits till all the residual vector elements are loaded in to the residual register

bank. The register bank is controlled by the FSM in a self-feeding structure such that it

produces 64 elements of the residual vector in subsequent clock cycles when operations

are required to be performed using the residual. The latency of state S1 is 256 clock cycles

corresponding to the number of elements in the residual vector.

State S2 corresponds to the correlation phase where all the cluster maximum blocks

work parallelly to determine each cluster’s maximum value and index. The FSM also pro-
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duces the necessary control signals to cycle the residual register bank values for the folded

architecture operation. This process takes 512 clock cycles to complete before the control

signal is asserted to proceed to the subsequent state. State S3 is tasked with controlling the

regularizer block to yield the optimal subset in 24 clock cycles.

State S4 is responsible for controlling the LMS update operation of the shared CMC

block. Prior to that, the data necessary for this needs to be written to the LMS row access

memory. As mentioned in the previous section, the data write and read cycles to and from

the LMS row access memory are interleaved in a way to avoid memory collisions. These

memory access cycles are managed by two separate read and write counters that address

the specific locations of the dual port LMS RAMs. Since the LMS update operation takes

8M clock cycles overall, the writing mechanism cleverly overlaps this timeline.

State S5 is responsible for handling the residual update operation which consumes 260

clock cycles. The control block issues the necessary control signals to the shared CMC

block and the residual register bank to correctly perform the residual update operation.

State S6 manages the residual norm computation task by again manipulating the shared

CMC block with the appropriate control signals. If the residual norm remains above the

threshold, the FSM goes to state S2 to initiate a new iteration to detect more indices of the

support set. State S7 is tasked with generating the estimated signal and proceeds to the

original wait state S0 for processing the next measurement vector. Fig. 5.12 depicts the

timing diagram of the finite state machine showing the latencies of each state described

above.

5.4 Implementation results

5.4.1 Fixed-point analysis

The performance of the proposed algorithm is evaluated in terms of the success rate versus

SNR for different fractional precision widths. The fixed point simulation is executed for
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Figure 5.12: Timing diagram showing the latencies of each state of the FSM

10000 trials keeping all other parameters same as in Fig. 5.1. It can be seen that as the

fractional precision decreases below 11 bits, the performance begins to degrade and the

algorithm completely fails for fractional precision of 8 bits and below. Based on the exper-

iments, the entries of Φ are quantized to 16-bit word length with 13 fractional bits before

storing into the memory bank. The word length of y, b̂, r and other intermediate computa-

tions are assigned word lengths based on the distribution of the non-zero coefficients of b

with 13 fractional bits.
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Figure 5.13: Recovery performance of the proposed algorithm under varying fractional
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5.4.2 Implementation results

The proposed CS reconstruction engine supporting a signal length N=1024 and M=256

is implemented on a Xilinx Virtex Ultrascale+ xcvu9p FPGA in order to comapare with

existing designs targeting a similar problem size. The implementation and resource statis-

tics are detailed in Table 5.3. The results for recovery of a 36-sparse random gaussian

signal show that the proposed engine can operate at a maximum frequency of 125 MHz

consuming 26,244 clock cycles resulting in a total reconstruction time of 210 µs. Due to

replacement of the complex LS update with the LMS process, the hardware complexity is

greatly reduced as seen from Table 4.4. Compared to prior designs, the configurable logic

block (CLB) and DSP slice usage is considerably reduced owing to the simple structure of

the LMS update. For instance, the improved OMP implementation on a Virtex 6 device

in [67] requires considerably higher DSP and logic resources to achieve a reconstruction

time of 170 µs. The OMP implementation in [68] consumes slightly lesser DSP resource

and higher logic slices on a Virtex 6 FPGA to complete sparse recovery in 327 µs which

is outperformed by a factor of roughly 2 in the first variant of the proposed method. The

square-root free LS version of OMP implemented in [Ge’19] consumes much higher logic

slices on the Kintex 7 device. The hardware sharing approach adopted for the various steps

in the algorithm contribute to the reduced hardware burden.

The low latency variant of the proposed method formulated by allowing alternate row

updates to the signal estimate improves reconstruction time by a factor of approximately

1.5 over the primary variant. Due to the fewer number of rows that are used to estimate

the signal, a slight degradation in reconstruction quality is observed with respect to the full

update version. The dynamic power consumed by the implementation is estimated by the

Vivado Power Analyzer to be 1.56 W which translates to a dynamic power efficiency of

288 µW/vector.

Table 5.4 tabulates the reconstruction quality and time taken by the proposed full and
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alternate row LMS versions for varying degrees of sparsity. It is observed that the optimiza-

tion improves reconstruction time by mildly scarifying the RSNR, which is still above the

acceptable RSNR limits for CS applications like ECG [71]. The decrease in SNR does not

correspond to distortion in the principal features of the signal, but merely to the difference

in coefficient values as in Fig. 5.14.

Table 5.4: Performance under varying K with fixed N=1024 and M=256

Parameters K=8 K=16 K=24

Proposed
RSNR (dB) 26.6 29.45 28.52

Recovery time (µs) 73.3 117.5 161.6
Proposed RSNR(dB) 25.2 25.5 25.8

alternate LMS Recovery time (µs) 62.6 90.3 118
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Figure 5.14: Reconstruction of ECG signals in MIT-BIH database from 50% measure-
ments with wavelet sparsifying basis[82]

5.5 Summary

In this chapter, a modified sparsity independent regularized pursuit is presented that sub-

stitutes the complex LS update in the original algorithm with the iterative LMS update to

significantly reduce the computational burden. A pipelined hardware-sharing architecture

is proposed to implement the interdependent steps of the algorithm. The key feature of the

proposed architecture is the interleaving of the LMS memory data write operations with

the LMS update operations, thereby bypassing the need for additional buffers to perform

transpose operations on the measurement matrix columns. The proposed implementation
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operating at 143 MHz can complete the reconstruction of 36-sparse signals in approxi-

mately 185 µs which is competitive with the state-of-art. An alternate row based LMS

update sheme is proposed to reduce the latency cost and leads to a 28% improvement in the

recovery time with a 12% degradation in the RSNR with respect to the full LMS update.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In recent years, the area of Compressed Sensing has garnered significant attention in vari-

ous application domains like communication, radar, biomedical and imaging applications

etc. CS offers a radical approach to information acquisition by sampling the signal in a ba-

sis incoherent with its sparsifying basis. While CS has contributed to lowering the storage

and energy requirements of the sampling nodes, fast and efficient reconstruction is neces-

sary to take timely decisions by analysing the reconstructed signals. In this context, the

choice of CS recovery algorithms and their hardware feasibility to facilitate the demand of

quick reconstruction becomes very crucial.

In order to address the challenges of low recovery speed and hardware complexity

in CS reconstruction, this work presents a two-pronged approach of developing a novel

sparsity independent regularized pursuit algorithm and designing high-throughput and low

complexity architectures by appropriate hardware specific optimizations to the proposed

algorithm.

6.1.1 Contributions

The contributions of this research are summarized as follows.

The first part of the research work focuses on novel sparse recovery algorithm develop-

ment that is indispensable to designing efficient real-world hardware architectures. In this

respect, the sparsity independent regularized pursuit algorithm is proposed which employs
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a novel identification and enhanced regularization step to considerably speed up pursuit

while ensuring recovery performance at par with the state-of-art algorithms. The rigor-

ous experimental evaluation establishes it’s independence of the sparsity prior, robustness

in noisy frameworks, significant speed-up and feasibility for real world problems. These

merits pave the way for realizing efficient hardware implementations in the future that can

offer swifter off-line recovery for real-world applications.

In order to significantly improve the reconstruction speed, the work presents a sparse

reconstruction engine implementation on FPGA for fast CS recovery. A hardware friendly

version of the SIRP algorithm is proposed by simplifying the regularization and LS update.

The architectural design incorporates a linear iterative QRD block to exploit parallelism

in the MGS and fasten the augmentation of newly selected columns. The implementa-

tion results on a field programmable gate array show that design contributes to a two-fold

improvement in the reconstruction speed over the existing works tackling identical prob-

lem sizes. The implementation is also scalable for different sparsity levels and does not

require prior knowledge of signal sparsity. It also contributes to significant energy sav-

ings by achieving a low dynamic power efficiency per reconstructed vector. The work also

presents an application specific integrated circuit (ASIC) implementation which has un-

dergone post-synthesis validation and can achieve further reduction in the dynamic power

consumption.

An approach towards the low complexity implementation of the SIRP algorithm with a

least mean squares (LMS) strategy is proposed in order to minimize the hardware consump-

tion. A pipelined hardware-sharing architecture is proposed to implement the interdepen-

dent steps of the algorithm. The key feature of the proposed architecture is the interleaving

of the LMS memory data write operations with the LMS update operations, thereby by-

passing the need for additional buffers to perform transpose operations on the measurement

matrix columns. Compared to prior designs, the logic and DSP slice usage is considerably

reduced owing to the simple structure of the LMS update. Also, an alternate row LMS
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scheme is introduced in the design requiring no additional hardware resources, reducing

the cycles per iteration to improve reconstruction speed by approximately one-third per-

mitting a slight reduction in the reconstructed signal-to-noise ratio (RSNR) compared to

the full row LMS update.

6.2 Future scope

Although significant work has been carried out towards developing a novel fast decoding

CS algorithm and designing efficient architectures for achieving the desired design goals

of reconstruction speed and low hardware complexity respectively, there is considerable

scope for further work in this domain. A brief discussion of this is given below.

1. The proposed SIRP algorithm is well suited to the general CS framework regardless

of the nature of the signal or the sensing mechanism. However, the signals in cer-

tain niche applications like spectral occupancy estimation [87] exhibit block sparse

nature. A future direction would be to investigate modifications to the algorithm that

could exploit this structured sparsity to improve signal estimates.

2. Another possible direction of research could be to tune the proposed algorithm and

optimize the hardware for specific CS applications like radar detection or wireless

channel estimation.

3. The proposed hardware can currently handle reconstruction of real data, but it would

be interesting to further understand the challenges and address the issues in the recon-

struction of complex data, which would be necessary when the sparsifying domain is

the Fourier basis for instance.

4. Since l1 minimization provides stable reconstructions in noisy frameworks with strong

theoretical guarantees, another interesting direction would be to identify or propose

hardware friendly basis pursuit decoding algorithms for CS
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ing signal reconstruction engine on fpgas,” in 2013 23rd International Conference
on Field programmable Logic and Applications, 2013, pp. 1–4.

[61] B. Knoop, J. Rust, S. Schmale, D. Peters-Drolshagen, and S. Paul, “Rapid digital
architecture design of orthogonal matching pursuit,” in 2016 24th European Signal
Processing Conference (EUSIPCO), 2016, pp. 1857–1861.

[62] Y. Cheng, P. Tsai, and M. Huang, “Matrix-inversion-free compressed sensing with
variable orthogonal multi-matching pursuit based on prior information for ecg sig-
nals,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 4, pp. 864–
873, 2016.
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