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Abstract 

The background error covariance (BEC) in Three-dimensional variational (3DVAR) data 

assimilation (DA) system is static and lacks information about the flow-conditions of the day while 

advanced DA algorithms like Ensemble Kalman Filter provides flow-dependent BEC information. 

A hybrid ensemble–variational (HYBRID) DA system combines the flow-dependent information 

from the ensemble DA system in the variational DA framework.  The research work examines the 

impact of ensemble derived flow-dependent ensemble error covariance in 3DVAR DA system for 

short-range forecasts using Weather Research and Forecast model.  The forecasted wind, 

temperature, and rainfall from the assimilation experiments are verified against corresponding 

observations. Evaluation of short-range forecasts during the Indian summer monsoon indicates 

that the flow-dependent ensemble BEC in 3DVAR has systematically improved the forecast when 

compared to traditional 3DVAR experiments. More specifically, the rainfall forecast skill is 

superior in HYBRID experiments as compared to 3DVAR. The rainfall forecasts in convection-

permitting resolution are validated against 746 telemetric rain gauge observations over the 

Karnataka state shows higher quantitative precipitation forecast skill in HYBRID system than 

3DVAR towards the later stages of DA cycling. Assessment of short-range forecast of landfalling 

tropical cyclones (TC) over the Bay of Bengal (BoB) indicates that the use of flow-evolving 

ensemble error covariance in the 3DVAR system has reduced the TC position and intensity errors 

in the analysis. However, adding more weights to the ensemble error covariance term in the 

3DVAR cost function has not shown any significant improvements. The forecasts from HYBRID 

analysis outperform 3DVAR forecasts by reducing TC track forecast error. The impact of 

assimilated observations can be dependent on many factors in a DA system including data quality 

control, preprocessing, skill of the model, and the DA algorithm. Studies have been conducted to 
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understand the differences and similarities in the impact of observations assimilated by two 

different DA algorithms. Evaluations on the impact of INSAT-3D Atmospheric Motion Vectors 

(AMV) observations with and without flow-dependent BEC in 3DVAR DA system are performed 

for short-range forecasts of the Indian summer monsoon.  The satellite AMV observations show a 

more relative impact in HYBRID, with 77% and 71% improvement for wind and tropical 

temperature as compared to 3DVAR. Incorporating AMV shows substantial improvement in the 

forecast of landfalling TC in HYBRID than in 3DVAR DA system. Furthermore, the assimilation 

of AMV observation in HYBRID shows improved skill scores for quantitative precipitation 

forecast. The final objective of the thesis is to quantify the impact of flow-evolving BEC for the 

convective scale DA system.  In this study, retrieved rainwater and water vapor from radar 

reflectivity are incorporated in HYBRID DA system to understand thunderstorms over 

northeastern region of the Indian subcontinent. The results indicate that assimilation of radar 

observations enhances the quantitative precipitation skill scores in both HYBRID and 3DVAR DA 

system. No significant impact of HYBRID DA system in rainfall forecast is observed. 
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CHAPTER 1 

Introduction 

The Numerical Weather Prediction (NWP) model is being widely utilized for weather forecasts 

and the ability of forecast the weather accurately has significantly increased, recently. The NWP 

is an initial value problem, and its ability to represent the future state of atmosphere depends 

primarily on the initial conditions (IC). Data assimilation (DA) is the mathematical approach that 

optimally combines the information of observations with the model information to obtain a 

precise initial state (Daley 1997; Li and Xu 2011). Different DA techniques namely successive 

correction method (SCM), nudging, optimal interpolation (OI), Kalman filter, and variational 

methods have been developed since 1950 (Kalnay 2003). Advanced DA techniques employed in 

NWP models are found to be more effective in prescribing accurate initial state of the system 

(Brennan et al. 2009; Hsiao et al. 2012; Wang et al. 2013c; Counillon et al. 2014; Fierro et al. 

2015; Rakesh et al. 2015; Zhang et al. 2015), and therefore the SCM and OI methods soon have 

been replaced by modern-day variational and ensemble Kalman filter (EnKF) methods for the 

operational forecast.  

The variational DA techniques such as three-dimensional variational (3DVAR) and four-

dimensional variational (4DVAR) systems have been in use operationally at most NWP centers 

for more than a decade (e.g., Parrish and Derber 1992; Lorenc et al. 2000; Kleist et al. 2009). 

The 3DVAR method is mainly based on the iterative minimization of a quadratic cost function 

to obtain the best estimate of the atmospheric state or the analysis. The cost function measures 
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the distance of the analysis from the model short-range forecast, commonly known as 

background and the observations. The fundamental difference between 3DVAR and 4DVAR is 

that 4DVAR includes integration of adjoint and tangent linear model during the cost function 

minimization procedure, and thereby incorporating the implicit flow-dependent error covariance 

in the DA process (e.g., Sun and Wang 2013; Chu et al. 2013; Wang et al. 2013a; Mazzarella et 

al. 2017). However, the computational cost involved in performing 4DVAR is significantly 

higher than the 3DVAR DA system (Yang et al. 2014). The three-dimensional variational 

(3DVAR) data assimilation (DA) system is cost-effective because it uses a background error 

covariance (BEC) matrix that is either completely static or only weakly coupled to the dynamics 

of the forecast model (e.g., Barker et al. 2004). However, the drawback of static BEC is that the 

observations assimilated will make local, isotropic increments without proper flow-dependent 

extrapolation. Several studies examined the role of static BEC in the performance of the 3DVAR 

DA system (Rakesh and Goswami 2011; Routray et al. 2016). 

More advanced DA algorithms like EnKF (e.g., Houtekamer and Mitchell 2001; Evensen 2003) 

incorporate flow-dependent BEC information that would provide "errors of the day," which is 

estimated from the ensemble of nonlinear model forecasts. The ensemble covariance assigns 

appropriate weight to the observation information depending on the flow of the day. However, 

the major shortcoming of the EnKF DA system is that it introduces spurious long-distance 

correlation and underestimates the magnitude of error variance when the ensemble size is limited 

(Hamill et al. 2001; Barker et al. 2011). Lorenc (2003) has listed issues that are related to the 

sampling error in ensemble based DA schemes and proposed an extended control variable 

approach to incorporate ensemble covariance matrix in the variational framework. The 
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representation of flow-dependent ensemble BEC in a variational framework is initially studied 

by Barker (1999), which is found to be effective than EnKF DA approach even with limited 

computational resources. Several authors have also reported benefits of HYBRID compared to a 

standalone EnKF DA system (e.g., Campbell et al. 2010; Wang 2010). 

Hamill and Snyder (2000) tested the effectiveness of flow-dependent covariance developed from 

the ensemble of short-range forecasts in the variational DA framework and found improvements 

in the analysis with respect to 3DVAR. The approach which incorporates ensemble-generated 

BECs in variational framework is commonly referred to as a hybrid ensemble-variational DA 

system (hereafter HYBRID). Wang et al. (2008) has introduced a HYBRID data assimilation 

system for Weather Research and Forecast (WRF) model based on WRF 3DVAR. The 

preliminary results from observation system simulation experiments reveal that the HYBRID 

analysis are better than 3DVAR and the improvements are more significant over data sparse 

region. The subsequent study with assimilation of real observations demonstrates better wind as 

well as temperature forecast using the flow dependent HYBRID DA system compared to 

3DVAR (Wang et al. 2008b). The improvement is due to the fact that the HYBRID system is 

capable of adjusting the background over the data-sparse region using observation from data-

rich region by following the background flow.  Similarly, Prasad et al. (2016) examined the 

performance of HYBRID DA scheme in National Center for Medium Range Weather 

Forecasting (NCMRWF) Global Forecast System over the Indian region and found that HYBRID 

DA significantly improved the forecasted temperature and wind field, particularly over the upper 

troposphere. Another benefit of HYBRID is reported by Gao et al. (2013) for storm-scale 

simulations using radar DA. The results indicate that HYBRID can fit the radar reflectivity better 

than the 3DVAR and EnKF which in turn reduce the storm spin-up time.  



 
 

4 
 

The past literatures clearly advocate the benefit of using HYBRID DA compared to stand-alone 

EnKF and 3DVAR DA system for simulation of weather events at different scales ranging from 

global to convective scale. However, very few systematic study has been done over the Indian 

region using a limited area model. The current study investigates the impact of ensemble derived 

flow-dependent error covariance in a DA system over the Indian province by comparing the 

forecast performances of 3DVAR and HYBRID DA approaches.  

It is known that the impact of observations may vary depending on many factors in the DA 

assimilation system, such as data quality control, preprocessing, and specification of BEC. To 

understand this further, the present study addresses the impact of Atmospheric Motion Vectors 

(AMV) in 3DVAR and HYBRID DA system. AMV is satellite-derived wind observations 

obtained by continuously tracking regions of clouds or water vapor using satellite images. AMV 

provides wind information with good areal coverage, particularly over the data-sparse oceanic 

area. Several studies have shown the benefit of assimilating AMVs on improving the weather 

forecasts over the tropics (e.g.,Velden et al. 1992; Leslie et al. 1998; Soden et al. 2001; Rani and 

Das Gupta 2014; Mounika et al. 2018). A study by Kaur et al. (2015) during the Indian summer 

monsoon (ISM) reported the positive impact of Kalpana-1 AMVs assimilation over the tropical 

region using 3DVAR. Deb et al. (2016) demonstrate the reduction of track forecast errors of the 

cyclonic storm NANAUK over the Arabian Sea when INSAT-3D AMV observations are 

assimilated. Another study by Kumar et al. (2017)  reports improved model simulated wind 

speed, temperature, and moisture analyses and subsequent model forecasts over the Indian 

Ocean, Arabian Sea, Australia, and South Africa with INSAT-3D AMV DA in WRF-3DVAR. 

Zhang et al. (2018) demonstrate the impact of assimilation of enhanced AMVs using HYBRID 

ensemble–variational DA in improving the track and intensity forecasts of hurricanes. Wu et al. 
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(2014) demonstrate the favorable impact of assimilation of AMVs from Multifunctional 

Transport Satellite (MTSAT) using ensemble Kalman filter in the track forecast of Typhoon 

Sinlaku. Sawada et al. (2019) show improvement in tropical cyclone forecaston assimilating 

high-resolution AMVs derived from Himawari-8 in the HYBRID DA system. The study reveals 

that incorporating AMVs using background error covariance created from the HWRF ensemble 

forecast contributes to a significant reduction in negative intensity bias and error. There is a 

substantial benefit to the tropical cyclone (TC) size forecast. Also, Sawada et al. (2020), using 

an HYBRID DA system, investigate the assimilation impact of rapid-scan (RS) AMVs derived 

from Himawari-8 on three TC forecasts in the western North Pacific during 2016. The results 

show that the assimilation of RS-AMVs can improve the track forecast skill, while the weak bias 

or slow intensification bias increases at the shorter forecast lead time. Previous studies have 

shown that in the presence of flow evolving BEC in HYBRID DA system the observations are 

effectively assimilated compared to traditional 3DVAR DA systems. However, it has been 

observed that no such study has been conducted for the Indian domain using satellite data in the 

HYBRID DA system. 

Apart from satellite DA, further studies have been conducted using high resolution radar 

observations for the forecast of thunder storms using 3DVAR and HYBRID DA systems. Radar 

data assimilation has been proved to be valuable for the convective scale weather forecast in 

many previous studies using different data assimilation techniques such as Newton relaxation 

approximation (Jones and Macpherson 1997), 3DVAR (Abhilash et al. 2007; Routray et al. 2010; 

Wang et al. 2013a), 4DVAR ( Sun and Zhang 2008; Sun and Wang 2013;Wang et al. 2013b; 

Thiruvengadam et al. 2020) and ensemble Kalman filter (EnKF) (Dowell et al. 2011; Gao and 

Min 2018; Tong et al. 2020) . The radar observations can be assimilated into the model either by 
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the direct method (Xiao et al. 2005)  or indirect (Wang et al. 2013a). In the direct method, the 

radar reflectivity and radial wind directly ingested into the numerical model using the DA 

techniques while in the indirect method, the derived parameters such as rainwater, water vapor 

from radar reflectivity is assimilated (Li et al. 2018). A study by Wang et al. (2013a) has pointed 

out drawbacks of direct assimilation of radar observations for simulation of the convective 

system, especially when IC depict a dry environment unfavorable for convection initiation. The 

performance of direct assimilation of radar observations are found to be not very remarkable 

when the magnitude of rainwater in the reflectivity-rainwater relations is smaller. It is found that 

for dry environments, the warm rain process may not be turned on during the DA process, and 

the direct assimilation of radar observations  may fail to capture the convection (Zhang et al. 

2009). However, indirect assimilation of radar observations is expected to provide an 

environment conducive for convection even when the first guess is dry due to the  assimilation 

of derived water vapor from radar reflectivity (Wang et al. 2013a). 

In this study, radar data assimilation experiments are conducted to simulate thunderstorms 

developed over India's north-eastern region (NER). The NER region of India exhibits a complex 

topography with two-thirds of the area covered by hilly terrain. Also, this region experiences the 

highest thunderstorm activity compared to the rest of India. Such occurrence is supported by 

local influences such as orography of the region, insolation, and moisture advection in the 

presence of suitable wind conditions (Tyagi 2007). A study has been performed to understand 

the impact of indirect assimilation of radar data observations in the forecast of thunderstorms 

over NER region. 
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1.1 Objective of this thesis 

The impact of flow-dependent error covariances compared to static BEC is well documented in 

several studies for different geographical domains globally. However, the impact of error 

covariance on a DA system may depend on the flow regimes under consideration. It is in this 

context a systematic study has been undertaken to estimate and quantify the impact of flow 

dependent ensemble error covariance in a DA system over the Indian subcontinent during various 

seasons using a hybrid ETKF-3DVAR DA approach. The specific objectives of this study are 

listed below: 

– Quantifying the impact of flow-dependent ensemble error covariance on the short 

range forecasts of Indian summer monsoon Season in a limited-area model. 

– Quantifying the impact of flow-dependent ensemble error covariance on the 

forecast of land-falling tropical cyclones formed over the Bay of Bengal  

– Identifying the difference in the impact of INSAT-3D Atmospheric Motion Vectors 

when ensemble error covariance is used in 3DVAR framework on the forecasts of 

Indian summer monsoon rainfall  

– Identifying the difference in the impact of INSAT-3D Atmospheric Motion Vectors 

when ensemble error covariance is used in 3DVAR framework on the forecasts of 

land-falling tropical cyclones over the Bay of Bengal  

– Understanding the role of ensemble error covariance in convection-permitting 

resolution using Radar data assimilation for heavy rainfall forecasts 
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The thesis is organized as follows. 

Chapter 2 summarizes the limited-area NWP model and DA techniques used in this study. 

Additionally, the methodologies used for validation of model analysis and forecast are also 

included in this chapter. Chapter 3 contains the results obtained from the impact study of flow-

dependent ensemble error covariance in DA system for the short range forecast of Indian summer 

monsoon season short-range forecasts. Results from the impact of flow-dependent ensemble 

error in DA system covariance on the forecast of land-falling tropical cyclones formed over the 

Bay of Bengal are shown in Chapter 4. Chapter 5 shows the impact of INSAT-3D Atmospheric 

Motion Vectors when ensemble error covariance is used in 3DVAR framework on the forecasts 

of Indian summer monsoon rainfall. Chapter 6 explores the difference in the impact of INSAT-

3D Atmospheric Motion Vectors in the presence and absence of ensemble error covariance in 

3DVAR framework on the forecasts of land-falling tropical cyclones over the Bay of Bengal. 

The results from radar data assimilation using 3DVAR and HYBRID DA system for heavy 

rainfall forecasts over  north-eastern region of Indian subcontinent are shown in Chapter 7 while 

the conclusions and future directions of this study are listed are listed in Chapter 8.  
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Chapter 2 

Data and Methodology 

 

Numerical Weather Prediction (NWP) models predict the weather in advance by solving 

differential equations representing the evolution of the atmosphere, with a given set of initial 

conditions. The performance of NWP models can be enhanced by improving the initial 

conditions using data assimilation (DA) techniques. This study uses a widely used NWP model 

named the Weather Research and Forecasting (WRF) model for model simulations and two DA 

systems available with the WRF model, namely 3DVAR and HYBRID are also used. A brief 

introduction to the WRF model and data assimilation methods used in this study is given in this 

chapter.  This chapter also describes the data used for model initialization as well as data used 

for assimilation. Finally, the chapter concludes with details about the different verification 

procedure used for model validation.  

2.1 Limited-area Model Overview 

WRF model is a next-generation mesoscale non-hydrostatic NWP model developed jointly by 

the National Oceanic and Atmospheric Administration (NOAA), the Naval Research Laboratory 

(NRL), the University of Oklahoma, the Air Force Weather Agency (AFWA), and the Federal 

Aviation Administration (FAA). It is a mathematical model that represents the atmosphere based 

on the atmospheric governing equations. The model serves as a common platform for real-time 

numerical weather forecast, regional climate modeling, idealized simulations, data assimilation, 

and other atmospheric research, with the ability to resolve meteorological systems with spatial 

scales ranging from tens of meters to thousands of kilometers. 
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There are two central dynamical cores in the WRF model: the ARW (Advanced Research WRF) 

and the NMM (Non-hydrostatic Mesoscale Model). While the ARW is maintained by NCAR's 

Mesoscale and Microscale Meteorology (MMM) Laboratory, the NMM is maintained by the 

National Centers for Environmental Prediction (NCEP). The study uses the WRF-ARW 

Modeling System, which mainly consists of the WRF Preprocessing System (WPS), ARW 

solver, WRF-VAR, and post-processing graphics tools (Skamarock et al. 2019) as shown in 

Figure2.1. 

 

 

 

 

 

 

Figure 2.1: WRF-ARW framework 

2.1.1 WRF Preprocessing System (WPS) 

WPS mainly consists of three subsystems: Geogrid, Ungrib, and Metgrib. The different 

functionalities of each component of WPS are: (i) Geogrid creates the simulation domain with 

proper projection information (WRF-ARW currently supports Lambert conformal, polar 

stereographic, Mercator, and latitude-longitude projections) and interpolate the terrestrial data 

such as terrain, landuse, and soil types to the particular domain; (ii) Ungrib does decompress and 
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read meteorological data obtained from global models in GRIB format, and re-write in an 

intermediate form; (iii) Metgrid reads the intermediate data and interpolates the meteorological 

information to the simulation domain.  

2.1.2 ARW solver 

The ARW dynamic solver includes Eularian fully compressible non-hydrostatic equations in flux 

form with hydrostatic options and supports different nesting options: two-way nesting with 

multiple nests and nest levels, one-way nesting and moving nests.  

The flux form Eularial equations of WRF-ARW are given below, 

𝜕𝑡𝑈 + (𝛁. 𝐕𝑢) − 𝜕𝑥(𝑝𝜙𝜂) + 𝜕𝜂(𝑝𝜙𝑥) = 𝐹𝑈    (2.1) 

𝜕𝑡𝑉 + (𝛁. 𝐕𝑢) − 𝜕𝑦(𝑝𝜙𝜂) + 𝜕𝜂(𝑝𝜙𝑦) = 𝐹𝑉    (2.2) 

𝜕𝑡𝑊 + (𝛁. 𝐕𝑤) − 𝑔(𝜕𝜂𝑝 − 𝜇) = 𝐹𝑊                                                 (2.3) 

                             𝜕𝑡Θ + (𝛁. 𝐕𝜃) = 𝐹Θ                            (2.4) 

                                 𝜕𝑡μ + (𝛁. 𝐕) = 0                (2.5) 

                              𝜕𝑡𝜙 + 𝜇−1[(𝐕. 𝛁𝜙) − 𝑔𝑊] = 0                           (2.6) 

In the equations 2.1 to 2.3, η denotes the terrain-following hydrostatic-pressure vertical 

coordinate and defined as 𝜂 = (𝑝𝑑 − 𝑝𝑡)/𝜇 , where 𝜇 = 𝑝𝑠 − 𝑝𝑡. Here, 𝑝𝑑 is the hydrostatic 

component of the pressure of dry air and 𝑝𝑠 and 𝑝𝑡 represents values of 𝑝𝑑 along the surface and 

top boundaries of the model domain, respectively.  
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The flux form variables in the equations are defined as  𝐕 = 𝜇v = (𝑈, 𝑉, 𝑊), Ω = 𝜇�̇�, Θ = 𝜇𝜃, 

where 𝜇(𝑥, 𝑦) is the mass per unit area within the atmospheric column in the model domain 

(x,y). v = (𝑢, 𝑣, 𝑤) refers to the covariant velocities in the two horizontal and vertical direction 

and 𝜔 =  𝜂 ̇ refers to thecontravariant vertical velocity. Among the other variables available in 

the equations, 𝜃 is the potential temperature, 𝜙 = 𝑔𝑧 is the geopotential, p is the pressure and 

𝐹𝑈, 𝐹𝑉 , 𝐹𝑊, 𝐹Θ are the forcing variables occurring from model physics, turbulent mixing, 

spherical projections, and the Earth's rotation. 

Further, the diagnostics relation for inverse density and equation of state are given as follows: 

                                                                          𝜕𝜂𝜙 = −𝛼𝜇                       (2.7) 

                                                                              𝑝 = 𝑝0(𝑅𝑑𝜃 𝑝0𝛼⁄ )𝛾    (2.8) 

Here, 𝑅𝑑 is the gas constant for dry air, 𝑝0 is the reference pressure and 𝛾 is the ratio of the heat 

capacity for dry air. ARW uses Arakawa C-grid staggering option to discretize the equations 

horizontally and terrain-following vertical coordinates for vertical grid spacing. Finally, the 

numerical integrations are performed during Runge-Kutta 2nd and 3rdorder time-step options. 

The atmosphere is a chaotic system comprised of different processes occurring at varied scales 

ranging from planetary scale to molecular diffusion scale. It is not possible to explicitly represent 

small-scale processes using mathematical models either due to the incomplete understanding of 

the physical processes or the lack of computational facility, leading to simplifying the equations. 

While the dynamic core solves the mathematical equations on the discrete grids, it neglects the 

small-scale processes within the grid, which are of utter importance for representing convective 

scale processes, land-atmosphere interaction processes, etc. The parameterization schemes in the 
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Physics package of the WRF model takes care of the sub-grid scale activities. The dynamic core 

calls the required Physics package through an interface as shown in Figure 2.1 for its use to 

represent the unresolved processes. 

Some of the important parameterization schemes in the WRF model can be listed as 

microphysics, cumulus convection, planetary boundary layer (PBL), land-surface model, and 

radiation. The interactions among the various parameterization schemes are shown in Figure 2.2.  

 

Figure 2.2: Schematic depiction of the communications between different parameterization 

schemes in WRF model  
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Microphysics Schemes 

Microphysics parameterization (MP) schemes resolve the grid-scale or explicit water vapor, 

cloud, and precipitation processes in the model. The MP schemes available with the WRF model 

can be categorized into the single-moment and double-moment. While the single-moment MP 

schemes predict only the mixing ratios of the hydrometeors, the double-moment strategies 

predict both the mixing ratio and the number concentrations of the hydrometeors (Lim and Hong 

2010).  However, the double moment schemes are computationally expensive compared to single 

moment schemes. In this study, a mixed phase WRF single moment MP scheme is used which 

considers five classes of hydrometeors namely, cloud ice, cloud water, water vapor, snow and 

rain (Hong et al. 2004). Therefore, it is symbolized as WSM5. It allows super cooled liquid water 

to form and let the snow to melt gradually below the melting point. 

Cumulus Schemes 

The model unresolved sub-grid scale cloud and precipitation processes such as vertical fluxes 

due to unresolved updrafts and downdraft entrainment and detrainment processes, compensating 

motion outside the clouds, etc., are handled by the cumulus parameterization (CP) schemes. The 

current study uses a mass flux based scheme called Kain-Fritsch (KF) scheme (Kain 2004)for 

cumulous parameterization. The scheme is responsible for estimating the existing instability in 

the atmosphere along with the probable characteristics of the convective clouds.  

Surface Layer 

The atmospheric surface layer is the lowest part of the planetary boundary layer (PBL) in contact 

with the Earth's surface consists of almost 10% of the PBL (Stull 1988). Its accurate 
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representation is essential to determine the land–atmosphere interaction precisely. In the WRF-

ARW model, the land-surface model and PBL schemes receive the friction velocities and 

exchange coefficient information from the surface layer scheme to calculate surface heat and 

moisture fluxes and surface stress, respectively. 

Land-Surface Model 

All the physical schemes are related to the land-surface models (LSMs) in some way or other. 

The LSM models provide heat and moisture fluxes over land points and sea-ice points by 

incorporating  atmospheric information from the surface layer scheme, radiative forcing from 

the radiation scheme, and precipitation forcing from the microphysics and convective schemes, 

collectively with internal information on the land's state variables and land-surface properties. 

The flux information act as the lower boundary condition in the PBL schemes for vertical 

transport. The LSMs also handle the thermal and moisture fluxes in multilayer soil, together with 

82 vegetation, root, and canopy effects and surface snow-cover prediction.  It does not provide 

tendencies, but responsible for updating the land's state variables which include soil temperature 

profile, the ground (skin) temperature, soil moisture profile, snow cover, and possibly canopy 

properties. In WRF-ARW model, the LSMs are regarded as one-dimensional column models, as 

there is no horizontal interaction between neighboring points in the LSM. The WRF-ARW 

includes seven different LSM options and the most popular one is Noah LSM. The LSM is a 4-

layer soil temperature and moisture model with canopy moisture and snow cover prediction. It 

accounts for root zone, evapotranspiration, soil drainage and runoff, vegetation categories, 

monthly vegetation fraction, and soil texture. It provides sensible and latent heat fluxes and also 

predicts soil ice, and fractional snow cover effects. 
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Planetary boundary layer  

The PBL schemes account for the columnar vertical sub-grid scale fluxes due to eddy transport 

and also handle vertical diffusion. By incorporating surface flux information from the surface 

layer and land-surface schemes and horizontal diffusion information from appropriate horizontal 

diffusion option in the WRF-ARW model, PBL schemes estimates the flux profile within the 

well-mixed boundary layer and the stable layer. Consequently, PBL schemes provide 

temperature, moisture (including clouds), and horizontal momentum tendencies in the entire 

atmospheric column. There are twelve PBL schemes available in the WRF-ARW model and the 

commonly used schemes are Yonsei University (YSU) PBL and Mellor-Yamada-Janjic (MYJ) 

PBL. In this study the YSU PBL scheme is used which is the modified version of the medium-

range forecast (MRF) PBL, with the difference that YSU PBL includes counter-gradient terms 

to represent fluxes due to non-local gradients. A study by Hong et al. (2006) demonstrates that 

the modification in YSU PBL results in a well-mixed boundary-layer profile; on the contrary, 

MRF PBL produces a pronounced over-stable structure in the upper part of the mixed layer. 

Atmospheric Radiation 

Solar radiation is the primary source of energy for the Earth and atmosphere and is responsible 

for the heat, mass, and momentum fluxes in the free atmosphere and at the surface. It is also the 

driving force for atmospheric circulations. The primary goal of the radiative parameterization is 

to estimate the total radiative flux at a particular location by encompassing the effects of radiative 

flux divergence and surface downward longwave and short-wave radiation for the ground heat 

budget. WRF-ARW includes seven longwave schemes and eight shortwave schemes for 

radiation parameterization and among them Rapid Radiative Transfer Model (RRTM) scheme is 
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commonly used for longwave parameterization and Dudhia scheme for short-wave 

parameterization. RRTM scheme uses look-up tables to accurately represent the processes due 

to water vapor, ozone, 𝐶𝑂2, trace gases, and cloud optical depth and providesatmospheric heating 

from radiative flux divergence (Mlawer et al. 1997). The Dudhia short-wave scheme has 

downward integration of solar flux that accounts for clear-air scattering, water vapor absorption, 

and cloud albedo and absorption (Dudhia 1989). It utilizes look-up tables for clouds but does not 

use sub-grid cloud fractions, only uniformly clear or cloudy within a model layer. 

2.1.3 Data Assimilation systems  

NWP model requires accurate estimate of the initial state of the atmosphere, which can be 

achieved through employing Data Assimilation (DA) systems. Data assimilation technique 

scales the distance between short-range model forecast (hereafter, background) and observation 

by the errors associated with background and observations, respectively, to produce accurate 

initial conditions (Kalnay 2003).   

2.1.3.1 Basic concept of DA system 

The fundamental concept of DA is based on the least-squares approach that aims at to find the 

final estimate by minimizing the error made in the analysis. Cressman analysis, optimal 

interpolation (OI), variational analysis, and the Kalman filter are different DA techniques that 

are rooted from the least square approach. One of the basic optimality properties of the linear 

least-square estimate is that it satisfies the properties of the Best Linear Unbiased Estimator 

(BLUE). According to Gauss-Markov theorem, the sample variance of the least-squares estimate 

is the minimum among all the linear unbiased estimates (Lewis et al. 2006).  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/kalman-filter
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Proof of Gauss-Markov theorem: 

A least squares problem can be formulated as: 

                                      𝑓(𝑥) =
1

2
(𝑧 − 𝐇𝑥)𝑇H−1(𝑧 − 𝐇𝑥)    (2.9)  

where, z is a linear estimation problem and it can be stated as: 

       z = Hx + v 

Here, x is the unknown and   𝑥 ∈ 𝑅𝑛; z is the known observation and  𝑧 ∈ 𝑅𝑚; H is an known 

matrix and 𝐇 ∈ 𝑅𝑚×𝑛; v is the additive random noise. It is assumed that (1) 𝐸(𝑣) =

0; (2) 𝐸(𝑣𝑇𝑣) = 𝐑 , R is symmetric and positive definite; (3) x and v are uncorrelated.  

The main objective of the problem is to minimize f(x) with respect to x. It can be obtained by 

computing the gradient of f(x) and equating to zero.  

Eq. (2.9) gives, 

                                          ∇𝑓(𝑥) = (𝐇𝐓𝐑−𝟏𝐇)𝑥 − (𝐇𝐓𝐑−𝟏)z = 0 (2.10) 

or 

                                                      �̂�𝐿𝑆 = (𝐇𝐓𝐑−𝟏𝐇)−𝟏𝐇𝐓𝐑−𝟏 z   (2.11) 

where, �̂�𝐿𝑆 is the least square estimate. 

Now,   𝐶𝑜𝑣(�̂�𝐿𝑆) = 𝐸[(�̂�𝐿𝑆 − 𝑥)(�̂�𝐿𝑆 − 𝑥)𝑇] = (𝐇𝐓𝐑−𝟏𝐇)−𝟏    (2.12) 

Now, following Gauss-Markov theorem, we need to prove that,  
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𝐶𝑜𝑣(�̂�) ≥ 𝐶𝑜𝑣(�̂�𝐿𝑆) 

where, �̂� = G𝑧 is an arbitrary linear estimate of x and 𝐺 ∈ 𝑅𝑚×𝑛. 

Now, 

𝐸(Gz) = G𝐇𝐸(𝑥) + G𝐸(𝑣) 

                                                                   =  G𝐇𝐸(𝑥)     (2.13) 

It can be seen from Eq. (2.13) that �̂� will be unbiased when GH = In. 

Again, taking the following difference, we get, 

                                  �̂�𝐿𝑆 −  Gz = [(𝐇𝐓𝐑−𝟏𝐇)−𝟏𝐇𝐓𝐑−𝟏 − G]z = D𝑧   (2.14) 

Covariance of Gz can be defined as: 

𝐶𝑜𝑣(Gz) = 𝐸[(Gv)(Gv)T] = G𝐑GT 

Using Eq. (2.14), we get, 

𝐶𝑜𝑣(Gz) = [(𝐇𝐓𝐑−𝟏𝐇)−𝟏𝐇𝐓𝐑−𝟏 − D]𝐑[(𝐇𝐓𝐑−𝟏𝐇)−𝟏𝐇𝐓𝐑−𝟏 − D]T 

              =        (𝐇𝐓𝐑−𝟏𝐇)−1 + D𝐑DT − [(𝐇𝐓𝐑−𝟏𝐇)−1𝐇𝐓𝐑−𝟏]𝐑DT 

                                              −D𝐑[((𝐇𝐓𝐑−𝟏𝐇)−𝟏𝐇𝐓𝐑−𝟏            (2.15) 

Using identity for unbiasedness, we get, 

I = G𝐇 = [(𝐇𝐓𝐑−𝟏𝐇)−𝟏𝐇𝐓𝐑−𝟏 − D]𝐇 = I − D𝐇 
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It shows that DH = 0. Substituting the value of DH in Eq. (2.15), we get, 

𝐶𝑜𝑣(Gz) = (𝐇𝐓𝐑−𝟏𝐇)−𝟏 + D𝐑DT 

= 𝐶𝑜𝑣(�̂�𝐿𝑆) + D𝐑DT 

Since, R is a symmetric and positive definite matrix and DRDT is symmetric, for any y ∈ 𝑅𝑛, 

𝑦T D𝐑DTy = (DTy)T𝐑(DTy) 

For a non-zero vector y, DTy can be zero. Therefore DRDT is positive and semi-definite; which 

shows that: 

𝐶𝑜𝑣(�̂�) ≥ 𝐶𝑜𝑣(�̂�𝐿𝑆). 

It is proved that a least square estimate is a Best Linear Unbiased Estimator. 

2.1.3.2 WRF-VAR 

WRF-VAR is the variational data assimilation module of the WRF system. It is based on an 

incremental variational data assimilation technique, and offers three different data assimilation 

platforms: 1) three-dimensional variation data assimilation (3DVAR); 2) four-dimensional 

variation data assimilation (4DVAR); 3) hybrid Ensemble Transform Kalman Filter (ETKF)-

3DVAR DA system.  

In WRF-VAR, analysis is performed on an un-staggered Arakawa A-grid. Analysis increments 

are interpolated to staggered Arakawa C-grid and added to the background, also called first 

guess, to get the final analysis of the WRF-model grid. The observed data can be ingested into 



 
 

21 
 

the model in either ASCII format via the "OBSPROC" utility or directly in the "PREPBUFR" 

format. Apart from other conventional data, WRF-VAR can assimilate satellite radiances in 

BUFR format and radar reflectivity and radial velocity in the ASCII format, having multiple 

outer loops to address the nonlinearity. 

The impact of observations may vary significantly among the different DA systems, and one 

such factor that affects the impact of observations is the specification of background error 

covariance. In the variational method, the horizontal component of the background error is 

represented via a recursive filter (for regional) or power spectrum (for global). The vertical 

component is applied through projections on climatologically generated averaged eigenvectors 

and its corresponding Eigenvalues. Horizontal and vertical background errors are non-separable. 

Each eigenvector has its horizontal climatologically determined length scale. Preconditioning of 

the background part of the cost function is done via the control variable transform U defined 

as 𝐵 = 𝑈𝑈𝑇. It includes the "gen_be" utility to generate the climatological background error 

covariance estimate via the NMC-method or ensemble perturbations.  

The 3DVAR DA system in traditional variational framework and ensemble based HYBRID DA 

system is employed in this study. 

3DVAR 

3DVAR is a least-squares based three-dimensional variational data assimilation technique and it 

mainly aims on to iteratively minimize the quadratic cost function (Barker et al. 2004): 

𝐽(𝑥) =
1

2
(𝑥 − 𝑥𝑏)𝑇B−1(𝑥 − 𝑥𝑏) +

1

2
(𝑦𝜊 − 𝐻(𝑥))

𝑇
R−1(𝑦𝜊 − 𝐻(𝑥))                     (2.16) 
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The cost function can be derived based on Bayesian approach, where it is assumed that given the 

background field, the true state is a realization of a random process defined by the following 

prior probability distribution function (pdf): 

𝑝(𝑥𝑏|𝑥) =
1

(2𝜋)
𝑛

2⁄ |B|1/2
𝑒−

1

2
[(𝑥𝑏−𝑥)𝑇B−1(𝑥𝑏−𝑥)]

 (2.17) 

The observation likelihood is defined as, 

𝑝(𝑦𝜊|𝑥) =
1

(2𝜋)
𝑛

2⁄ |R|1/2
𝑒−

1

2
[(𝑦𝜊−𝐻(𝑥))

𝑇
R−1(𝑦𝜊−𝐻(𝑥))]

  (2.18) 

Here, both the observations’ likelihood and prior pdf are considered to follow Gaussian 

distribution. Finally, given the new observations 𝑦𝜊, the posteriori probability distribution of the 

true state is defined as, 

𝑝(𝑥|𝑦𝜊) ∝ 𝑝(𝑦𝜊|𝑥)𝑝𝐵(𝑥𝑏|𝑥) ∝ 𝑒−
1

2
[(𝑦𝜊−𝐻(𝑥))

𝑇
R−1(𝑦𝜊−𝐻(𝑥))−

1

2
[(𝑥𝑏−𝑥)𝑇B−1(𝑥𝑏−𝑥)]

 (2.19) 

The maximum of the posterior probability is obtained by the minimization of the cost function 

as shown in Eq. (2.16). The key objective of the minimization problem is to attain a posteriori 

maximum likelihood of the true state of the atmosphere with prior knowledge of background 

state (𝑥𝑏) and observations (𝑦𝜊) (Lorenc 1986). In other words, it is to find an optimal analysis 

(𝑥𝑎) that minimizes the cost function 𝐽(𝑥), where the analysis can be attained by solving the 

following equation: 

                                                           ∇𝑥𝐽(𝑥𝑎) = 0                                                        (2.20) 

To attain an exact solution, the second term in Eq. (2.16) needs to be expanded by linearizing H 

around the background field and it can be expressed as shown below: 
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𝑦𝑜 − 𝐻(𝑥) = 𝑦𝑜 − 𝐻[𝑥𝑏 + (𝑥 − 𝑥𝑏)] 

                           = {𝑦𝑜 − 𝐻(𝑥𝑏)} − H(x − 𝑥𝑏) 

Subsequently, Eq. (2.16) can be rewritten as:     

                      2𝐽(𝑥) = (𝑥 − 𝑥𝑏)𝑇B−1(𝑥 − 𝑥𝑏) + 

                                     [{𝑦𝑜 − 𝐻(𝑥𝑏)} − H(𝑥 − 𝑥𝑏)]𝑇R−1 

                                      [{𝑦𝑜 − 𝐻(𝑥𝑏)} − H(𝑥 − 𝑥𝑏)]     (2.21)             

Further, applying the rules of transpose matrix product, we can expand Eq. (2.21) as follows: 

                     2𝐽(𝑥) = (𝑥 − 𝑥𝑏)𝑇B−1(𝑥 − 𝑥𝑏) + (𝑥 − 𝑥𝑏)𝑇H𝑇R−1H(x − 𝑥𝑏) 

                                   −{𝑦𝑜 − 𝐻(𝑥𝑏)}𝑇R−1 H(x − 𝑥𝑏) 

                                       −(𝑥 − 𝑥𝑏)𝑇H𝑇R−1H{𝑦𝑜 − 𝐻(𝑥𝑏)} 

                                       +{𝑦𝑜 − 𝐻(𝑥𝑏)}𝑇R−1{𝑦𝑜 − 𝐻(𝑥𝑏)}     (2.22) 

Since, 𝐽(𝑥) is a quadratic function, the gradient of 𝐽(𝑥) can be expressed as 

∇𝐽(𝑥) = B−1(𝑥 − 𝑥𝑏) + H𝑇R−1H(𝑥 − 𝑥𝑏) − H𝑇R−1H{𝑦𝑜 − 𝐻(𝑥𝑏)} 

Here H is the Jacobian of H and H is the nonlinear observation operator that converts analysis to 

observation space; B is the Background error covariance (BEC) and R is the observation error 

matrix. 

Eq. (2.20) gives 



 
 

24 
 

  (𝐵−1 + H𝑇R−1H)(𝑥𝑎 − 𝑥𝑏) = H𝑇R−1{𝑦𝑜 − 𝐻(𝑥𝑏)} 

or  

                            𝑥𝑎 = 𝑥𝑏 + (𝐵−1 + H𝑇R−1H)−1H𝑇R−1{𝑦𝑜 − 𝐻(𝑥𝑏)}  

or 

                            𝑥𝑎 = 𝑥𝑏 + W{𝑦𝑜 − 𝐻(𝑥𝑏)}  (2.23) 

                       W = (B−1 + H𝑇R−1H)−1H𝑇𝑅−1   (2.23a) 

Eq. (2.23) is the formal solution of the 3DVAR problem. For practical uses, the solutions are 

obtained by the iterative minimization method like conjugate gradient method in the analysis 

control variable space. 

Eq. (2.23a) can be written in an equivalent form as given below: 

W = (𝐵−1 + H𝑇𝑅−1H)−1H𝑇𝑅−1  = (BHT)(R + HBHT )−1 (2.23b) 

This equivalence follows from using the Sherman-Morrison-Woodbury matrix identity. There is 

significant importance of the equivalence in terms of cost effectiveness as inversion of (R +

HBHT)  is much more cost effective than inversion of (𝐵−1 + H𝑇𝑅−1H), when the observation 

space is smaller than the dimension of state space.  

In Eq. (2.23b), (BHT)(R + HBHT )−1 is same as the expression for gain matrix in OI and Kalman 

filtering, where OI and Kalman filtering are two sequential DA systems rooted from the best 

linear unbiased estimator (BLUE). The derivation of the background error covariance matrix B 

in Kalman filter is different from both OI and 3DVAR. Unlike OI and 3DVAR, where B is 
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assumed to be constant in time, B is updated from the previous analysis time to the new analysis 

time in Kalman filter method.  

Hybrid ETKF-3DVAR 

 

 

Figure 2.3: Illustration of the hybrid ETKF–3DVARanalysis and the ensemble generation cycle 

for a hypothetical three-member ensemble. 

 

Figure 2.3 (Wang 2011) illustrates how the hybrid ETKF–3DVAR data assimilation cycle works. 

If we start with an ensemble of K background forecasts at time 𝑡0, the following four steps are 

then repeated for each data assimilation cycle: 

1) Update the ensemble mean by the hybrid ensemble-3DVAR method. 
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2) Update the forecast perturbations using the ETKF. 

3)  Add the updated ensemble perturbations to the updated ensemble mean to generate 

K initial ensemble members  

4) Make K forecasts starting from the K initial ensemble members forward to the next 

analysis time. 

The steps 1 and 2 will be described in sections a and b: 

a. Incorporating an ensemble in WRF 3DVAR using extended control variables 

We first introduce the terms generally used in the hybrid ensemble–3DVAR framework and then 

explain how it is applied within WRF 3DVAR.The analysis increment of the HYBRID, denoted 

as 𝑥′, is a sum of two terms, defined as 

                                                 𝑥′ = 𝑥1
′ + ∑ (𝑎𝑘°𝑥𝑘

𝑒𝐾
𝑘=1 )            (2.24) 

 

The first term, 𝑥1 
′ in Eq. (2.24) is the increment associated with the WRF 3DVAR static 

background covariance. The second term is the increment associated with the flow-dependent 

ensemble covariance. In the second term of Eq. (2.24), 𝑥𝑘   
𝑒 is the 𝑘𝑡ℎ ensemble perturbation 

normalized by √𝐾 − 1 where K is the ensemble size: 

                                                                          𝑥𝑘
𝑒 =

𝑥𝑘−�̅�

√𝐾−1 
                                                             (2.25) 

In Eq. (2.25), 𝑥𝑘 is the  𝑘𝑡ℎ ensemble forecast and �̅� is the mean of the K-member ensemble 

forecasts. The vectors 𝑎𝑘, k = 1. . . K, denote the extended control variables for each 

ensemblemember. The symbol  ͦ  denotes the Schur product (element by element product) of the 

vectors 𝑎𝑘 and  𝑥𝑘
𝑒. In other words, the second term of Eq. (2.24) represents a local linear 
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combination of ensemble perturbations. The coefficient 𝑎 for each member varies in space as 

discussed later, which determines the ensemble covariance localization scale. 

The analysis increment 𝑥′ is obtained by minimizing the following hybrid cost function: 

𝐽൫𝑥ଵ
′ , 𝑎൯ = 𝛽ଵ𝐽ଵ + 𝛽ଶ𝐽 + 𝐽 

= 𝛽ଵ
ଵ

ଶ
൫𝑥ଵ

′ ൯
்

𝐵ିଵ൫𝑥ଵ
′ ൯ + 𝛽ଶ

ଵ

ଶ
(𝑎)்𝐴ିଵ(𝑎) +

ଵ

ଶ
൫𝑦 ′

− 𝑯𝑥 ′൯
்

𝑅ିଵ൫𝑦 ′
− 𝑯𝑥 ′൯                    (2.26) 

 

As compared with a normal 3DVAR cost function, a weighted sum of  𝐽ଵ and 𝐽 terms in Eq. 

(2.26) replaces the usual background term in hybrid. In Eq. (2.26), 𝐽ଵ is the traditional WRF 

3DVAR background term associated with the static covariance B, 𝐽  is a vector formed by 

concatenating K vectors 𝑎, k = 1. . . K. In other words 𝑎் = 𝑎ଵ
் , 𝑎ଶ

் , … … 𝑎
் and the variation of 

the extended control variables  𝑎 are controlled by the localization matrix A. Here, 𝐽 is the 

observation term. As the traditional 3DVAR, 𝑦 ′=𝑦 − 𝐻(𝑥) is the innovation vector. Here 

𝑦denotes the observation, 𝑥 is thebackground forecast, and H is the nonlinear observation 

operator. In this study, the background forecast 𝑥  is the ETKF ensemble mean forecast. Here H 

is the linearized observation operator and R is the observation error covariance. 

In Eq. (2.26), there are two factors 𝛽ଵ and 𝛽ଶ that define the weights placed on the static 

background error covariance and the ensemble covariance. To conserve the total background 

error variance, 𝛽ଵ  and  𝛽ଶ  are constrained by 

                                                    
ଵ

ఉభ
+

ଵ

ఉమ
= 1 (2.27) 

To further comprehend the HYBRID system defined by equations (2.24) – (2.27), Wang et al. 

(2007) explicitly proved that the solution from these equations is equivalent to the solution by 
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minimizing a cost function where the BEC was explicitly defined as a sum of the static 

covariance and the ensemble covariance with localization applied through the Schur product: 

𝐽(𝑥ᇱ) =
ଵ

ଶ
𝑥ᇱ்

(
ଵ

ఉభ
𝐵 +

ଵ

ఉమ
𝑃°𝑆)ିଵ𝑥ᇱ +

ଵ

ଶ
൫𝑦ᇱ

− 𝐻𝑥ᇱ൯
்

𝑅ିଵ൫𝑦ᇱ
− 𝐻𝑥ᇱ൯     (2.28) 

Where 𝑃 is the ensemble covariance defined as: 

                 𝑃         = ∑ 𝑥


ୀଵ (𝑥
)்                                                                        (2.29) 

Wang et al. (2007) states that given the covariance, 〈𝑎(𝑎)்〉 = S, k=1,……,K the covariance of 

the second term in Eq. (2.24) satisfies 

 

                      〈∑ (𝑎°𝑥
)[∑ (𝑎°𝑥

)
ୀଵ ]்

ୀଵ 〉 = 𝑃°𝑆                                   (2.30) 

 

Based on equations (2.28) – (2.30), effectively the correlation matrix in the second term of Eq. 

(2.26) performs covariance localization on the ensemble covariance. 

b. The ETKF ensemble generation scheme 

The forecast ensemble perturbations are updated by ETKF using the following transformation 

matrix T: 

                                                        𝐓 = 𝐂(Г + 𝐈)ି
భ

మ𝐂                                                   (2.31) 

where Г represents the eigenvalues  and 𝐂 represents the eigenvectors obtained by the singular 

value decomposition of (𝐇𝐗𝐛)𝐑ି𝟏𝐇𝐗𝐛.  The under-sampling problem associated with ETKF 

due to small ensemble size is dealt with adding inflation factors Π and ρ that increases the 

analysis error variance (Wang et al. 2008): 
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                                              𝐗ୟ =  𝐗𝐛𝐂(ρГ + 𝐈)ି
భ

మ𝐂Π                                     (2.32) 

Since covariance localization has not been applied to the ETKF formulation, large inflation 

factors are used to improve the systematic underestimation in the error variance. The initial 

perturbations for ensembles are obtained as random draws from the static BEC of 3DVAR. 

Stochastic Kinetic Energy Back-scatter Scheme (SKEBS)  

SKEB accounts for the model error due to inadequately resolving subgrid-scale processes in 

ensemble forecasts. In Stochastic parameterizations, each ensemble member is perturbed by a 

stochastic forcing term representing the statistical fluctuations in the subgrid-scale fluxes 

(stochastic diabatic tendencies) and altogether unrepresented interactions between the resolved 

and unresolved scale (stochastic kinetic energy backscatter). To calculate a stochastic kinetic 

energy source, random stream function perturbations 𝜓′(𝑥, 𝑦, 𝑡) and temperature perturbations 

𝑇′(𝑥, 𝑦, 𝑡) are introduced, with a prescribed kinetic-energy spectrum. The effective stream 

function perturbations 𝜓′(𝑥, 𝑦, 𝑡) are given by 

𝜓′(𝑥, 𝑦, 𝑡) = 𝑟𝐷(𝑥, 𝑦, 𝑡)𝜓′(𝑥, 𝑦, 𝑡)                       (2.33) 

Where x is the zonal and y the meridional direction in physical space, and t denotes the time. 

Here, (𝑥, 𝑦, 𝑡) is the local, instantaneous dissipation rate, 𝜓′(𝑥, 𝑦, 𝑡) is a 2D stream function 

pattern with a prescribed kinetic energy spectrum, and r is the parameter "backscatter ratio."The 

spatial and temporal characteristics of the perturbation pattern are controlled by expanding the 

stream function pattern 𝜓′(𝑥, 𝑦, 𝑡) in spectral space and evolving each wavenumber as a first-

order autoregressive process. If D is constant, then these characteristics will directly transfer to 
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the effective stream function perturbations 𝜓′. However, if D is a function of space and time, 

then the spatial and temporal characteristics will be the convolution between (𝑥, 𝑦, 𝑡) and 𝜓′(𝑥, 

𝑦, 𝑡). 

2.1.4 Post-processing Graphics Tools 

The various post-processing programs supported under the WRF-ARW framework are NCAR 

Graphics Command Language (NCL), RIP4 (based on NCAR Graphics), GrADS, and Vis5D. 

This study uses NCL for data visualization and statistical analysis.  

2.2 Data Used 

2.2.1 Data for WRF model initialization 

The terrestrial data needed by WPS is obtained from the WRF download page. The terrestrial 

data contains soil categories, land use category, terrain height, annual mean deep soil 

temperature, monthly vegetation fraction, monthly albedo, maximum snow albedo, and slope 

category. Because these data are time-invariant, they only need to be downloaded once. The data 

sets are available in resolutions of 30", 2', 5', and 10'; here, " denotes arc seconds and ' denotes 

arc minutes. The user need not download all available resolutions for a data set, although the 

interpolated fields will generally be more representative if a resolution of data near to that of the 

simulation domain is used.  

The meteorological data for model initialization is obtained from the National Center for 

Environmental Prediction (NCEP) Global forecast system (GFS) data at 0.50× 0.50 gridded 

resolution. GFS is a weather forecast model covering the entire globe at a horizontal resolution 
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of 28 kilometers and provides several variables such as temperatures, winds, precipitation, soil 

moisture, and atmospheric ozone concentration, etc. Operational forecasters use the dataset to 

predict weather out to 16 days in the future. In this study 6 hourly, GFS data is used to generate 

the model initial and boundary conditions.  

2.2.2 Data for Assimilation 

2.2.2.1 Conventional Data 

The current study utilized conventional in-situ observations such as temperature, specific 

humidity, surface pressure, and wind from surface synoptic observations, radiosonde, ships, 

buoys, and wind reports from satellites and aircraft available from the Global 

Telecommunication System (GTS). The GTS plays a significant role in transmitting global 

meteorological data from both satellites and in-situ measurements to the weather research and 

forecaster community. NCEP collects the data from various organizations worldwide and 

formats it to BUFR (Binary Universal Form for the Representation of meteorological data) for 

their processing needs. 

2.2.2.2 INSAT-3D AMV 

INSAT-3D is an Indian geostationary meteorological satellite with the imager and the sounder 

onboard. The imager has one visible channel and five infrared (IR) channels, namely short-wave 

IR (SWIR), mid-wave IR (MIR), water vapor (WV), and two split thermal IR (TIR-1, TIR-2) 

channels. The channels have different ground resolutions. Both visible and SWIR channels are 

at 1 km resolution. The MIR and TIRs channels are at 4 km ground resolution, and the WV 

channel is comparatively at a coarser resolution of 8 km.  INSAT-3D sounder has 18 IR and one 
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visible channel. Out of the 18 IR channels, six bands are in the SWIR; five are in the MIR; seven 

channels are in the longwave infrared (LWIR). The ground resolution of all sounder channels is 

10 km. Three consecutive INSAT-3D images of 30-minute intervals are used to determine the 

AMVs, which consists of the following steps 1) Image registration, thresholding, filtering, 2) 

Features/tracer selection and tracking, 3) Quality control and 4) Height assignment (Deb et al. 

2016; Sankhala et al. 2020). For this study, AMVs were retrieved from IR channel data from 100 

hPa to 950hPa atmospheric levels. Low-level MIR and visible channels extended from 600 hPa 

to 950 hPa, and upper-level WV channel data ranges from 100 to 500 hPa are used. A recent 

study shows that INSAT-3D AMV is useful in understanding the intra seasonal monsoon 

variability of the Indian Summer Monsoon (Sankhala et al. 2019). AMV data for this study is 

obtained from https://www.mosdac.gov.in/.  

2.2.2.3 Radar Data  

The current work utilizes Cherrapunji Doppler Weather Radar (DWR) (Lat. 25.26° N and Long. 

91.73° E) data in a numerical weather prediction model for the prediction of thunderstorm. It is 

an S-band radar that provides data through a volume scans. The radar completes one volume 

scan in 11 minutes, comprising of 360 degree azimuth scan for 10 elevation angles ranging from 

0.5 to 21 degrees. The DWR covers 250 km (up to 500 km only for Z) with a spatial resolution 

of 300 m. The initial quality check is done by the software developed by BAL, India. To 

preprocess the data further, a python module has been developed. Since the DWR data resolution 

is very high compared to the model domain (3km), the quality checked radar data in azimuth-

range format is transformed to the Cartesian grid with the map projection same as the model 

using the python module. Using the same python module data has been quality checked to discard 

https://www.mosdac.gov.in/
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data beyond the limit of 2-30 m/s and reflectivity out of the range 10–55 dBz. Additionally, 

FORTRAN codes are developed to convert the processed data to WRFDA compatible format for 

data assimilation. 

2.3 Validation 

The verification of rainfall forecast is done using standard statistical skill scores such as Bias 

Score (BS) and Equitable Threat Score (ETS). BS and ETS are calculated based on a contingency 

table (Table 2.3), which shows the frequency of "YES" and "NO" forecasts and occurrences. The 

combinations of hits (a), misses (b), false alarms (c), and correct negatives (d) are shown in Table 

1.The bias score in equation (2.34) is used to evaluate the model's tendency to underpredict (BS 

< 1) or overpredict an event (BS > 1). ETS defined by equation (2.35) represent the observed 

and forecast events that are correctly predicted, adjusted for the frequency of hits that would be 

expected to occur simply by random chance (Schaefer 1990), where equation (2.36) represents 

the random chance that both the forecast and observation coincide. The ETS ranges from –1/3 to 

1, with a value of 1 signifying the ideal association between predicted and observed rain 

occurrence.  

 

Table 2.3: Contingency table
 

 

 

 

 

Observed 

 

YES 

NO 

Forecast 

           YES                                        NO 

a b 

c d 
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                               ca

ba
BS




                                                                    (2.34)

 

                   
random

random

abca

aa
ETS




           (2.35) 

                             
dcba

baca
arandom






))((
  (2.36) 

 

Three other statistical measures, namely, root mean square error (RMSE), mean error (ME), and 

improvement parameter (η) are used for spatial verification. RMSE is one of the standard 

statistical methods to evaluate the accuracy of a model. It is the squared root of the average of 

the square of forecast (𝑋𝑖) departure from the observation (𝑂𝑖) as shown in equation (2.37)
 

              𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑂𝑖 − 𝑋𝑖)

2𝑁
𝑖=1                                                                 (2.37) 

where 𝑖 = 1, … … , 𝑁 is the number of forecasts and N, which will vary based on the total number 

of forecasts from each experiments. Smaller the values of RMSE, better is the model 

performance. The mean bias (ME), also known as Bias is the average forecast departure from 

observations as shown in equation (2.38): 

                                            𝐵𝑖𝑎𝑠 =  
1

𝑁
(𝑂𝑖 − 𝑋𝑖)                                                    (2.38)     

Improvement parameter (η) in percentage is defined as below: 

Improvement parameter, η= [1-
𝑅𝑀𝑆𝐸𝐻𝑦𝑏𝑟𝑖𝑑

𝑅𝑀𝑆𝐸3𝐷𝑉𝐴𝑅
] × 100                                                   (2.39) 
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Positive values of η represent percentage improvement due to HYBRID experiments with 

respect to 3DVAR.  Two-tailed Student's t test has been applied to identify the most significant 

zones at 90% and 95% confidence level 

Furthermore, the impact of flow dependent error covariances in the variational framework is 

evaluated for the simulation of tropical cyclones (TCs) over the Bay of Bengal. The tropical 

cyclones considered in this study originated within the geographical range of 0⁰N to 25⁰N and 

75⁰E to 100⁰E and were persistent within this region until landfall. Therefore, the position of the 

TCs are searched within this area by obtaining the minimum sea level pressure (MSLP) at the 

analysis time as well as at every 6 hourly forecast interval till the time of landfall. The location 

of the MSLP is treated as the simulated position of the TCs and position error is calculated for 

each TC by taking the great circle distance between the observed best track locations and the 

simulated position. The intensity error is calculated by taking the difference between the 

observed and simulated MSLP (hPa). The maximum wind speed (MWSP) is also calculated 

within the same region for both analysis and 6 hourly forecast intervals and the difference of 

observed MWSP (m/s) from the simulated MWSP (m/s) is considered as another measure of 

intensity error.  

 



 
 

36 
 *The content of Chapter 3 is taken from “Gogoi, R. B., Kutty, G., Rakesh, V., & Borgohain, A. (2020). Comparison of the Performance of 

Hybrid ETKF-3DVAR and 3DVAR Data Assimilation Systems on Short-Range Forecasts during Indian Summer Monsoon Season in a 

Limited-Area Model. Pure and Applied Geophysics, 177(10), 5007-5026.” 

 

*CHAPTER 3 

Impact of flow-dependent error covariance in 3DVAR DA system: 

Evaluation of short range forecasts during Indian summer monsoon 

 

3.1 Introduction  

The rainfall variability during the Indian summer monsoon (ISM) plays a crucial role in the 

agricultural productivity of India and, eventually, in the country's economic development. A 

large part of the Indian landmass receives 70-80% of its annual rainfall during the summer 

monsoon season (June to September), with maximum observed rainfall during July and August 

every year. Prior studies confirmed the effectiveness of 3DVAR DA system in improving 

forecasts over the Indian subcontinent during the ISM season (Routray et al. 2005; Rakesh et al. 

2009; Kumar et al. 2011). However, a fewer studies are available that quantifies the impact of 

flow dependent error covariance in the DA system for the simulation of ISM using a limited area 

model. In the present study, the extent to which the initial conditions and model forecasts can be 

improved by incorporating flow-dependent dynamics in a new flow regime is explored using 

WRF model. Additionally, the improvements due to ensemble BEC in convection permitting 

resolution is validated using high-density observational data sets from telemetric rain gauge 

(TRG) observations over Karnataka state. 

A study by Kutty and Wang (2015) examined the impact of flow-dependent ensemble covariance 

using HYBRID DA system in the National Center for Environmental Prediction (NCEP) Global 

Forecast System (GFS) model. The results indicate that the quality of forecasts is better in 

HYBRID initialized forecasts than that from the 3DVAR DA system. Similarly, Prasad et al. 

(2016) investigated the performance of HYBRID DA scheme in National Center for Medium   
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Range Weather Forecasting (NCMRWF) Global Forecast System over the Indian region and 

found that HYBRID DA considerably improved the forecasted temperature and wind field, 

mainly over the upper troposphere. The current study compares the skill of model forecasts 

initialized from 3DVAR and HYBRID DA system using the WRF model for month-long, short-

range rainfall forecasts during ISM at a convection-permitting resolution. 

3.2 Model Description and Configurations  

The WRF model is configured for three nested domains using the two-way nested method 

(Figure 3.1). The outer domain (D01) that covers the entire monsoon prevailing region has a 

horizontal resolution of 27 km with 350 × 350 grid points in the east-west and north-south 

directions. The inner domain (D02) and the innermost domain (D03) have horizontal 

resolutions of 9 km and 3 km. The innermost domain is centered over the state of Karnataka in 

India, where a dense set of rain gauge observations were available for validation. The number 

of vertical levels used is 36, with the model top at 50 hPa. 

The parameterization schemes used are WRF single-moment five-class (WSM5) for 

microphysics, Kain-Fritsch for cumulus, Yonsei scheme for PBL, Unified Noah land surface 

model, Rapid Radiative Transfer Model (RRTM), and Dudhia for longwave and shortwave 

radiation schemes, respectively. The initial and lateral boundary conditions for the model 

initialization are generated using the National Center for Environmental Prediction (NCEP) 

Global forecast system (GFS) data at 0.50× 0.50 gridded resolution. It is important to mention 

here that the assimilations are performed only in the outermost domain at 27 km resolution, and 

the interpolated fields from the outer domains are used to initialize the nested domains.
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Figure 3.1: Model configuration deployed in this study; the innermost domain (D03) over the 

Karnataka State of India which is highlighted in the inset figure. 

 

3.3 Experimental design and validation 

In order to bring out the impact of ensemble-generated error covariance in the 3DVAR 

framework, four experiments are conducted. The experiment, which assimilated observations 

using the 3DVAR DA system, is denoted as 3DVAR. The experiments with HYBRIDDA 

system are configured in three variants by changing the tunable parameters  𝛽1and  𝛽2 that 

controls the contributions of the static and ensemble covariance in the HYBRID minimization 

cost function. The experiments are named HYBRID25, HYBRID50, and HYBRID75, where 

HYBRID25 signifies 25% (75%) weights assigned to ensemble (static) BECs, HYBRID50 

represents an equal contribution of 𝛽1 and 𝛽2  and HYBRID75 represents 75% (25%) weights 
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assigned to ensemble (static) BEC. For data assimilation, the conventional in situ observations 

and satellite-derived wind observations available from the Global Telecommunication System 

(GTS) are used at every 12 h interval in ±3 h time window for ~4 weeks period during July 

2013 with continuous cycling starting from 0000UTC 1 July 2013 to 0000 UTC 30 July 2013. 

Afterward, 48 h free forecast is launched from each 0000 UTC DA analysis during July 

2013.To avoid the spin-up issues, the ensembles are initialized at 0000UTC 30 June 2013, 24 

h prior to the first analysis time, by adding 50 random perturbations from WRF 3DVAR (Barker 

et al. 2004) and subsequently, advanced in time using ARW-WRF for a period of 24 h. The 

first guess for 3DVAR and HYBRID DA system is taken from the 24 h ensemble mean forecast 

at 0000UTC 1 July 2013, ensuring that HYBRID and 3DVAR experiments started from the 

same background forecast. 

A systematic evaluation of the impact of flow-dependent error covariance in variational DA 

systems is carried out quantitatively in this study. First, the validation of rainfall forecast over 

the Indian landmass for D1 is performed by comparing model simulated rainfall with the India 

Meteorological Department (IMD; Rajeevan et al. 2008) gridded rainfall data available at 

0.25˚×0.25˚ horizontal resolution. The gridded data is prepared using IMD archived daily 

rainfall data measured by rainfall gauge stations spread across India Pai et al. (2015). Both 

observed and forecast data are brought to a common grid of 0.25˚×0.25˚ resolution prior to 

comparison. As a second set of data, a dense set of telemetric rain gauge (TRG) observations 

over Karnataka state are employed for validating the high-resolution rainfall forecasts for 

domain 3.A detailed description of the observation datasets used and their errors are available 

in Rakesh et al. (2015). The forecast value closest to the observation location is considered to 

verify the gridded forecast with the point observation location.  

(
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Furthermore, for spatial verification of the large-scale features of monsoon circulations simulated 

by the experiments, the European Center for Medium Range Weather Forecasting re-analysis 

(ERA) interim analyses at 12.5 km resolution is used. Before the statistical verification, the 

model forecasts are brought to the ERA interim grid resolution. The conversions of grid 

resolution in this study are performed using bilinear interpolation for all the cases. 

The verification of rainfall forecast is done using standard statistical skill scores such as Bias 

Score (BS) and Equitable Threat Score (ETS). Three other statistical measures, such as root mean 

square error (RMSE), mean error (ME), and improvement parameter (η) are used for spatial 

verification. Additionally, two-tailed Student's t test has been applied to identify the most 

significant zones at 90% and 95% confidence levels. 

3.4 Results and Discussion 

This section evaluates the performance of traditional 3DVAR and HYBRID DA system in the 

short-range forecast during the Indian summer monsoon (ISM). 

3.4.1 Analysis and forecast verification 

Figure 3.2 depicts vertical profiles of the analysis fit to observations for variously configured 

HYBRID and 3DVAR experiments where the analysis fields are averaged over the 60 data 

assimilation cycles. It is to be mentioned here that the Radiosonde observations used to 

calculate the analysis fit are assimilated to the analysis. Thus, the results cannot be treated as a 

measure of analysis error; rather, it represents the extent to which analysis from each DA 

scheme is closer to the observations. 
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Figure 3.2: Vertical profiles of root mean square fit of analyses to Radiosonde observations for 

different prognostic variables; analyzed by 3DVAR (black line), HYBRID 25 (blue line), 

HYBRID 50 (green line) and HYBRID75 (red line) experiments. 

 

For wind and temperature, the HYBRID analysis fits better to the observations than 3DVAR 

analysis. Among the HYBRID experiments, analysis from HYBRID25 and HYBRID50 are 

closer to observations than HYBRID75 analysis. For specific humidity, analysis from all the 

experiments describes a comparable fit to the Radiosonde observations, in general.  
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Figure 3.3: Vertical profiles of root mean square errors in 24 h forecasts from different 

experiments compared to radiosonde observations for different variables; 3DVAR (black line), 

HYBRID 25 (blue line), HYBRID 50 (green line) and HYBRID 75 (red line). 

 

Figure 3.3 shows RMSE of 24 h wind, temperature, and specific humidity forecast validated 

against the Radiosonde observations. For the zonal and meridional wind, RMSE in HYBRID 

experiments is smaller than 3DVAR in almost all levels. The improvements in HYBRID 

experiments are more significant over the upper levels. The HYBRID50 and HYBRID75 

experiments show improvements above 850 hPa, for temperature forecast as compared to 
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3DVAR experiment. Wang et al. (2008) have documented analogous results while comparing 

the performance of 3DVAR against HYBRID experiments. For specific humidity, HYBRID 

experiments show minimal improvements over 3DVAR (Figure 3.3d). 

3.4.2 Validation of Rainfall over the Indian land mass 

Figure 3.4a represents the observed monthly mean precipitation from IMD for July 2013, which 

depicts maximum rainfall along the west coast of the peninsular regions and over the central 

and northeastern parts of the Indian subcontinent. The model experiments simulated the rainfall 

spreading reasonably well, yet there is substantial underestimation in the magnitude of rainfall 

maxima (Figure not shown). Although all the experiments show wet bias and dry bias all over 

the Indian landmass, a notable strong dry bias is seen over the south-central region of the Indian 

subcontinent. However, this dry bias is significantly reduced in HYBRID experiments, mainly 

in HYBRID75 compared to the 3DVAR experiment. The improvement in the pattern of rainfall 

distribution in HYBRID compared to 3DVAR experiments may be attributed to the better 

depiction of dynamic and thermodynamic features associated with flow-dependent adjustments 

in the HYBRID analysis. The spatial distribution of the improvement parameter (η) computed 

using equation (2.28) for July 2013 is shown in Figure 3.4f-h. The positive (negative) value of 

η depicts improvement (degradation) in the forecast.  
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Figure 3.4: (a) Observed spatial distribution of monthly averaged (July) 24 h accumulated 

rainfall (mm/day) and BIAS in forecasted rainfall from(b) 3DVAR (c) HYBRID75 (d) 

HYBRID50 and (e) HYBRID25. The improvement parameter (%) where positive values 

represents improvements by HYBRID experiments are also shown (f,g and h). 
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Figure 3.5: The cumulative rainfall over the Indian land mass from domain 1 aggregated over 

all the 24 hour forecasts (top) and 48 hour forecast (bottom) throughout the July, 2013 

 

The rainfall simulation from HYBRID experiments is closer to IMD rainfall observations. 

Substantial improvement in HYBRID run is observed during later stages of the assimilation 

cycle for 24 h and 48 h forecasts compared to the 3DVAR experiment.  
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While comparing average forecasts in previous sections gave a generalized idea about the 

qualitative forecast skill of the model experiments, quantitative rainfall forecast skill has been 

addressed in this section. The rainfall forecast skill of the NWP models is usually validated 

quantitatively using Equitable Threat Score (ETS) and Bias Score (BS). Here, ETS and BS 

scores are used to evaluate the quantitative precipitation forecast (QPF) skill scores of 3DVAR 

and HYBRID experiments. 

As shown in Figure 3.5, the cumulative effect of the DA system becomes more apparent as the 

number of data assimilation cycles increases.  Therefore, the skill scores are computed in two 

phases; the first phase is for the assimilation cycle starting from 1 – 15 July 2013, the second 

phase is for the assimilation cycle from 16- 31 July 2013.  Figure 3.6a-dshows the ETS of 24 h 

accumulated rainfall forecasts for the first and second phase evaluated against the IMD gridded 

rainfall. As expected, the second phase shows higher ETS skill scores compared to the first 

phase and BS close to 1.0 for all the DA experiments. The ETS values are gradually increasing 

with increasing rainfall thresholds for all the experiments indicating a higher QPF skill for 

rainfall at higher thresholds. Overall, the skill scores are better in HYBRID than in 3DVAR 

experiments for both phases. Among HYBRID experiments, ETS values are higher for 

HYBRID50 in the first phase and HYBRID75in the second phase for all the thresholds. The BS 

for 24 h rainfall forecasts (Figure 3.6b) indicates underestimating rainfall in all the model 

experiments. Among the experiments, the forecast initialized from HYBRID shows better BS 

when compared to 3DVAR across all the thresholds.  
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Figure 3.6: The (a) ETS and (b) Bias scores for different rainfall thresholds computed over the 

Indian land mass from domain 1 (d01) simulations averaged over the 24 hour forecasts valid 

from 2nd July 2013 to 16th July 2013; the (c) ETS and (d) Bias scores for different rainfall 

thresholds computed over the Indian land mass from domain 1 (d01) simulations averaged over 

the 24 hour forecasts valid from 17th July 2013 to 31th July 2013 

 



 

The HYBRID experiments show BS values closer to one during the second phase of data 

assimilation cycles. Similar to the results obtained for 24 h, HYBRID experiments outperform 

3DVAR experiments by enhancing the precipitation forecast skill for 48 h for

shown).  

 

Figure 3.7: Spatial distribution of 746 KSNDMC rain gauge stations spread over Karnataka.

3.4.3 Validation of high resolution Rainfall forecast over Karnataka

The forecast skill of QPF depends strongly on the model resolution, and several past studies 

show that model simulations at 

simulation of convective systems 
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simulation of convective systems (Weisman et al. 1997; Speer and Leslie 2002). However, the 

assessment of the rainfall forecast is mainly challenging due to the unavailability of high dense 

rainfall observations. This study uses the rainfall observations from a dense automated rain 

gauge network of 746 stations available over Karnataka (Figure 3.7) to evaluate rainfall forecast 

at convection-permitting resolution from the innermost domain (d03). 

 

 

Figure 3.8: (a) Observed spatial distribution of monthly averaged (July) 24 h accumulated 

rainfall (mm/day) and BIAS in forecasted rainfall from (b) 3DVAR (c) HYBRID75 (d) 

HYBRID50 and (e) HYBRID25 domain 3 (d03) simulations. The improvement parameter (%) 

are also shown (f, g and h) and highlighted in yellow box. 
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Figure 3.9: Same as Figure 3.8a, but from domain 3 (d03) simulations averaged over all the 48 

hour forecasts throughout the July, 2013. 

 

 

Figure 3.10: The (a) ETS and (b) Bias scores for different rainfall thresholds computed over the 

Karnataka state of India from domain 3 (d03) simulations averaged over the 24 hour forecasts 

valid from 17th July 2013 to 31th July 2013 
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Figure 3.8 shows the observed monthly-averaged 24 h accumulated precipitation from TRG of 

Karnataka state. In the 24 h model forecast (Figure 3.8b-e), a strong dry bias in all the 

experiments over the southwestern part of Karnataka can be seen. The 3DVAR and HYBRID 

experiments represent almost similar results, except for the slight wet bias that extends from 

west to east in the HYBRID run. In the 48 h forecast, a prominent wet bias and the dry bias 

over the western regions of Karnataka state can be seen (Figure 3.9b-e). The improvement 

parameter for 24 h forecast (Figure 3.8f-h) shows that the percentage of improvement is 

53%,38%,and 39%,while for 48 h forecasts (Figure 3.9f – h), the percentage of improvement 

is 58%, 50% and 46% for HYBRID25, HYBRID50, and HYBRID75 experiments, 

respectively. Similar to that in the previous section, the model skill scores are computed for 

convection-permitting rainfall forecast using TRG observations over Karnataka in two phases. 

Figure 3.10 illustrates ETS and BS for the second phase, revealing that HYBRID experiments 

depicts better skill compared to 3DVAR experiment for most rainfall thresholds towards the 

later stage of forecast. 

3.4.4 Validation of Monsoon circulation systems 

It is evident from the previous section that the use of flow-dependent ensemble BEC in the 

variational framework improves the rainfall forecast. However, the improvement in rainfall 

distribution and intensity is strongly related to the precise representation of the observed large-

scale flow patterns. Therefore, it is expected that the HYBRID DA system with flow-evolving 

estimates of BECs to provide optimal analysis with a realistic representation of flow patterns 

that may, in turn, lead to the improved QPF. Here, the large-scale features in 3DVAR and 

HYBRID experiments are compared against the ERA interim analysis to understand this 
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further. Since, no significant difference among the HYBRID experiments is observed in the 

analysis of model variables and rainfall forecast, the HYBRID75 run is considered 

representative of HYBRID experiments in this section for convenience  

The ISM circulation is characterized by the onset of Low-Level Jet (LLJ), which is commonly 

known as Findlater Jet over the Arabian Sea (Findlater 1978). It is to mention here that, in this 

study, LLJ characteristics seen in 850 hPa level is only discussed. Figure 3.11 shows the general 

features of monthly averaged LLJ from the ERA-interim analysis and 24 h forecast initialized 

from 3DVAR and HYBRID analysis. Though the flow patterns in the experiments are 

comparable to the ERA-Interim analysis, in general, the magnitude of wind in both the 

experiments is underestimated, especially over the peninsular regions of the Indian subcontinent. 

Moreover, the westerly flow becomes more north-westerly in the 3DVAR forecast, near the 

southern tip of the Indian subcontinent than the ERA-Interim analysis and HYBRID experiment 

(Figures 11a-c). Also, the magnitude of westerly wind over the peninsular Indian landmass in 

3DVAR is considerably lower than HYBRID and, it could be the potential reason for improved 

dry bias observed over the Indian landmass in 3DVAR experiments compared to HYBRID 

experiments. It is worth noting that RMSE in simulated wind fields (Figures 3.11d-e) are higher 

in 3DVAR as compared to HYBRID, in general. Furthermore, Figure 3.11f shows statistically 

significant differences between the 3DVAR and HYBRID experiment over the eastern and 

western equatorial Indian Ocean and the upper peninsular regions, where considerable rainfall 

bias is observed.  

Another important circulation system during the Indian summer monsoon is the upper-level 

circulation at 200 hPa, characterized by strong easterly winds and an anticyclone centered over 

3.11a-c
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the Tibetan Plateau as shown in Figures 3.12a-c. It is observed that the 3DVAR experiment 

show higher RMSE values over the equatorial Indian Ocean due to the anomalous northward 

turn of easterly winds. Further, the vector difference of the simulated wind in HYBRID and 

3DVAR depicts enhanced southerly wind near the south of the Indian subcontinent in the 

HYBRID experiment (Figure 3.12f). Overall, the results imply that wind patterns in the lower 

and upper troposphere show marked improvement in HYBRID simulations. This may be 

attributed to the decrease in dry bias in the rainfall simulations over the Indian landmass in 

HYBRID experiments. 

Wind shear is another parameter known to be instrumental in northward propagation of the 

monsoon(Jiang et al. 2004) and it is computed as the vector difference of wind at 850 hPa and 

200 hPa. From Figure 13a, it can be seen that ERA analysis depicts strong wind shear over the 

core monsoon regions like the equatorial Indian Ocean and peninsular India. The RMSE in 

simulated wind shear is lower in HYBRID than in 3DVAR, as observed from Figures 13b and 

13c.The HYBRID and 3DVAR runs show significant differences in the wind shear at a 

confidence interval of 95% (Figure 3.13d). The HYBRID experiment also demonstrates 

positive shear in the wind over the Indian landmass, which indicates faster progression of 

monsoon currents in HYBRID than in 3DVAR experiments.  

3.13b



 

Figure 3.11: Monthly averaged 850 hPa wind from (a) ERA interim and 24 hour forecast from 
(b) 3DVAR and (c) HYBRID.  RMSE in 24 h forecast from assimilation experiments with 
respect to ERA interim for (d) 3DVAR (e) 
HYBRID with statistical significance at 90% is also shown (f). Spatial correlation of g) 3DVAR 
and h) HYBRID with ERA interim.

 

54 

Monthly averaged 850 hPa wind from (a) ERA interim and 24 hour forecast from 
.  RMSE in 24 h forecast from assimilation experiments with 

respect to ERA interim for (d) 3DVAR (e) HYBRID. The difference between 3DVAR and 
with statistical significance at 90% is also shown (f). Spatial correlation of g) 3DVAR 

with ERA interim. 

 

Monthly averaged 850 hPa wind from (a) ERA interim and 24 hour forecast from 
.  RMSE in 24 h forecast from assimilation experiments with 

. The difference between 3DVAR and 
with statistical significance at 90% is also shown (f). Spatial correlation of g) 3DVAR 



 

Figure 3.12: Same as Figure 

 

 

 

 

 

 

 

Figure 3.13: Monthly averaged vertical wind shear from (a) ERA interim and RMSE in wind 
shear computed for (b) 3DVAR and (c) 
mean wind field from HYBRID and 3DVAR at 95 % confidence level is also shown (d).
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Same as Figure 3.11, but mean wind at 200 hPa level.

Monthly averaged vertical wind shear from (a) ERA interim and RMSE in wind 
shear computed for (b) 3DVAR and (c) HYBRID. The significant differences in the simulated 

and 3DVAR at 95 % confidence level is also shown (d).

 

, but mean wind at 200 hPa level. 

Monthly averaged vertical wind shear from (a) ERA interim and RMSE in wind 
icant differences in the simulated 

and 3DVAR at 95 % confidence level is also shown (d). 
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3.5 Summary 

Since the Indian economy is profoundly dependent on the summer monsoon rainfall, its 

accurate prediction is of socio-economic importance. However, the monsoon rainfall prediction 

is challenging as the associated features span over a wide range of spatial and temporal scales 

extending from weather to climate scales. This study attempts to assess the impact of ensemble-

based flow-dependent error covariance in the 3DVAR DA framework in improving the short-

range forecast of Indian summer monsoon rainfall. The experiments have been conducted over 

the Indian summer monsoon region for July 2013. The continuous DA cycling is performed for 

~4 weeks using 3DVAR and a HYBRID DA system that initialized 48 h model forecasts daily.  

The results show that the use of flow-dependent ensemble BEC in 3DVAR systematically 

improves the forecast. The RMSE from the HYBRID experiments is systematically smaller 

than the 3DVAR experiments for the temperature and wind field in almost all vertical levels. 

In addition, HYBRID experiments have shown improved skill in the QPF during the Indian 

summer monsoon. The spatial comparison shows that the dry bias over the upper peninsular 

regions and wet bias over the central and northern parts of the Indian subcontinent is lower in 

HYBRID experiments compared to the 3DVAR experiment. The convective-scale experiments 

are conducted at higher resolution, and the results are validated against dense TRG network 

observations over the Karnataka state. Significant improvement in HYBRID runs during the 

later stages of data assimilation cycles is observed than the 3DVAR experiment. However, no 

significant difference among the HYBRID experiments has been observed for both analysis of 

the model prognostic variables and rainfall forecast. 
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The general circulation features of monsoons in 3DVAR and HYBRID experiments are 

comparable to those in the ERA-interim analysis. However, the magnitude and direction of 

lower and upper-level wind over the Indian monsoon region are better forecasted in HYBRID 

compared to the 3DVAR experiment. This is proposed as the reason for reducing dry bias 

observed over the Indian landmass in the HYBRID run. 

This study is a preliminary effort to comprehend the effect of flow-dependent ensemble BEC 

in the 3DVAR DA system during the Indian summer monsoon season using a limited area 

model. Overall, the results are encouraging, and the study provides dynamically consistent, 

objective improvements in the initial conditions of the WRF model.  To gain more insight into 

the relative advantages and disadvantages, the results of HYBRID DA systems should be 

compared with those of advanced DA systems such as 4DVAR. Moreover, the data assimilation 

was performed in the coarser-resolution domain for this study. The improvement in HYBRID 

DA may be more significant if assimilation is performed in finer resolution. 
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*Chapter 4 

Impact of flow-dependent error covariance in 3DVAR DA System: Evaluation of 

short range forecast of tropical cyclones over Bay of Bengal 

 

4.1 Introduction 

Tropical cyclone (TC) is among the most devastating natural calamity associated with damaging 

winds and rainfall and often cause flooding in coastal and inland areas. Even though numerical 

weather prediction (NWP) models for the prediction of TCs were initiated quite early (e.g., 

Ooyama 1969), the forecast skill at necessary accuracy continues to be challenging. One of the 

main cause of such forecast errors is inaccurate initial conditions (Kalnay 2003). The TCs 

generally form over oceans, where direct in situ measurements are sporadic or absent, making it 

difficult to generate accurate initial conditions for NWP models.  

It is found from previous studies that incorporating flow-dependent ensemble BEC in DA system 

could correct background TC forecast by spreading information from observations effectively 

(Torn and Hakim 2009; Hamill et al. 2011b, a). The HYBRID DA system has made immense 

developments in the TC forecast along with its environment over the Atlantic and Pacific oceans 

than 3DVAR counterpart (Wang 2011; Li et al. 2012; Shen and Min 2015; Xu et al. 2016; Lu et 

al. 2017). In another study by Kutty et al. (2018) has examined the model error impact in the 

HYBRID DA system for the forecast of TCs over the Bay of Bengal (BoB).  

Even though the efficiency of static BEC has been reported in several studies (Rakesh and 

Goswami 2011; Dhanya and Chandrasekar 2016; Routray et al. 2016; Srinivas et al. 2017), 

studies regarding the effect of flow-dependent ensemble covariance in the variational DA 
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framework for forecast of TCs over the North Indian Ocean (NIO) are limited. This study 

investigates the competency of HYBRID flow-dependent ensemble DA system for a new flow 

regime in which similar studies are rare. Since the dynamics of error growth behaves differently 

in diverse flow regimes, the impact of flow-dependent BEC in a data assimilation system might 

exhibit regional variations. In this study, TC forecasts initialized from HYBRID and 3DVAR 

DA systems with flow-evolving ensemble-based BEC using WRF model over BoB, is evaluated 

statistically.  

 

Figure 4.1: Model configuration deployed in this study.
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4.2 Model Description and Configurations  

The model is configured with two domains: the outer domain with 27 km and the inner 

domain with 9 km horizontal grid spacing (Figure 4.1). There are 36 vertical levels for both 

domains. The model simulations use the same set of physical parameterization schemes as 

mentioned in Chapter 3.  

4.3 Experimental design and validation 

All the assimilations are performed in the outer domain of 27 km resolution. The model 

initialization is started with data obtained from the 24 h NCEP GFS model forecasts, and 

initial ensembles are perturbed by taking random perturbations, as mentioned in Chapter 3. 

The initial 75 ensemble members used for conducting the HYBRID experiments are created 

24 hours before the first analysis time to take care of the spin-up error. 

 

 

 

 

 

 

 

Figure 4.2:  Best track of tropical cyclones obtained from JTWC. 
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In this study, eight land falling tropical cyclones that occurred over the BoB are used to 

assess the contribution of flow-evolving error covariance in the 3DVAR DA framework on 

the TC forecast. The selection of the TCs is made based on their varied intensity categories 

along with diverse tracks followed by the TCs before landfall. Figure 4.2 shows the 

observed track of the TCs obtained from the Joint Typhoon Warning Center (JTWC).  It is 

clearly visible that excluding cyclone Nargis, the other TC cases have originated in BoB 

and moves in a usual northwestward direction. Three different experiments are performed 

for each of the TCs and the designs of the experiments are given in Table 1. 

Table1: Design of experiments 

 

 

 

 

 

 

DA experiments are conducted following (Wang 2011) by assimilating GTS based 

observations at every 12 h interval for a 48 h duration prior to the free forecast. The detailed 

information of the TCs along with DA duration is provided in Table 2. Finally, the free 

forecasts initialized from the last DA cycle of all the TCs are continued until landfall. 

Data Assimilation System Weight assigned 

for HYBRID (%) 

OSE name 

𝛽1 𝛽2 

HYBRID 50 50 HYBRID50 

HYBRID 25 75 HYBRID75 

3DVAR Not required 3DVAR 
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This study quantifies the effectiveness of flow-dependent error covariances by computing 

track error concerning simulated TC position and intensity error concerning simulated 

minimum sea level pressure (MSLP) and maximum wind speed (MWSP) with respect to 

the observed best track of JTWC.Further, Tropical Rainfall Measuring Mission (TRMM) 

data is used for validation of rainfall forecast. In addition, the bootstrap resampling method 

is used to make sure the statistical implication of the results by resampling the data 

distribution 10,000 times. 

 

Table2: Details of eight TCs used in this study. Here, ESCS represents Extremely Severe 

Cyclonic Storm, VSCS represents Very Severe Cyclonic Storm, SSCS represents Severe 

Super Cyclonic storm 

 

 

Serial 

No 

Name Duration of 12 hourly data 

assimilation cycles starting from the 

00 UTC of the given date to the next 

48 hour 

Maximum 

sustained 

surface wind 

speed (kt) 

TC 

category 

1 Sidr 

 

11th Nov 2007 

 

115 ESCS 

2 Nargis 

 

29th Apr 2008 

 

90 ESCS 

3 Jal 

 

4th Nov 2010 

 

60 SSCS 

4 Thane 

 

26th Dec 2011 

 

75 VSCS 

5 Phailin 

 

8th Oct 2013 115 ESCS 

6 Lehar 

 

24th Nov 2013 

 

75 VSCS 

7 Hudhud 

 

8th  Oct  2014 

 

100 ESCS 

8 Vardah 8th Dec 2016 70 VSCS 
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4.4 Results and Discussion  

This section evaluates the performance of traditional 3DVAR and HYBRID DA system in 

the simulation of TC over the BoB.  

4.4.1 Skill of the ensemble system 

The relationship between spread and error is examined to understand the probabilistic skill 

of the ensemble members that estimate the flow-dependent background error covariance. 

For a perfect ensemble system, the total spread of ensembles is likely to have the same 

magnitude as forecast uncertainty. Vertical profiles of ensemble spread and root mean 

square error (RMSE), averaged over 8 cases are shown in Figure 4.3.  

 

 

 

 

 

 

 

 

 

Figure 4.3: Ensemble spread (blue) and RMSE (red) at the first analysis cycle for variables 

(a) U-Wind (b) V-Wind 
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The ensemble spread is consistently lower than the RMSE for U-wind and V-wind at all 

the levels. This basically shows that the ensemble system considered in this study is under-

dispersive, which points to the potential suboptimal behavior of the set of ensembles by 

underestimating the error variance. It is well-known that model uncertainties are usually 

not well represented in ensemble-based DA schemes (e.g., Berner et al. 2015). Thus, we 

speculate that the unrepresented model errors might have led to loss of ensemble variance 

and an under-dispersive ensemble system. 

4.4.2 Analysis of TC position and intensity  

The absolute errors of the analysis of track and intensity simulated by the three experiments 

for the eight TCs are shown in Figure 4.4. The results point o that the initial TCs positions 

are considerably improved in the HYBRID experiments' analysis than the 3DVAR 

experiments. The position errors are also relatively less in HYBRID analysis than in 

3DVAR for 7 out of 8 TC cases. However, no apparent benefit is noticeable among the two 

HYBRID experiments in decreasing the initial position error. The experiments with the 

HYBRID DA system have performed better than 3DVAR in analyzing the wind speed in 4 

out 8 TCs. For the rest of the TCs, the errors are more or less similar, excluding one TC. 

Similarly, the MSLP errors are reduced in the HYBRID experiment compared to the 

3DVAR for most cases. 

Figure 4.5 shows the analysis error that is averaged over all the TC cases indicated a 20% 

and 22% reduction in TC position error for HYBRID75 and HYBRID50 simulations, 

respectively, compared to 3DVAR (Figure 4.5). Furthermore, the relative improvements 

compared to 3DVAR for TC MWSP (MSLP) are 15% (9%) and 17% (17%), respectively, 
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for HYBRID50 and HYBRID75 experiments. Overall, the HYBRID method performed 

better than 3DVAR in analyzing both the initial position as well as intensity. However, the 

better performance of HYBRID compared to 3DVAR is more substantial for the initial 

position than intensity. Among the HYBRID experiments, while the HYBRID75 shows 

modest improvement compared to HYBRID50 in analyzing MWSP and MSLP, the 

analyzed TC initial position analysis is better simulated by HYBRID50 than HYBRID75. 

Furthermore, the analysed TC structures from all the experiments are examined for 

comprehending the factors influencing the differences in track position and intensity 

between the DA experiments.  

 

Figure 4.4: Analysis error averaged over all the DA cycles for track (km), maximum wind 

speed (m/s), and minimum sea-level pressure (MSLP) (hPa) from different experiments for 

each Tropical Cyclone cases. 



 
 

66 
 

 

 

 

 

 

 

 

Figure 4.5: The analysis error averaged over all the cyclones and DA cycles for the (a) Initial 

position (b) Maximum wind speed (c) Minimum Sea level pressure. The error bars specify 

5th and 95th percentiles obtained from bootstrap resampling 

4.4.3 Analyzed TC structure  

The average MSLP for the TC cases covering a 150× 150 grid around the center of the TC 

is shown in Figure 4.6. The 3DVAR analysis results in a stronger vortex, which indicates 

higher intensity compared to HYBRID. It is also evident that 3DVAR analyzed a fall in 

pressure <980 hPa, whereas HYBRID experiments illustrated MSLP values >986 hPa. 

Furthermore, the composites of vertical cross-sections of horizontal wind speed overlaid 

with potential temperature simulated by the experiments are shown in Figure 4.7. A warm-

core structure is evident from the figure, which depicts a descending bending of the 

potential temperature contours for all the experiments. However, the downward bending is 

more noteworthy in the 3DVAR experiment than HYBRID, particularly beyond 400 hPa.  
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Figure 4.6: Composite of analyzed MSLP (hPa) around the TC center averaged over all 

latitudes in a 15 0× 150 box for all the TC cases. 

 

 

Figure 4.7: Composite of averaged vertical cross-section covering all latitudes in a 15 0×

 150   box in terms of potential temperature (˚K; contour) and wind speed (shaded).The 

vertical cross-section is taken at the center of each tropical cyclone 
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Furthermore, the magnitude of wind speed on both the sides of the composite TC is larger 

in the 3DVAR experiment than in the HYBRID experiments.  

Overall, the results reveal that 3DVAR analyzed a stronger and warmer TC core compared 

to HYBRID. Among the HYBRID experiments, HYBRID50 analysis depicted a stronger 

TC in terms of horizontal wind speed and potential temperature compared to HYBRID75 

analysis. Though the differences amongst the experiments are observed all through the 

model vertical levels, more significant impacts are visible at lower levels. It could be 

because more observations were assimilated at surface levels than upper levels.  

4.4.4 Track and intensity forecast 

Figure 4.8 shows the average errors in track, MSLP, and MWSP forecasts for different 

experiments. It is observed that the HYBRID experiments outperformed the 3DVAR 

experiment in simulating TC tracks for all the forecast hours (Figure 4.8a). For 3DVAR, 

HYBRID50, and HYBRID75 experiments, the track errors are 325, 182, and 173 km, 

respectively. The smaller error bars from bootstrap resampling in HYBRID results 

compared to 3DVAR also indicated that improvements due to flow-dependent BEC are 

statistically significant. 
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Figure 4.8: Mean errors in forecast of (a) Track position (b) Maximum wind speed (c) 

Minimum sea level pressure during the forecast intervals. The error bars represent 5th and 

95th percentiles obtained by resampling using the bootstrap method. In the top panel (a), 

the number within a bracket shows the number of TCs available at the forecast time for 

validation. 

 

On the contrary to the TC track forecast, HYBRID experiments did not show substantial 

improvement in MWSP prediction, except for some improvement, which has been 

observed during the initial forecast hours, mainly for the HYBRID75 experiment (Figure 

4.8b).  The relative reformation in the forecast of MWSP from HYBRID50 and HYBRID75 

experiments than 3DVAR is 9% and 22%, respectively. However, the MSLP forecast errors 

from individual experiments did not show significant differences among themselves for the 

majority of the forecast intervals (Figure 4.8c). 
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Figure 4.9: The averaged error of forecast in the (a) TC position, (b) Maximum wind speed 

(c) MSLP for each of the experiments during landfall. The averaging is done over the 8 

TCs. The error bars stand for 5th and 95th percentiles calculated from bootstrap resampling 

 

Figure 4.9 shows the forecast errors of position, MWSP, and MSLP at the time of TC 

landfall for 3DVAR, HYBRID50, and HYBRID75 are shown in. The average position error 

at the time of landfall for the 3DVAR experiment is 430 km. In comparison, the errors for 

HYBRID75 and HYBRID50 runs are 219 and 243 km, respectively. Thus, the relative 

improvements in TC position are 49% and 43% for HYBRID75 and HYBRID50 

experiments compared to 3DVAR (Figure 4.9a).On the other hand, the HYBRID 

experiments did not show a notable advantage in intensity forecast over 3DVAR DA at the 

time of landfall(Figure 4.9b,c). However, the uncertainties in 3DVAR are higher than 

HYBRID, as depicted by the large error bars in 3DVAR as shown in Figure 4.9. 

 



 
 

71 
 

4.4.5 Rainfall validation  

The model skill for rainfall forecast is evaluated using ETS and Bias scores. The ETS of 24 

hour accumulated precipitation forecasts from different experiments during the TC landfall 

for individual TCs are shown in Figure 4.10.  

 

Figure 4.10: The ETS for forecasted 24 hours accumulated precipitation prior to the 

landfall of (a) Hudhud (b) Jal (c) Lehar (d) Nargis (e) Phailin (f) Sidr (g) Thane (h) Vardah.  

 

The results signify that the rainfall forecast skill is comparatively higher for those cyclones, 

which pursue a typical northwest ward track compared to those that follow an altered track. 

The skill scores obtained for the HYBRID experiments are elevated compared to 3DVAR 

in most of the cyclone cases, all through the rainfall thresholds. The improvement in the 

precipitation forecasts from HYBRID experiments is partly because of the position 

accuracy in predicting landfall with a flow-dependent error covariance in the DA system. 
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It is also seen that the ETS values somewhat declined with a rise of rainfall threshold 

consistent with previous studies (Duc et al. 2013).  Bias score value less (greater) than 1.0 

indicates the tendency of the model to underestimate (overestimate) the precipitation 

amount. In general, the WRF model overestimated rainfall for almost all the TCs at the 

various rainfall thresholds (Figure not shown). It is found that consistent with the low ETS 

values, the overestimation of rainfall is very high for cyclone Thane. It may be noted here 

that the Thane cyclone followed a non-conventional south-westward track during the 

landfall (Figure 4.2). However, the use of flow-dependent error covariances substantially 

reduces the bias in rainfall forecast for cyclone Thane.  

 

Figure 4.11: The averaged skill scores (a) ETS, (b) Bias score calculated for past 24 hours 

accumulated rainfall forecast from the landfall of TCs. 
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Figure 4.12: The spatial distribution of 24 h accumulated rainfall forecast overlaid with 

MSLP contours for TCs, namely for tropical cyclones Hudhud, Lehar, Jal, and Nargis 
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Figure 4.13: Same as Figure 4.12, but for TCs, namely Phailin, Thane, Sidr, and Vardah. 
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The averaged ETS values calculated over all the TCs showed improved rainfall forecast 

skill of the HYBRID experiments compared to 3DVAR at all the rainfall thresholds. 

Among the HYBRID experiments, the performance of HYBRID50 is better than 

HYBRID75 (Figure 4.11a). The average bias scores also reveal overprediction of rainfall 

over the verification domain in the three experiments, and bias increased with rainfall 

thresholds (Figure 4.11b). Furthermore, the spatial distributions of 24 h accumulated 

rainfall for the TC cases are shown in Figure 4.12 and Figure 4.13. To visualize the cyclone 

locations, the rainfall distribution is overlaid with mean sea level pressure. The HYBRID 

experiments show considerable improvements than 3DVAR in terms of the spatial 

distribution of precipitation. 

4.5 Summary 

In this study, the efficiency of flow-dependent BEC incorporated in a 3DVAR DA system 

is investigated for the forecast of tropical cyclones that occurred over the Bay of Bengal. 

The evaluations are carried out for eight land-falling tropical cyclones with varying ranges 

of intensities using the 3DVAR and ensemble-based HYBRID DA techniques available in 

the WRF DA system. The results from the experiments are inter compared and validated 

against the JTWC best track data and TRMM precipitation data. The TC position and 

intensity analysis from the HYBRID DA system are significantly better than the 3DVAR. 

The HYBIRD75 showed marginal advantages over HYBRID50 regarding a decrease in the 

analysis of TC position and intensity errors. The 3DVAR analysis depicted a prominent 

warm-core and a more vigorous vortex structure than HYBRID50 and HYBRID75 

experiments. The TC structure was slightly weakened in the HYBRID75 experiment 

compared to HYBRID50. The forecasted track and landfall positions are notably better with 
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HYBRID compared to the 3DVAR DA system. However, in contradiction of the track 

prediction, improved performance in the intensity forecast is not noticeable with HYBRID 

DA compared with 3DVAR.The quantitative precipitation forecast during landfall time is 

improved with HYBRID compared 3DVAR DA system in the majority of the TC cases, all 

through the rainfall thresholds. Therefore, it can be inferred from the results that the 

superior rainfall forecasts by the HYBRID DA system compared to 3DVAR is due to the 

improved TC track prediction in the HYBRID simulations.The results of this study 

corroborate with Wang et al. (2013), in general. In the HYBRID experiments, the BEC 

weightings show nominal sensitivity in the analysis and forecast. 
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*Chapter 5 

Assimilation of INSAT-3D Atmospheric Motion Vectors in DA system with and without 

flow-dependent error covariance: Impact evaluation in short range forecasts during 

Indian summer monsoon 

 

5.1 Introduction 

The rainfall over the Indian landmass during the monsoon season is largely due to India's 

surrounding marine regions. However, conventional observations over these regions are scant, 

making it difficult to simulate monsoon systems using the NWP model accurately. In such a 

scenario, the role of the satellite is significant that provides high-resolution global coverage of 

atmospheric data at a regular interval compared to the in-situ measurements. A recent study 

shows that INSAT-3D AMV is found to help understand the intraseasonal monsoon variability 

of ISM (Sankhala et al. 2019). In the current study, the impact of INSAT-3D AMVs in the 

HYBRID and 3DVAR DA system is evaluated for ISM simulations. 

Several studies have revealed the superior performance of the flow-dependent BEC in the 

HYBRID system compared to the static BEC in 3DVAR in assimilating satellite wind data 

effectively (e.g., Zhang et al. 2018; Sawada et al. 2019). However, no such studies have been 

carried out using INSAT-3D AMVs over the Indian monsoon region.The current study attempts 

to enumerate the impact of INSAT-3D AMV assimilation in the HYBRID DA system using the 

WRF model for a month-long period of July 2016. The fundamental goal of this study is to 

understand how similar or different is the impact of INSAT-3D AMV observations in HYBRID 

and 3DVAR DA systems. 
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5.2 Model Description and Configurations  

Here, the WRF model of version 3.8.1 (Skamarock et al. 2008) is used for conducting the model 

simulations over a domain encompassing the monsoon region in and around India, as shown in 

Figure 5.1. The model is configured for a single domain at 27 km resolution with 36 vertical 

levels. The set of parameterization schemes used in this study are the same as mentioned in 

Chapter 3 and the WRF model is initialized by taking initial and boundary conditions from NCEP 

GFS data. 

 

 

Figure 5.1: Model configuration deployed in this study. 
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5.3 Data used for assimilation 

INSAT-3D is a meteorological satellite launched by the Indian Space research organization 

(ISRO) in July 2013. It is placed in the 820 east longitude with the imager and the sounder 

onboard. The imager consists of one visible and five infrared (IR) channels, whereas the sounder 

consists of one visible and 18 IR channels. The details of the channels for both imager and 

sounder are given in Table 5.1. 

Table 5.1: Details of INSAT-3D imager and sounder channels  

IMAGER CHANNELS 

Channels Resolution (km) Wavelength (µm) 

Visible 1 0.55 - 0.75  

Short-wave IR (SWIR) 1 1.55 - 1.70  

Mid-wave IR (MIR) 4 3.80 - 4.00 

Water vapor (WV) 8 6.50 - 7.10 

Thermal IR 1 (TIR-1) 4 10.3 - 11.3 

Thermal IR 2 (TIR-2) 4 11.5 - 12.5 µm 

SOUNDER CHANNELS 

Channels Resolution (km) Wavelength (µm) 

Visible 10 0.695 

Long-wave IR – 1  10 14.71 

Long-wave IR – 2 10 14.37 

Long-wave IR – 3 10 14.08 

Long-wave IR – 4 10 13.64 

Long-wave IR – 5 10 13.37 

Long-wave IR – 6 10 12.66 

Long-wave IR – 7 10 12.02 

Mid-wave IR – 1 10 11.03 

Mid-wave IR – 2 10 9.71 

Mid-wave IR – 3 10 7.43 

Mid-wave IR – 4 10 7.02 

Mid-wave IR – 5 10 6.51 

Short-wave IR – 1 10 4.57 

Short-wave IR – 2 10 4.52 

Short-wave IR – 3 10 4.45 

Short-wave IR – 4 10 4.13 

Short-wave IR – 5 10 3.98 

Short-wave IR – 6 10 3.74 
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The AMVs are determined using three successive INSAT-3D images at 30-minutes temporal 

gap by following the steps as mentioned below (Sankhala et al. 2020): 

1) Image registration, thresholding, filtering, 

2) Features/tracer selection and tracking, 

3) Quality control, 

4) Height assignment. 

In this study, AMVs determined from low-level visible and MIR channels range from 600 hPa 

to 950 hPa, and upper-level WV channel data extended from 100 to 500 hPa are used. 

Conventional in situ observations and satellite-derived wind observations available from the 

GTS are also used for assimilation. AMV data is obtained from https://www.mosdac.gov.in/ for 

this study. 

5.4 Experimental design and validation 

 The impact assessment of INSAT-3D AMVs in two DA systems, 3DVAR and HYBRID, is 

done by conducting four Observation System Experiments (OSEs), the details of which are 

given in Table 5.2. The DA experiments are performed at cyclic mode by assimilating the 

observations at every 12 h gap initiated from 0000 UTC 01 July 2016 to 0000 UTC 30 July 

2016, and finally, a 48 h free forecast is instigated from each 0000 and 1200 UTC DA analysis 

for July 2016. It is to mention here that, in the HYBRID experiment equal weight has been 

assigned to the static and flow dependent error covariances.  

 

https://www.mosdac.gov.in/
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Table 5.2: Design of Experiments 

 

 

 

 

 

Here, 50 ensemble members are generated by adding random perturbations obtained from WRF 

3DVAR. In order to avoid the spin-up issues that arise in the NWP model, the ensembles are 

initialized at 0000UTC 30 June 2016, 24 h prior to the first analysis time. The ensemble 

members are then integrated for the next 24 h and subsequently updated using ETKF. All the 

DA experiments using 3DVAR and HYBRID are initialized at 0000UTC 1 July 2016 using the 

ensemble mean. The observation error statistics for INSAT-3D AMVs have been adapted from 

Kumar et al. (2017), while the errors for GTS data are taken from NCEP statistics. 

In this study, IMD gridded rainfall is used for rainfall validation, ERA-interim data are used 

for spatial verification of model-simulated wind and thermodynamic parameters at different 

pressure levels. For validation over oceanic region, wind data are obtained from the Advanced 

Scaterometer (ASCAT) onboard the European meteorological operational satellite MetOp-A at 

25 km resolution. More details about ASCAT data can be found in 

http://apdrc.soest.hawaii.edu/data/data.php.  

Data Assimilation System Observations OSE name 

3DVAR GTS 3DVAR 

3DVAR GTS+INSAT-3D 3DVAR_AMV 

HYBRID GTS HYBRID 

HYBRID GTS+INSAT-3D HYBRID_AMV 

http://apdrc.soest.hawaii.edu/data/data.php
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The statistical evaluations are performed using different verification metrics; namely, mean 

error (ME) or Bias, root mean square error (RMSE), and improvement parameter (η). In 

addition, Bias Score (BS) and Equitable Threat Score are used for rainfall forecast validation. 

5.5 Results and Discussion 

This section evaluates the impact of INSAT-3D AMVs in the 3DVAR and HYBRID DA 

system in the short-range forecast during the Indian summer monsoon (ISM). 

5.5.1 Analysis and forecast profile verification    

Figure 5.2 shows the root mean square fit of the monthly averaged vertical profile of the 

analysis to the observed zonal (U Wind) and meridional (V Wind) winds, temperature, and 

water vapor mixing (Q Vapour) ratio obtained from radiosonde observations available with the 

NCEP data. Averaging of the analysis field is done over the domain as shown in Figure 5.1 and 

the 60 DA cycles. The results show that the HYBRID fits more closely to the observations of 

U Wind and V Wind components than HYBRID_AMV and the 3DVAR experiments. Whereas, 

for temperature and Q Vapour analysis field, both the 3DVAR experiments show almost similar 

fit, but slightly better than HYBRID experiments.  
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Figure 5.2: Vertical profiles of root mean square fit of analysis to radiosonde observations 

for different prognostic variables; analyzed by 3DVAR (black line),3DVAR_AMV (blue 

line), HYBRID (green line) and HYBRID_AMV(red line) experiments. 

 

 

It is also important to mention here that the analysis fit to observation does not represent the 

analysis error. As the observed radiosonde data are already assimilated to the analysis, the root 

mean square fit only shows how close the analysis fields are to the observations.  A study by 
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Wang (2008) reveals that the analysis fit to the observations depends on the various factor of 

the BEC setting in the DA system, such as background error variance, larger correlation length 

scale. Another study by Zhang et al. (2011) demonstrates that the better fit of analysis to 

observation does not necessarily result in a better forecast. 

 

 

Figure 5.3: Vertical profiles of analysis increment (Analysis-Background) for three different 

prognostic variables; analyzed by 3DVAR (black line), 3DVAR_AMV (blue line), HYBRID 

(green line) and HYBRID_AMV (red line) experiments. 

 

Figure 5.3 shows the vertical profile of analysis increment at theradiosonde locations of the 

NCEP data, where the impact of the two DA systems in the analysis increment is quite visible. 

Both the  
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Figure 5.4: Vertical profiles of root mean square errors in 24 h forecasts from different 

experiments compared to radiosonde observations for different variables; 3DVAR (black 

line), 3DVAR_AMV (blue line), HYBRID (green line) and HYBRID_AMV (red line). 

 

HYBRID experiments show significant upper-level zonal wind increment from 400 to 200 hPa. 

Although no remarkable impact of AMV assimilation is observed in any of the DA systems for 

zonal wind, the AMV influence is seen in the 3DVAR DA experiment for meridional wind 
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analysis increment from 800 to 400 hPa. The result for the temperature field shows a negative 

increment for all the experiments from 1000 hPa to 500 hPa, with HYBRID experiments having 

a higher magnitude of increment. Above 500 hPa, HYBRID_AMV results in a larger positive 

increment compared to the rest of the experiments. 

Furthermore, the vertical profile of the monthly averaged 24 h forecast of the four variables is 

compared with radiosonde observations and shown in Figure 5.4, where the forecasts are 

initiated from the analysis at 0000 UTC of each day July 2016. The results specify that both 

the HYBRID experiments are more accurate than the 3DVAR experiments. Wind forecasting 

primarily reflects an improvement in the upper troposphere level, whereas the improvement in 

temperature forecasting in the HYBRID experiments is significantly more prominent at 

atmospheric levels ranging from 800 to 200 hPa than in the 3DVAR experiments. AMV shows 

no significant impact on HYBRID, while a moderate impact of AMV is evident in the 3DVAR 

DA system. However, it is to be noted that the forecast validations are performed regarding 

radiosonde observations that are not present over oceans. Therefore, it is not feasible to remark 

on the utility of the INSAT-3D AMVs from this result when verified over limited radiosonde 

observations. 

5.5.2 Spatial forecast verification  

The spatial representation of three atmospheric fields, including wind at 850 hPa level, 

tropospheric temperature (TT) averaged over 700 to 200 hPa level, and relative humidity (RH) 

from ERA-interim reanalysis data for July 2016 is shown in Figure 5.5. a,e,i. The spatial 

distribution of the improvement parameters (η) for these variables is shown in Figure 5.5b-d,f-

h,j-l. The improvement parameters' positive (negative) values reflect percentage improvement 
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(degradation) in the model forecast compared to the 3DVAR experiment. HYBRID 

experiments show higher positive η values for wind and TT variables, which indicates the 

positive impact of flow-dependent error covariances in HYBRID. In addition, AMV DA in 

HYBRID depicts significant improvement compared to the rest of the experiments with 77% 

and 70% positive η values for wind and TT forecast, respectively. Although the improvement 

percentage for the moisture variable is not very remarkable for any of the experiments 

compared to 3DVAR, AMV DA demonstrates marginal improvement in both 3DVAR and 

HYBRID DA systems.  

A dipole-like pattern with positive and negative impact is observed over the western Arabian 

Sea (AS) due to the presence of Low Level Jet (LLJ) in Figure 5.5 b-d. LLJ is also known as 

Findlater Jet (Findlater 1978) is an important lower level circulation feature of the Indian 

summer monsoon, which carries extensive moisture from the Indian Ocean producing rainfall 

over the Indian subcontinent. Therefore, the improvement in the forecast of LLJ is expected to 

improve the rainfall over Indian landmass.  
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Figure 5.5: a) Monthly averaged wind (m/s) at 850 hPa level, e) tropospheric temperature 

(TT) (𝐶𝑜) averaged over 200 hPa to 700 hPa level,i) relative humidity (RH) (%) at 850 hPa 

level from ERA interim and spatial distribution of improvement parameter (η ) in 24 h 

forecast of wind (b-d), TT (f-h) and RH (j-l) from 3DVAR_AMV, HYBRID and 

HYBRID_AMV system with respect to 3DVAR system. 

 

Apart from wind, a substantial improvement of 70 % positive η values for the TT variable is 

observed in the HYBRID_AMV experiment (Figure 5.5h). The improvement percentage for 

RH is not very significant compared to wind and TT. However, marginal improvement due to 

AMV DA is observed both in 3DVAR and HYBRID.  
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Figure 5.6: RMSE in 24 h (a,b) forecast and 48 h (c,d) forecast  of U(m/s) and V(m/s) at 850 

hPa calculated over Arabian Sea from assimilation experiments with respect to ERA interim 

data for 3DVAR, 3DVAR_AMV, HYBRID, HYBRID_AMV 

 

Figure 5.6 shows the time series of area-averaged RMSE of zonal and meridional wind over 

the AS, respectively, for both 24 h and 48 h forecasts. The verification is confined to AS to 

understand the impact of experiments on LLJ. It is evident from Figure 6a and 6c that the 

assimilation of INSAT-3D AMV observations has significantly reduced the 24 h and 48 h 

forecasts errors for zonal winds in HYBRID_AMV experiment as compared to other 

experiments, and the impact of assimilation increases with increase in time that is indicative of 

the cumulative impact of assimilation. Though the HYBRID experiment does not significantly 

improve 24 h forecasts, the reduction in forecast errors is evident in the 48 h forecast. In the 
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3DVAR DA system, the positive impact of INSAT3D-AMV observations is noticeable during 

the later DA cycling hours.  

 

Figure 5.7: RMSE in 24 h forecast (a,b) and 48 h forecast (c,d) of 10m-U(m/s) and 10m-

V(m/s) calculated over Arabian Sea from assimilation experiments with respect to ASCAT 

data for 3DVAR, 3DVAR_AMV, HYBRID, HYBRID_AMV 

 

To explore further on the impact of observations closer to the surface, the 10-m surface wind 

forecast is evaluated with respect to ASCAT wind observations over the AS region. Figure 

5.7shows the time series plot of monthly averaged RMSE of 24 h and 48 h near surface zonal 

and meridional wind forecast over the AS. Similar to the results obtained in ERA-interim 

validation, the assimilation of AMV observations has produced substantial improvements in 

the wind forecasts in both 3DVAR and HYBRID DA systems, in general. However, the 

3DVAR_AMV experiment depicts a higher reduction in forecast errors than the other 
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experiments for zonal wind. The improvement in meridional wind component is more 

pronounced in HYBRID_AMV run as compared to other experiments for both 24 h and 48 h 

forecasts. 

5.5.3 Rainfall forecast verification  

Figure 5.8 shows the mean error (Bias) of the model simulated 24 h rainfall forecast with 

respect to IMD gridded rainfall. The HYBRID experiments show lower Bias in precipitation 

as compared to the 3DVAR run. It can be seen that the wet bias in Central India (CI) and dry 

bias to the south of CI have shown considerable reduction in HYBRID experiments. The AMV 

experiments do not depict any significant change in Bias when compared to its corresponding 

control DA experiments. Further, the difference of 3DVAR forecasted rainfall from 

3DVAR_AMV experiments shows no significant difference zone. The difference of 3DVAR 

from HYBRID, HYBRID_AMV experiments shows a considerable difference zone over the 

same region where HYBID has improved wet bias and dry bias compared to 3DVAR. 

HYBRID_AMV also indicates a significant difference over India's southern CI and 

northeastern region for both 24 h and 48 h forecast (Figure not shown). 

To quantitatively evaluate the precipitation forecasts, skill scores such as ETS and Bias scores 

are calculated for various experiments. It is to be noted that the skill scores are calculated in two 

phases of experiments: Phase-1 (2 – 16 July 2016) and Phase-2 (17 – 31 July 2016), which is 

represented in Figure 9. The skill of 24 h precipitation forecast for HYBRID experiments is 

found to be higher than 3DVAR experiments in Phase-2towards higher rainfall thresholds, which 

is evident from ETS values (Figure 5.9c). The HYBRID_AMV experiment shows improved 

skills for precipitation forecast for higher rainfall thresholds as compared to the 
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3DVAR_AMVexperiment in Phase-2. Bias score indicates that all the experiments in Phase-1 

and Phase-2 show overestimation of rainfall, and the results are more pronounced in 3DVAR 

experiments in Phase-2. 

 

Figure 5.8: BIAS of monthly averaged (July) 24 h forecasted rainfall (mm/day) with respect to 

IMD gridded rainfall for (a) 3DVAR (b) 3DVAR_AMV (c) HYBRID and (d) HYBRID_AMV 
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Figure 5.9: (a) ETS and (b) Bias scores valid from 2nd July 2016 to 16th July 2016 (first phase) 

and the (c) ETS and (d) Bias scores valid from 17th July 2016 to 31st July 2016 (second phase) 

for different rainfall thresholds computed over the Indian land mass averaged over the 24 hour 

forecasts 

Similarly, 48 h rainfall forecast results do not show substantial improvement in both the 

HYBRID experiment in Phase-1 (Figure 5.10a). However, in Phase-2, the skill scores indicate 

modest improvements in rainfall forecast in moderate-high rainfall threshold for HYBRID 

experiment compared to that of  3DVAR (Figure 5.10c).  Furthermore, the assimilation of 

AMV observations does not significantly improve the precipitation forecast in both 3DVAR 

and HYBRID experiments.  
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Figure 5.10: Same as Figure 5.9, but for the 48 hour forecasts 
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5.6 Summary 

In this study, the impact of the assimilation of INSAT-3D AMV in the two DA systems for 

short-range forecast during the Indian summer monsoon season is evaluated. The DA systems 

used in this study include 3DVAR and HYBRID ETKF-3DVAR available in the WRF 

modeling system. The DA cycling experiments are performed for the ~4 week period of July 

2016and a 48 h model forecast is generated from each analysis.  

The results indicate that 3DVAR analysis fits more closely with the observations than HYBRID 

analysis. The domain-wide verification over the Indian landmass with respect to radiosonde 

observations discloses that forecasts in HYBRID experiments are more accurate than the 

3DVAR experiments, in general. The wind forecasts show more improvements near the upper 

troposphere for the HYBRID run, with the slight impact of INSAT-3D AMV observations. In 

comparison with the forecasts from HYBRID analysis, the impact of INSAT-3D AMV 

observations is more pronounced in the 3DVAR DA system for wind forecasts over land. The 

spatial distribution depicts the positive impacts of INSAT-3D AMV observations across the 

whole domain for both HYBRID and 3DVAR experiments. The AMV observations show a 

superior relative impact in HYBRID than in 3DVAR, and the relative improvement in 

comparison to 3DVAR is 77% for wind and 71 % for tropospheric temperature. Time evolution 

of forecast errors with respect to ERA-Interim analysis in the zonal wind over the Arabian Sea 

indicates a larger growth rate in the 3DVAR experiment in comparison to the HYBRID 

experiment, while the assimilation of AMV observations considerably reduces forecast errors 

in both DA systems. The HYBRID_AMV experiments show improvement in the meridional 

component of near-surface winds when validated against ASCAT observations. The skill scores 
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for quantitative assessment of precipitation forecast specify a modest improvement in rainfall 

for the HYBRID run only. Incorporating the AMVs in the DA process does not considerably 

enhance the skill of 24 h and 48 h rainfall forecast.  

The present study attempts to quantify the impact of INSAT-3D AMV observation in the 

3DVAR and the hybrid ETKF-3DVAR DA system. The HYBRID DA system incorporates 

flow-dependent ensemble BEC that generates optimal analysis through increments consistent 

with the background flow and responds adaptively to the change in the observing system.  

Hence, it is expected that the impact of the observing system may vary depending on the DA 

system used. As a matter of fact, the results from the study indicate that the impact of INSAT-

3D AMV observations varies in 3DVAR and HYBRID DA systems. Furthermore, the impact 

of the new observing system shows more value to the advanced DA systems such as HYBRID 

than the traditional 3DVAR approach. However, the ensemble system needs to be correctly 

configured for the DA system to perform optimally. 
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formed over the Bay of Bengal. Modeling Earth Systems and Environment, 1-11. 

 

*Chapter 6 

Assimilation of INSAT-3D Atmospheric Motion Vectors in data assimilation system with 

and without flow-dependent error covariance: Impact evaluation in short range forecasts 

of tropical cyclones over Bay of Bengal 

 

6.1 Introduction  

The performance of data assimilation methods is controlled by the good quality observations 

spread over the study area. For tropical cyclone, which originates and spends most of their 

duration over the ocean, the unavailability of conventional data poses difficulties in its accurate 

prediction. However, meteorological satellites with fairly good coverage over the ocean serve as 

a valuable source of atmospheric observations for assimilation. Among the different satellite 

products, the wind vector is shown to impact the forecast of TCs significantly. Several former 

studies have revealed the positive impact of the AMV observations in the  TC forecast (Soden et 

al. 2001; Deb et al. 2011; Lim et al. 2019; Lewis et al. 2020). Studies have shown assimilation 

of AMV has significantly improved the initial position errors along with the track forecasts of 

cyclones formed over the BoB using the 3DVAR DA system(e.g., Deb et al. 2010; Greeshma et 

al. 2015). The positive influence of HYBRID DA in improving TC prediction has also been 

reported in several research articles (Hamill et al. 2011; Wang 2011; Shen et al. 2016; Lu et al. 

2017; Kutty et al. 2018; Malakar et al. 2020a). However, studies with AMV DA in the HYBRID 

DA system are rare for TC simulation over the North Indian Ocean (NIO). The present work 

examines the impact of INSAT-3D AMVs in 3DVAR and the HYBRID DA systems with the 

major objective to understand how different or similar is the influence of INSAT-3D AMV when
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assimilated by 3DVAR compared HYBRID DA system for five TCs over the BoB using WRF 

model.  

6.2 Model Description and Configurations  

The WRF-ARW model version 3.9.1 (Skamarock et al. 2008) is used for simulation in this study. 

The model configuration (Figure 4.1) and parameterization schemes are same as mentioned in 

Chapter 4. The model is initialized with NCEP GFS analysis data. A recent article by Malakar 

et al. (2020b) has reported that GFS analysis is most suitable for the TC evolution study over the 

NIO. 

6.3 Data used for assimilation 

For the assimilation experiments, GTS-based conventional in-situ observations and satellite 

winds available from GTS and INSAT-3D are used in this study. A screenshot of the data spread 

over the study area is shown in Figure 6.1. Here, GTS-AMV represents atmospheric motion 

vectors obtained from NCEP GTS data. The sources of AMV data is given in Table 6.1. Detailed 

information about the AMV types can be found in https://rda.ucar.edu/datasets/ds735.0/. 

 

 

 

 

 

Figure 6.1: A screenshot that shows the spreading of atmospheric motion vector obtained from 

(a) GTS and (b) both GTS and INSAT-3D available at 00 UTC 10 October 2014 
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Table 6.1: Observation platform and AMV types of NCEP GTS data 

 

 

                  

 

 

 

It is clearly visible that INSAT-3D AMV, together with the AMV observations available from 

the GTS, depicts a broader spatial coverage over the computational domain. 

6.4 Experimental design and validation 

Based on the INSAT-3D data availability, five TCs with varying intensity centered over the BoB 

over a period of 2014 to 2020 are considered. The details pertaining to the selected TCs are given 

in Table 6.1 and best track obtained from IMD is represented in Figure 6.2. The impact of INSAT-

3D AMV in 3DVAR and HYBRID DA systems is evaluated by conducting four different 

observation system experiments, namely 3DVAR, 3DVAR-AMV, HYBRID, and HYBRID-

AMV. While 3DVAR-AMVexperiment assimilates INSAT-3D AMV along with GTS 

observations, the 3DVAR run incorporates GTS observations alone using the 3DVAR DA 

assimilation approach. Similarly, HYBRID-AMV and HYBRID experiments are performed with 

and without INSAT-3D AMV observations in the HYBRID DA system, respectively. 

Assimilation is performed only in the parent domain with 27 km resolution, and the free forecasts 

SATELLITE AMV TYPE 

GOES SWIR, LWIR, WV, Visible 

INSAT-3D LWIR, WV, Visible 

MTSAT/JMA IR, WV, Visible 

METEOSAT/EUMETSAT IR, WV, Visible 

AQUA/TERRA MODIS IR, WV 

NOAA-series/METOP-series  LWIR 

SNPP/NOAA-20  LWIR 
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are achieved until the TC made landfall. It is to mention here that, in the HYBRID experiment 

equal weight has been assigned to the static and flow dependent error covariances. 

Table 6.1: Details of tropical cyclones used in this study. SCS stands for Severe Cyclonic Storm. 

Other details are same as Table 4.2 

 

 

 

 

Figure 6.2: IMD observed based best track of the five tropical cyclones  

Serial 

No 

Name Duration of 12 hourly data 

assimilation cycles starting from 

the 00 UTC of the given date to 

the next 48 hour 

Maximum 

sustained 

surface wind 

speed (kt) 

TC category 

1 Hudhud 8th Oct 2014 

 

100 ESCS 

2 Vardah 

 

8th Dec 2016 70 VSCS 

3 Titli 8th Oct 2018  80 VSCS 

4 Bulbul 

 

6th Nov 2019  75 VSCS 

5 Amphan 

 

17th May 2020  135 SCS 
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6.5 Result and Discussion 

The evaluations of the impact of the INSAT-3D AMV on HYBRID and 3DVAR DA system are 

achieved by comparing the track, intensity and time of landfall of TCs formed over BoB. 

Bootstrap resampling method is employed to evaluate the statistical significance of the result. 

Model simulated rainfall forecast during near landfall time is compared with 

Global Precipitation Measurement mission (GPM) data and equitable threat score is used for the 

validation of precipitation.  

6.5.1 Analysis track and intensity 

Figure 6.3 shows the absolute error in analyzed track position, maximum sustained wind error, 

and minimum sea level pressure error of the TC. The results show that the errors in the HYBRID 

experiment are lower than rest of the experiments both in terms of initial track and intensity. The 

intensity in respect of MSWS is improved significantly in HYBRID experiments for three 

cyclones, namely Hudhud, Vardah, and Amphan. The average errors from the analysis of 

3DVAR-AMV, HYBRID, HYBRID-AMV shows relative improvement in the initial track by 

4%, 18.85% and 19.19%, respectively, while that for intensity in terms of MSLP (MSWS) is 

8.69% (5.77%), 30.35%(23.40%) and 31.60% (16.98%)respectively in comparison with 3DVAR 

experiment. The 3DVAR-AMV shows nominal improvements over 3DVAR, whereas the impact 

of AMV observations is not noteworthy in HYBRID DA experiments.  

The comparative improvements found in HYBRID analysis than 3DVAR are further evaluated 

by assessing the vertical structure of the TCs as shown in Figure 6.4. Here, the composite of 

vertical cross-section represents the strength of tropical cyclones in respect of wind speed 
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(shaded) overlaid with potential temperature. All the experiments could simulate the core of the 

TCs, whereas 3DVAR experiments represent a vigorous cyclonic core compared to HYBRID 

with strong wind speed on both sides of the cyclonic center. AMV DA shows no significant 

impact on 3DVAR. On the contrary, the impact of AMV DA is noticeable in HYBRID, where 

the simulated strength of the cyclones is comparatively weak than in other experiments, mainly 

above 500 hPa. The overlying contours of potential temperature depict a prominent downward 

curving at the center of the TCs for all the experiments representing a warm core. However, 

HYBRID-AMV analysis shows a shallow bending compared to the rest of the experiments, 

mostly above 300 hPa. The overall results point toward that the analysis of cyclonic core 

simulated by 3DVAR is much stronger than the HYBRID simulations. At the same time, among 

the HYBRID experiments, HYBRID-AMV analysis depicts a weak cyclonic core.  

 

 

Figure 6.3: The error in analysis averaged over all the cyclones and DA cycles for the (a) Initial 

position (km) (b) Minimum Sea level pressure (hPa) (c) Maximum wind speed (m/s). The error 

bars specify 5th and 95th percentiles obtained from bootstrap resampling 
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6.5.2 Forecast track and intensity  

Figure 6.5 represents the evolution of track forecast error with time for each TC considered in 

this study. The HYBRID experiment shows improvements in track forecast when compared to 

the 3DVAR experiment, and assimilation of INSAT-3D AMV observation depicts a positive 

impact on both the DA systems. However, the influence of INSAT-3D AMV observations is 

more substantial in 3DVAR than in HYBRID experiments. Previous studies by Kelly et al. 

(2007) have documented that the advanced DA systems with flow-dependent BEC are more 

efficient in propagating information from data rich to data void region. The apparent larger 

impact of INSAT-3D AMV in 3DVAR could be because of large data void regions in the absence 

of INSAT-3D AMV observations compared to the HYBRID DA system.  

 

 

Figure 6.4: Composite of vertical cross-section covering all latitudes in a 15 0× 150  boxin terms 

of potential temperature (˚K; contour) and wind speed (shaded). The vertical cross-section is 

taken at the center of each tropical cyclone 

 

Furthermore, the time evolution of absolute error in model simulated MSWS at the 10-m level 

for individual cyclones is shown in Figure 6.6. Although the results do not reveal any significant 
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improvements in the intensity forecast by assimilating the INSAT-3D AMV observations, the 

HYBRID-AMV experiment indicates improvements in the intensity prediction near landfall. 

6.5.3 Landfall 

Figure 6.7 demonstrates landfall position and intensity forecast error averaged over all TC cases. 

The average landfall position error is 260, 180, 160, and 93 km for 3DVAR, 3DVAR-AMV, 

HYBRID, and HYBRID-AMV. The results clearly establish that incorporating INSAT3D AMV 

observations in the HYBRID DA system is more effective than 3DVAR. Landfall position is one 

of the critical predicted factor s from the disaster mitigation point of view, and the assimilation 

of INSAT-AMV observation is seen to be critical for DA systems. The average MSWS error 

during landfall measured for all cyclones shows better HYBRID-AMV performance than other 

experiments. Further, the smaller error bars in HYBRID-AMV testify to the statistical 

significance of the end result (Figure 6.7c). 

 

Figure 6.5: Track Forecast error for individual TCs from each experiments. The different colors 

represent different experiments: Green line (HYBRID-AMV), Red line (HYBRID), Blue line 

(3DVAR-AMV), Black line (3DVAR) 
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Figure 6.6: Forecast of intensity error in respect of maximum sustained wind speed (MSWS) 

for individual TCs from different experiments.  

 

Figure 6.7: Same as Figure 6.4, but for averaged forecast error during landfall. 
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6.5.4 Rainfall Forecast  

Figure 6.9 shows comparison of the 24 hour accumulated rainfall distribution overlaid by MSLP 

contours during the landfall of the TCs along with the GPM observations. All the simulations 

have represented the rainfall distribution around the center of TC fairly well. However, the inland 

rainfall distribution is vastly underestimated by the model simulations, which is more evident for 

TCs such as Titli and Amphan. For TC Amphan, intensity of rainfall around the TC core is 

underpredicted in all the experiments. The skill scores for the rainfall specify that HYBRID-

AMV has a superior skill for rainfall forecast than other experiments, in general (Figure 6.10). 

The ETS values of 3DVAR-AMV and HYBRID-AMV simulations are substantially higher for 

Hudhud, and Vardah compared to its corresponding control experiments. 

6.5 Summary 

In this study, the performance of 3DVAR and HYBRID DA techniques with INSAT-3D 

Atmospheric Motion Vectors are compared for the forecasts of landfalling TCs originated over 

the BoB using the WRF model. The track and intensity of TCs are evaluated by comparing with 

IMD best track data and the quantitative precipitation forecasts at the time of landfall are 

validated with respect to GPM rainfall data. The results confirm that the initial position and 

intensity error of TCs are lower in HYBRID compared to 3DVAR analysis. However, 

assimilation of INSAT-3D AMV observations has revealed only slight improvements in the 

initial position and intensity using both the DA systems.On the contrary, the assimilation of 

AMV observations has significantly improved the HYBRID DA system's track forecast 

compared to 3DVAR, in general. The average position error at the moment of landfall is 260, 

180, 160, and 93 km for 3DVAR, 3DVAR-AMV, HYBRID, and HYBRID-AMV runs, 

9

8
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respectively. The relative improvements in intensity compared to 3DVAR for TC are 18%, 13% 

and 36% respectively, for 3DVAR-AMV, HYBRID, and HYBRID-AMV. 

 

Figure6.8:Observed spatial distribution of 24 hour rainfall during landfall of TC (a) Hudhud, 
(f) Vardah, (k) Titli, (p) Bulbul, (u) Amphan and comparison with rainfall forecast from 
(b,g,l,q,v) 3DVAR, (c,h,m,r,w) 3DVAR-AMV, (d,i,n,s,x) HYBRID and (e,j,o,t,y) HYBRID-
AMV experiments for the respective TCs. Blue contours represent model simulated sea level 
pressure (SLP) 
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Figure 6.9: The equitable threat scores for 24 hours total rainfall forecasts at the time of landfall 

of TCs (a) Hudhud (b) Vardah (c) Titli (d) Bulbul (e) Amphan 

 

Assimilation of INSAT-3D AMV observations has improved the forecast of TC landfall 

locations in all the experiments with more improvement using the HYBRID DA system. Rainfall 

forecast is significantly improved in both the data assimilation system by incorporating the 

INSAT-3D AMV data. In addition, the HYBRID-AMV experiment show improved skill scores 

for precipitation over all the other experiments, in general. Overall, assimilation of INSAT-3D 

AMV observations in the HYBRID DA system reduces the relative errors in landfall position 

significantly and with minor improvement in the intensity. 
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Chapter 7 

Impact of flow-dependent error covariance in 3DVAR DA System in convection 

permitting resolution: Indirect assimilation of Doppler Weather Radar Reflectivity in the 

forecasts of Thunderstorms over North-eastern Region of India 

 

7.1 Introduction  

Numerical Weather Prediction models are used globally for early warning of catastrophic 

weather events such as Flood, Thunderstorm, Lightning, Tropical Cyclone etc. Though we have 

made remarkable improvements in the forecast of weather systems during the last decade, the 

prediction of severe convective systems such as thunderstorms, extreme localized rainfall, and 

lightning are yet very challenging. One potential reason for frequent failure of localized 

convection forecast is the lack high resolution of observation over a region that would represent 

the small scale features of a convective system. The observations from Doppler Weather Radar 

(DWR) play a significant role in the forecast of convective processes due to its high 

spatiotemporal resolution. In the last decade, several studies successfully assimilated high 

resolution DWR data in NWP models (He et al. 2020; Lai et al. 2020; Li et al. 2018; Li et al. 

2013; Prasad et al. 2014; Routray et al. 2013; Srivastava et al. 2011). Reflectivity and radial 

velocity are two variables from DWR that are being ingested to NWP model. These parameters 

have substantial importance as reflectivity provides information on the hydrometeors whereas 

radial velocity holds information on convective motions of atmosphere.  

Although DWR is an essential data source for NWP models, radar reflectivity gives only 

information about precipitation but no direct information about water vapor, temperature, and 

other fields. Therefore, in a comparatively dry environment where no prior instability 
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information is available, the direct assimilation of radar reflectance cannot represent convection 

initiation. Therefore, Wang et al. (2013a) introduced a new indirect method of assimilation of 

radar data that uses derived moisture products from reflectivity instead of direct reflectivity.  

This study investigates the impact of assimilation of water vapor and rainwater derived from 

radar reflectivity in 3DVAR and HYBRID DA system for simulation of thunderstorms over the 

north-eastern region (NER) of India 

7.2 Model Description and Configurations 

The WRF model is configured with a single domain at 3 km horizontal grid spacing over the 

NER of India (Prasad et al. 2014) with 360 x 360 horizontal grids and 36 vertical levels. The 

domain which includes the name of the north-eastern states frequently affected by the 

thunderstorms, is shown in Figure 7.1. The initial and boundary conditions are interpolated from 

the NCEP GFS analysis and forecast at 0.250× 0.250 gridded resolution. The various 

parameterization schemes used for the simulations are the same as those mentioned in Chapter 

3.  

7.3 Data used for Assimilation 

The DWR located near Cherrapunji, Meghalaya is S-band radar that provides data through a 

volume scans. The radar completes one volume scan in 11 minutes, comprising of 360 degree 

azimuth scan for 10 elevation angles ranging from 0.5 to 21 degrees. The DWR covers a distance 

of 250 km (up to 500 km only for Z) with spatial resolution of 300 m. The initial quality check 

is done by the software developed at Indian Space Research Organization, India. To preprocess 

the data further, a python module has been developed. Since the resolution of the DWR data is 

very high as compared to the model domain, the quality checked radar data in azimuth-range 
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format is transformed to the Cartesian grid with the map projection same as the model using the 

python module. Using the same python module data has been quality checked to discard data 

beyond the limit 10–55dBz. Additionally, FORTRAN codes are developed to convert the 

processed data to WRFDA compatible format for data assimilation. Along with the observations 

from DWR, conventional observations are also used for assimilation in this study. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Model domain (D01) used in this study. Red lines represent the state boundaries and 

black fonts represent the state names of north-eastern region of India that are affected during the 

thunderstorm events. Background is the terrain height in meter. 
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7.3.1 Assimilation of retrieved rainwater and water vapor from radar reflectivity 

To assimilate retrieved rainwater and water vapor, two additional terms are added into Eq. (2.16) 

following Wang et al. (2013): 

                          𝐽𝑞𝑟 =
1

2
(qr − qr

b)
T

Bqr
−1(qr − qr

b) +
1

2
(qr − qr

o)TRqr
−1(qr − qr

o) (7.1) 

and 

                                                 𝐽𝑞𝑣 =
1

2
(qv − qv

o)TRqv
−1(qv − qv

o) (7.2) 

where  qr , qv stands for rainwater and water vapor of the atmospheric state ;  qr
o, qv

o stands for 

rainwater and water vapor from radar reflectivity; Rqr and Rqv are the observation error variance 

of rainwater and water vapor;  qr
b is the background rainwater and Bqr is the background error 

matrix.  

Given the radar reflectivity, rain water can be derived from the following equation (7.3): 

                                                   𝑍 = 𝑐1 + 𝑐2𝑙𝑜𝑔10(𝜌𝑞𝑟) (7.3) 

where Z is the reflectivity (dbZ), 𝜌 air density (kg m−3) and 𝑞𝑟 is the rain water mixing ratio 

(g kg−1);  𝑐1 and 𝑐2 are constants with values 43.1 and 17.5, respectively, following Sun and 

Crook (1997).  

For water vapor retrieval, it is assumed that when the Z value exceeds a specified threshold value 

above cloud base, the in-cloud relative humidity is 100%. Here, the threshold value is fixed as 

30 dBz. It is resulted from the assumption that the estimated water vapor 𝑞𝑣
𝑜 is equal to the 

saturation water vapor that is calculated using pressure and temperature of the background.  
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7.4 Thunderstorm Cases   

Two pre-monsoon thunderstorm (TS) events within the vicinity of NER are considered for this 

study.  

 

 

 

 

Figure 7.2: Maximum reflectivity (dBz) observed in Cherrapunji Radar data during a 

thunderstorm event on April 19, 2017 valid from 12 UTC to 24 UTC. This event is considered 

as Case-1 in this study 

 

Case-1: The first TS event considered here is a synoptic scale system, which is initially 

developed over the Tibetan plateau that shifted towards NER of Indian subcontinent. The TS is 

initiated on April 19, 2017 at 12 UTC over Meghalaya and Assam. The system remained there 

till 13 UTC, and then moved towards southern Assam, Tripura and Mizoram. It has developed 
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into a more intense thunderstorm during 15 UTC over the same region producing heavy rainfall 

and the system started weakened by 21 UTC of April 19, 2017 as shown in Figure 7.2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Maximum reflectivity (dBz) observed in Cherrapunji Radar data during a 

thunderstorm event on March 30, 2018 valid from 12 UTC to 15 UTC. This event is considered 

as Case-2 in this study 
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Case-2: The second TS event considered here is initiated on March 30, 2018 at 12 UTC and 

dissipated by 15 UTC of the same day. The TS developed locally over the Meghalaya region and 

gradually moved towards southern Assam, which finally dissipated over Mizoram at 15 UTC. 

The storm has affected Meghalaya, Southern Assam, Manipur, and some parts of Mizoram that 

is shown in the Figure 7.3. 

7.5 Experimental design and validation 

In order to analyze the impact of radar data assimilation in convective scale, four experiments 

are designed. Two of these  experiments assimilated  conventional observations and satellite 

AMV using  3DVAR and HYBRID DA systems while the other two experiments assimilated 

DWR observations along with the GTS observations using 3DVAR (3DVAR-RQ) and HYBRID 

(HYBRID-RQ) DA systems. In each case, model ensembles are integrated for 6 hour before the 

first data assimilation cycle. The second assimilation cycle is performed 12 h after the first 

assimilation and free forecast is performed thereafter. The ensemble members are generated 

using WRF-3DVAR CV3 BEC by adding 30 random perturbations (Barker et al. 2004). The 

current study employed NMC method to estimate the region-specific static BEC from WRF 12 

and 24hr forecast differences averaged over the month of April using CV5 option. 

For validation, model simulated rainfall forecast is compared with GPM rainfall measurement. 

Statistical evaluation of rainfall forecast is conducted by calculating ETS and BIAS score. Prior 

to comparison, all the data are brought to a common grid resolution using bilinear interpolation.   

7.6 Result and Discussion 

In this study, the impact of derived moisture field from radar reflectivity in the simulation of 

thunderstorms using 3DVAR and HYBRID is evaluated for both model analysis and forecast 
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variables. The development of a thunderstorm system depends on various convective parameters 

such as Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), 

mid-level humidity and wind shear. A study by Westermayer et al. (2017) has demonstrated the 

significant  role of mid-level relative humidity in the formation of thunderstorm. This study 

assesses the influence of radar reflectivity in the model simulated moisture analysis fields namely 

water vapor mixing ratio (Qv) and relative humidity (Rh).  

7.6.1 Analysis field 

Figure 7.4 shows a longitudinal vertical cross-section of Qv analysis field for both the TS cases. 

Since there are no station data available to ensure the formations of thunderstorms over this 

region, the observed radar reflectivity is used as the indicator for the TS. A value of reflectivity 

more than 20 dBz is considered as the indication of the formation of TS. For Case-1, the model 

simulated Qv represents a wet environment mostly from the surface to 750 hPa level for all the 

experiments (Figure 7.4a-d). No significant impact of radar DA is observed for both 3DVAR 

and HYBRID DA systems. However, for Case-2, the impact of radar DA is evidently seen. It is 

observed from Figure 7.4e to 7.4g that in 3DVAR and HYBRID experiments that assimilated 

conventional observations, a dry atmospheric condition in vertical with low Qv values exists that 

are not favorable for the initiation of convection. In contrast, the assimilation of DWR 

observations enhances the moisture conditions from surface to 700 hPa level for 3DVAR and 

HYBRID experiments, as shown in Figure 7.4f to 7.4h. Additionally, the results show no 

significant variations among the two DA systems used in this study.   

Similarly, Figure 7.5 shows the longitudinal vertical cross-section of the RH analysis field for 

both cases. For Case-1, the HYBRID experiment depicts enhanced mid-level moisture around 
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600 hPa compared to the 3DVAR experiment (Figure 7.5a-d). Therefore, it can be stated that the 

HYBRID experiment simulates a more conducive environment for TS than the 3DVAR 

experiment for the synoptic TS case. However, assimilation of DWR observations has not 

significantly impacted the analysis of 3DVAR or HYBRID. 

 

Figure 7.4: Longitudinal vertical cross-section of water vapor mixing ratio analysis field passes 

through the thunderstorm core for both Case-1 (12 UTC 19 April 2017) and Case-2 (12 UTC 30 

March 2018) from a,e) 3DVAR, b,f) 3DVAR-RQ, c,g) HYBRID and d,h) HYBRID-RQ 

experiments 
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Figure 7.5: Same as Figure 7.4, but for relative humidity 

 

For Case-2, assimilation of GTS observations alone in 3DVAR and HYBRID represents a 

relatively dry environment with less than 50 % of RH over the lower levels of atmosphere with 

dry conditions prevailing over the mid-level troposphere. But, the assimilation of DWR 

observations has enhanced the moisture over the lower levels of the atmosphere.  

7.6.2 Rainfall forecast 

Figure 7.6a and 7.6f show the accumulated rainfall from GPM data valid during the forecast 

period from 12 UTC April 19 to00 UTC April 20 of the year 2017 for Case-1 and 12 UTC March 

30 to 15 UTC March 30 of the year 2018 for Case-2 respectively. For the synoptic TS Case-1, 

all the model simulations represent the spatial distribution of rainfall well (Figure 7.6b-e). 

However, it is observed from the GPM rainfall data that there exists a rainfall patch of intensity 

ranging from 20 mm to 100 mm towards the southern Assam bordering Tripura. The same is not 
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captured in any of the 3DVAR experiments. The missing rainfall patch in 3DVAR is noticeable 

in HYBRID experiments to some extent, HYBRID-RQ in particular. The improvement in rainfall 

forecast from HYBRID experiments for Case-1 may be attributed to the more conductive 

environment simulated by HYBRID for TS initiation, as observed in Figures 7.5c and 7.5d. For 

Case-2, a significant impact of radar DA is observed for both the DA system (Figure 7.6h,j). The 

assimilation of only GTS data into 3DVAR and HYBRID failed to capture the rains spread over 

southern Assam, Tripura, Manipur and Mizoram completely (Figure 7.6i,k). However, 

improvements in 3DVAR-RQ and HYBRID-RQ are seen in almost all areas except southern 

Tripura. This may be because the improved moisture analysis field with radar data assimilation 

improves rainfall forecast in Case-2.  

 

Figure 7.6: a) Accumulated rainfall calculated from GPM data; Model simulated rainfall 

forecast from b) 3DVAR, c)3DVAR-RQ, d) HYBRID and e) HYBRID-RQ valid from 20170419 

12 UTC to 20170420 00 UTC. f) Accumulated rainfall calculated from GPM data; Model 

simulated rainfall forecast from b) 3DVAR, c)3DVAR-RQ, d) HYBRID and e) HYBRID-RQ 

valid from 20180330 12 UTC to 20180330 15 UTC 
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Figure 7.7: Bias of model simulated accumulated rainfall forecast valid from 20170419 12 UTC 

to 20170420 00 UTC with respect to GPM observed rainfall for a) 3DVAR, b) 3DVAR-RQ, c) 

HYBRID, d) HYBRID-RQ ; Bias of model simulated accumulated rainfall forecast valid from 

20180330 12 UTC to 20180330 00 UTC with respect to GPM observed rainfall for e)3DVAR, 

f) 3DVAR-RQ, g)HYBRID, h) HYBRID-RQ 

 

Figure 7.7 shows the bias of model-simulated accumulated rainfall forecast for both cases with 

respect to GPM observed rainfall for 3DVAR and HYBRID experiments. For Case-1, a dry bias 

is observed in 3DVAR experiments over the southern Assam and Mizoram, which can be seen, 

reduced in HYBRID experiments. For Case-2, a prominent dry bias is observed in 3DVAR and 

HYBRID experiments without DWR assimilation. The observed bias has reduced in 3DVAR-

RQ and HYBRID-RQ over southern Assam and Meghalaya. The assimilation of DWR 

observations in 3DVAR and HYBRID DA systems has resulted in a better simulation of the 

thunderstorm for the localized TS event.  

Further, the validation of model-based rainfall forecast is evaluated quantitatively by estimating 

model skill scores. The skill scores for Case-1 are calculated for five threshold values 20 mm, 

30 mm, 40 mm, 70 mm, and 80 mm. The ETS values for experiments with DWR observations 
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are found to be nominally higher than the experiments without DWR observations. However, the 

performance of 3DVAR and HYBRID DA systems with and without DWR observations does 

not show significant differences in the rainfall skill score (Figure 7.8a). Bias score in HYBRID 

experiments shows improvement as compared to the 3DVAR experiment (Figure 7.8b). For 

Case-2, skill scores are calculated for the threshold values 2 mm, 5mm, 10 mm, 20 mm, and 30 

mm. The skill scores are found to be close to zero for 3DVAR and HYBRID experiments without 

DWR assimilation, as the experiments fail to simulate rainfall in the absence of DWR 

observations. (Figure 7.9a). Though the ETS values are higher for the HYBRID-RQ experiment, 

the Bias score values show no significant change among both the experiments (Figure 7.9b).  

7.7 Summary 

This study evaluates the impact of the derived moisture field from radar reflectivity in 3DVAR 

and flow-dependent HYBRID DA system for the thunderstorm simulation over the NER of India. 

Two thunderstorm cases are considered: a locally developed short-duration TS and a synoptic-

scale long-duration TS system.  

The vertical structure of the analysis fields shows that the impact of DWR observations is 

prominent for a locally developed TS event when initial model state variables depict a dry 

environment compared to the TS system developed due to synoptic forcing for which the 

background moisture fields are already wet. The assimilation of DWR observations has not 

shown any significant impact on the synoptically forced TS. However, improvement due to the 
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Figure 7.8: The (a) ETS and (b) Bias scores valid from 12 UTC 19 April 2017 to 00 UTC 20 

April 2017 for different rainfall thresholds calculated for all the experiments.  

 

Figure 7.9: The (a) ETS and (b) Bias scores valid from 12 UTC 30 March 2018 to 15 UTC 30 

March 2018 for different rainfall thresholds calculated for all the experiments. Here, skill 

scores of 3DVAR and HYBRID experiment is 0. 
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Incorporation of flow-dependent error covariance in the 3DVAR DA system is evident in 

simulating the moisture conditions for the development of TS in the analysis. Furthermore, the 

HYBRID experiments simulate a stronger TS system as compared to the 3DVAR experiment. 

The results clearly show a significant impact of radar data assimilation in the simulation of the 

localized convective system. However, no substantial impact of due to flow-evolving BEC is 

observed. This may be because this study has not utilized radar data to update the ensemble 

members using ETKF. Furthermore, the data assimilation is conducted every 12 hourly, which 

is too large for convective-scale simulations.  
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Conclusions 

The specification of background error covariance (BEC) has important role in the performance 

of data assimilation (DA) system. Studies have shown that assimilated observations are better 

and more effectively exploited when flow-dependent error covariance is used in the DA system. 

The three-dimensional variational (3DVAR) DA system is cost-effective because it uses a BEC 

matrix that is either completely static or only weakly coupled to the dynamics of the forecast 

model. However, the drawback of static BEC is that the observations assimilated will make local, 

isotropic increments without proper flow-dependent extrapolation. Several studies examined the 

role of static BEC in the performance of the 3DVAR DA system. The representation of flow-

dependent ensemble BEC in a variational framework is found to be more effective than 

standalone Ensemble Kalman Filter (EnKF) DA approach especially when computational 

resources are limited. The approach which incorporates ensemble-generated BEC in variational 

framework is commonly referred to as a hybrid ensemble-variational DA system (HYBRID). 

The study compares the impact of flow-dependent ensemble BEC in 3DVAR DA system for the 

prediction of weather events in a flow regime that encompasses the Indian subcontinent.   

In Chapter 3, the key research question that has been addressed is how does the flow-evolving 

BEC has affected the short-range rainfall forecasts during Indian summer monsoon at a 

convection-permitting resolution?  The experiments have been carried out using the WRF model 

for month-long, short-range rainfall forecasts over the Indian summer monsoon region for July 

2013. The results suggest that the use of flow-dependent ensemble BEC in 3DVAR has 

systematically improved the forecast. The root mean square error (RMSE) from HYBRID 

experiments is systematically smaller than 3DVAR experiments for temperature and wind field 
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in almost all the vertical levels. Further, HYBRID experiments have shown better skills in 

quantitative precipitation forecast (QPF) during Indian summer monsoon. On spatial scales, the 

3DVAR experiment shows a dry bias over the upper peninsular regions and wet bias over the 

central and northern parts of the Indian subcontinent. The magnitude of the wet and dry bias is 

lower in HYBRID experiments as compared to the 3DVAR experiment. High-resolution 

experiments are conducted at the convection-permitting resolution, and the results are validated 

against dense TRG network observations over the Karnataka state. The result shows significant 

improvement in HYBRID runs during the later stages of data assimilation cycles compared to 

the 3DVAR experiment. The synoptic meteorological features of the monsoon in 3DVAR and 

HYBRID experiments are comparable to those in the ERA-interim analysis. However, the 

magnitude and direction of lower- and upper-level wind over the Indian monsoon region are 

better forecasted in the HYBRID than in the 3DVAR experiments. The information on wind is 

critical to understanding the moisture transport from the Indian Ocean, and hence accurate 

forecasting of wind may reduce the bias in the moisture over the Indian landmass. The improved 

forecast in wind variables is proposed as the reason for the reduction in dry bias observed over 

the Indian landmass in the HYBRID experiments. To summarize, the results of study provides 

dynamically consistent, objective improvements in the initial conditions of the WRF model when 

flow-dependent BEC is incorporated. However, nominal sensitivity of HYBRID experiment to 

the BEC weight in the analysis and forecast has been observed. 

The key research question that is addressed in Chapter 4 is how effective the flow-dependent 

BEC in the 3DVAR DA framework in the forecast of tropical cyclones (TC) formed over the 

Bay of Bengal? To that end, eight landfalling TC of various intensities are considered. The results 

from the two state-of-the-art DA systems are compared and verified against the JTWC best track 
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data and TRMM precipitation observations. The HYBRID experiments analyzed the TC position 

and intensity significantly better compared to the 3DVAR DA system. The HYBIRD75 with 

75% weight assigned to flow-dependent error covariance has marginal improvements over 

HYBRID50 with 50% weight assigned to flow-dependent error covariance in terms of reduction 

in analyzed TC position and intensity errors. The 3DVAR analysis depicts a stronger vortex and 

a prominent warm-core TC structure compared to HYBRID50 and HYBRID75 experiments. The 

TC structure tends to weaken in HYBRID75 as compared to HYBRID50.The errors in track 

forecast and landfall position of TC are smaller with HYBRID compared to the 3DVAR 

experiment. In contrast, the intensity forecast shows no substantial improvement with HYBRID 

compared to the 3DVAR DA system. The skill scores of quantitative precipitation forecast 

obtained for HYBRID50 and HYBRID75 experiments are higher than 3DVAR in most of the 

cyclone cases for all rainfall thresholds. The relative improvement in precipitation forecasts in 

HYBRID experiments compared to 3DVAR can be attributed to improved TC track prediction 

in the HYBRID DA system. Similar to the finding of Wang et al. (2013), BEC weightings found 

to have limited sensitivity in HYBRID analysis and forecast.  

It is known that the impact of observations may vary depending on many factors in the DA 

assimilation system, such as data quality control, preprocessing, and specification of BEC.  To 

understand the changes in the impact due to the specification of BEC, the Chapter 5 addresses 

the impact of Atmospheric Motion Vectors (AMV) in 3DVAR and HYBRID DA system.  The 

impact of INSAT-3D AMV observation in the 3DVAR and the HYBRID DA system is evaluated 

for monsoon rainfall simulation. The HYBRID DA system incorporates flow-dependent 

ensemble BEC that generates optimal analysis through increments that are consistent with the 

background flow and respond adaptively to the change in the observing system. Therefore, it is 
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expected that the impact of the observing system may vary depending on the DA system used.  

The DA cycling experiments are performed for the ~4-week period of July 2016, and a 48 h 

model forecast is generated from each analysis. The results indicate that 3DVAR analysis fits 

more closely with the observations than HYBRID analysis. The domain-wide verification with 

respect to radiosonde observations reveals that forecasts in HYBRID experiments are more 

accurate than the 3DVAR experiments, in general. The wind forecasts show more improvements 

near the upper troposphere for the HYBRID run, with the neutral impact of INSAT-3D AMV 

observations. Compared with the forecasts from HYBRID analysis, the impact of INSAT-3D 

AMV observations is more pronounced in the 3DVAR DA system for wind forecasts over land. 

Geographical distribution depicts the positive impacts of INSAT-3D AMV observations across 

the whole domain in both 3DVAR and HYBRID DA systems. The AMV observations show a 

larger relative impact in HYBRID than in3DVAR, and the relative improvement compared to 

3DVAR is 77% for wind and 71% for tropospheric temperature. Time evolution of forecast 

errors with respect to ERA-Interim analysis in the zonal wind over the Arabian Sea indicates a 

larger growth rate in the 3DVAR experiment in comparison to the HYBRID experiment, while 

the assimilation of AMV observations considerably reduces forecast errors in both DA systems. 

The HYBRID DA system that assimilated AMV observations show improvement in the 

meridional component of near-surface winds when validated against ASCAT observations. The 

HYBRID run reduces the bias in precipitation forecast, especially when AMV observations are 

incorporated. The skill scores for quantitative evaluation of precipitation forecast indicate a 

modest improvement in rainfall for the HYBRID run, and incorporating the AMV observation 

does not considerably enhance the skill of 24 h and 48 h rainfall forecast. As expected, the results 

from the study indicate that the impact of INSAT-3D AMV observations varies in 3DVAR and 

HYBRID DA systems. Furthermore, the impact of the new observing system shows more value 
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to the advanced DA systems such as HYBRID than the traditional 3DVAR approach. However, 

the ensemble system needs to be properly configured for the DA system to perform optimally.  

The Chapter 6 address the impact of INSAT 3D for the simulation of tropical cyclones in 3DVAR 

and HYBRID DA systems over the BoB. Five tropical cyclones with intensity ranging from very 

severe cyclonic storm to super cyclone are considered. The track and intensity of TC are 

evaluated with respect to IMD best track data, and the quantitative precipitation forecasts during 

the landfall are validated with respect to GPM rainfall data. Results indicate that the error in 

initial position and intensity of TC is lower in HYBRID than in 3DVAR analysis. Assimilation 

of INSAT-3D AMV observations has shown nominal improvements in the initial track position 

and intensity of TC. In contrast, the forecast of the track shows positive impact of AMV in both 

the DA system. Assimilation of INSAT-3D AMV observations has improved the forecast of TC 

landfall locations in both the DA systems, and the impact is more substantial in the HYBRID-

AMV experiment. The relative improvements in intensity compared to 3DVAR for TC are 18%, 

13%, and 36%, respectively, for 3DVAR-AMV, HYBRID, and HYBRID-AMV. Rainfall 

forecast has improved significantly in both HYBRID and 3DVAR when INSAT-3D AMV data 

are incorporated. HYBRID experiments show improved quantitative precipitation skill scores 

for precipitation forecast compared to other experiments, in general. 

In Chapter 7, the impact of the assimilation of the derived moisture field from radar reflectivity 

in 3DVAR and flow-dependent HYBRID DA system for the simulation of two thunderstorms 

(TS) over the northeastern region (NER) of India is evaluated. Among the two thunderstorm 

cases, one is driven by synoptic-scale weather system (Case-1) and the other is locally developed 

(Case-2). The initial conditions for Case-1 depicts a wet environment whereas for Case-2, the 

initial conditions depicts a dry background moisture field, which is not suitable for convection 
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initiation The vertical structure of the moisture analysis field shows significant impact of radar 

DA for Case-2 when compared to Case-1 in both 3DVAR and HYBRID DA system. Notable 

improvement of rainfall forecast is observed when radar observations are assimilated for the 

locally developed Case-2 thunderstorm, both in 3DVAR and HYBRID DA system. However, 

the impact of flow-dependent HYBRID DA is only marginal in both the thunderstorm cases.  

Future direction 

To gain further insight into the relative advantages and disadvantages, the results from the 

HYBRID DA system need to be compared with an advanced DA system such as 4DVAR. 

Further, the ETKF DA system does not use covariance localization for avoiding spurious long-

distance correlations due to limited ensembles. To ameliorate such an effect in ETKF, an 

inflation factor, which is typically larger than other EnKF methods, is used in this study. Efforts 

are required to implement covariance localization in the ETKF DA system to reduce the sampling 

error. Further, the performance of flow-dependent ensemble covariance can be improved by 

accounting the model imperfections to the ensemble configuration. In addition, satellite radiance 

observations has not been considered for assimilation in this work, and it is expected that the 

direct assimilation of satellite radiance observations may improve the forecast manifold. A study 

by Emanuel and Zhang (2017) has revealed that the improvement in forecasting cyclone intensity 

is not just a matter of improved initialization of wind and the associated thermal field alone but 

about high-quality initialization of tropospheric water vapor. Compared to land, conventional 

observations over the ocean are either very minimal (e.g., buoy, aircraft) or not available. Since 

the primary source of observations over the oceans is dominated mainly by satellites, the direct 

assimilation of satellite radiance may further improve the intensity forecast of tropical cyclones. 

Additionally, the performance of the data assimilation systems needs to be tested for high-
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resolution configurations to get more insights into the relatively lower impact of flow-dependent 

BEC in TC intensity prediction. 

Further, for convective scale thunderstorm simulations, no significant impact of HYBRID is 

observed. This may be because this study has not utilized radar data assimilation to update the 

ensemble members using ETKF. In addition to that, the data assimilation cycling needs to be 

performed more frequently for convective-scale simulations. More frequent assimilation and 

updating the ensemble members with radar data can further improve results.  
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