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Abstract

This research work report the development and implementation of a mathematical model
for the simulation of hydraulic transients in compressible liquids. The work discusses the
importance of understanding the hydraulic transients for different theoretical and practical
flow situations. The significance of this study is derived from the need for accurate fluid
property estimates in liquid transient simulations as there are unaccounted liquid com-
pressibility effects and improper pressure damping techniques affecting the reliability of
computational models for numerical simulation.

This research work presents a new equation of state (modified NASG) for the compress-
ible modelling of liquid water over wider range of pressures. The proposed compressible
model could be applied in theoretical flow modelling and computational flow simulations
of the liquid. Theoretical implementation of the model has been demonstrated through the
development of an analytical solution to the water shock tube problem. The same problem
has been computationally simulated, and the corresponding numerical results are compared
and validated against the analytical solution. The research further focuses on improving the
simulation accuracy of valve-induced hydraulic surges, a commonly observed liquid tran-
sient. Relevant valve-closure experimental cases from the literature are selected for the
study. A suitable mathematical model is chosen for simulation of these transients, which is
further upgraded with the compressible model. Results from simulation experiments sug-
gested the need for improvement in friction models to achieve better accuracy. In this con-
text, we introduced the concept of adaptive damping by defining ‘variable pressure wave
damping coefficients’ (VPDCs) for unsteady friction formulation. This parameter, VPDC,
adds flexibility to the computational solver by providing dissipation to the waves based on
prevailing flow conditions. Numerical simulation of hydraulic transients at upstream and
downstream locations of closing valves using unsteady friction model with VPDC shows
good improvement in the computational accuracy. The mathematical model that accounts
the liquid-compressibility effects and equipped with the adaptive damping capability is
used to study the transient pressure difference developed across fast-closing valves.

The modified NASG equation of state for water could be used for high accuracy liquid
compressibility modelling and for the estimation of wave speed over varied range of appli-
cations. The research work presents analytical solution to the water shock tube problem as
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a simple yet powerful benchmark solution for testing computational algorithms developed
for the simulation of compressible liquid flows. The VPDC definition presented in the work
for imparting adaptive damping capability could be applied to improve the accuracy and
numerical stability of computational solvers for the simulation of highly transient flows.
The research also brings out and explains the variations in surge characteristics based on
the location in a system with respective to the closing-valve. Numerical experiments per-
formed as part of the research work also explored the impact of valve closure duration on
the pressure difference across closing valves during valve-induced surges.
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Chapter 1

Introduction

Flow of liquids are generally treated as incompressible flows in which liquid density is
assumed to be constant. However, there are several flow situations where compressibility
effects in liquids become important and hence the variation of density cannot be ignored
when the governing equations for fluid flow are solved. Unsteady flow transients in long hy-
draulic pipelines, sudden closure of valve in a piping system, and liquid flows at extremely
high pressures are some of the examples where the compressibility effects of liquids cannot
be ignored. One of the major difficulties in modelling liquid as compressible fluid is the
lack of accurate compressible models, particularly the equation of state that relate various
thermodynamic properties of liquids. Another issue is that the inability of friction models
to adapt to dissipative requirements of the flow. A reasonable compressible flow model
should be able to estimate transient variations of liquid density and speed of sound in the
liquid medium in an accurate manner.

This work intends to develop a mathematical model that could address most of the
identified drawbacks in the currently available models for the simulation of compressible
liquid transients. We also make a detailed study of the applicability and effectiveness of
this compressible model in simulating flow of liquid with compressible effects. Further, this
research also aims to develop a friction model capable of achieving adaptive dissipation.
Finally, we will present a complete model for the simulation of practical problems involving
compressible liquid flow transients.

1.1 Motivation

A majority of liquid transients that we study are generated by practical flow situations like
sudden changes in the flow area, closure of valves, etc. in fluid flow and transfer pro-
cesses. We also come across theoretical studies of the liquid transients in systems like
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hydrodynamic shock tubes. Most of these scenarios involve high values of fluid pressure
and transiently varying signal propagation speed. In the simulation of liquid flow tran-
sients, the variation of fluid pressure with time at different strategic locations in the system
needs to be modeled with high accuracy. This is because the transient pressure data is very
crucial to the design and safety considerations of the system. Some of the important limi-
tations, we observed, in the mathematical models for simulation of such flows are the lack
of adequate compressible models for liquids and the inability of friction models to adapt to
the dissipation requirements based on flow physics.

An adequate compressible model for liquids should be capable of capturing density
variations accurately during flow transients by relating density to fluid pressure and tem-
perature. Such a compressible model should also be able to calculate transiently varying
signal propagation speed by using locally updated fluid properties at every moment. Sim-
ilarly, a friction model that can adapt to drastically varying flow situations could lead to
improved dissipation mechanisms and accurate numerical prediction of pressure surges.

1.2 Objectives

The main objectives of this research work are listed below:

• To develop an accurate compressible model for liquid water for reliable application
to a wide range of pressure and temperature.

• To develop an analytical solution for a suitable theoretical problem involving com-
pressibility effects in liquids to establish the appropriateness of the model for related
class of problems.

• To demonstrate the relevance of analytical solution developed as a benchmark solu-
tion for the evaluation of computational solvers for compressible liquid flows.

• To apply the proposed compressible model for simulation of practically relevant liq-
uid transients such as problems involving sudden closure of valves.

• To develop a ‘variable pressure wave damping coefficient’ (VPDC) that could enable
the dissipation mechanism of unsteady friction models to adapt to the flow require-
ments of a liquid transient.

• To apply adaptive dissipation enabled friction model for the simulation of valve clo-
sure problems and to investigate associated improvements in the model.
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• To present an adequate mathematical model for the simulation of liquid transients
with accurate modelling of liquid compressibility effects and adaptive damping ca-
pabilities for friction model.

1.3 Scope

This research presents an accurate compressible model for liquid water that can be applied
in theoretical and computational models for the simulation of various flow conditions of
liquid. The proposed compressible model provides accurate fluid property estimates for
high-pressure conditions compared to available liquid compressibility models. The accu-
racy of the proposed equation of state (EOS) for water is demonstrated for a wide range
of pressure and temperature to ensure reliable application in modelling flow cases. The
availability of an associated speed of sound relation with the EOS helps in accounting for
locally and transiently varying signal propagation speed in the system. This capability to
model varying signal speed could improve the performance of ‘method of characteristics’
based flow solvers to which the model is incorporated. The exact analytical solution for
water shock tube problem developed as part of this research made it a ’simple and easy to
use’ test case. Hence, the water shock tube problem together with its exact solution can
be used as a benchmark problem for validation of compressible liquid flow solvers. The
analytical solution procedure presented here can also be utilised as a template that could be
extended to any other liquid, subject to the availability of corresponding equation of state
for liquid and the relation for speed of sound.

The variable pressure wave damping coefficient (VPDC) introduced and presented in
this research is also a potential area for future research. The studies demonstrate capability
of the proposed friction model with VPDC to adapt to varying dissipation requirements of
flow. This adaptive dissipation capability could be integrated into many existing mathemat-
ical models to generate a class of highly stable computational flow solvers. The resulting
solvers would then be capable of modelling highly transient flows involving large property
gradients. Different variants of VPDC could be explored and incorporated for improving
unsteady friction models.

Application of the compressible liquid model and the VPDC based adaptive friction
models could also be extended to multidimensional and multi-fluid cases in a straightfor-
ward manner. For example, developing accurate compressible models for industrial liquids
like crude oils is very important for designing of transfer pipelines and associated struc-
tures.
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1.4 Structure of the Thesis

The thesis is arranged in eight chapters closely related to the objectives described above.
In chapter 2, survey of literature is presented. Various high-pressure applications and

flow situations involving liquid compressibility effects are presented in this chapter along
with information on different compressible models available for liquid water. A section of
the chapter explains importance of shock tube studies in compressible flows with special
mention to the Sod’s problem. Subsequently we discusses various studies and applications
related to liquid shocks. Some select Riemann solvers and flux methods are also discussed
with the help of related literature. A review of various unsteady friction models from the lit-
erature is also presented in this chapter. The final section provides a review of experimental
and computational studies on valve-induced hydraulic transients.

In chapter 3, a new equation of state for the compressible modelling liquid water is
presented. Through a detailed comparative study with NIST data, accuracy of the proposed
EOS over a wide range of pressure and temperature is demonstrated. The new EOS is also
compared against a few of the existing EOS for liquid water.

In chapter 4, details on the development of an analytical solution to the water shock tube
problem are provided along with the complete solution procedure employed. The solution
profiles obtained for varied configurations of the problem are also presented in this chapter.

In chapter 5, the numerical simulation of the water shock tube problem by considering
fluid compressibility effects is explained. The numerical results for the problem are fur-
ther validated against the already developed exact solution to the problem. This chapter
demonstrates the water shock tube problem as a new benchmark test case for the family of
compressible liquid flows.

In chapter 6, the procedure for hydraulic surge estimation for non-cavitating flow sit-
uations using a compressible-liquid model is presented. The latter half of this chapter
introduces the concept of an adaptive-damping technique for unsteady friction models and
demonstrates its application to selected flow cases.

In chapter 7, implementation of the adaptive-damping technique in numerically mod-
elling different valve-induced hydraulic surge experiments is presented. This chapter also
provides a strategy for numerical estimation of transiently varying pressure difference
across a fast-closing valve. The impact of valve closure duration on the maximum pres-
sure difference developed across a closing valve is also outlined in this chapter. The major
conclusions drawn in this research work are summarised in chapter 8.
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Chapter 2

Review of Literature

2.1 Introduction

In this chapter we present information gathered from the literature in the area of flow tran-
sients in compressible liquids. Section 2.2 presents details of various applications where
liquids are exposed to very high pressures. The subsequent section, section 2.3 provides
information on the compressible modelling of liquids using different models such as equa-
tions of state. This section gives importance to models and equation of state related to
water, due to the liquid’s high relevance in industrial and non-industrial applications. Sec-
tion 2.4 outlines the importance and wide range of applications of shock tube problems in
the study of compressible flows. A brief explanation of gas shock tube problem and asso-
ciated mathematical model is also available in this section. Section 2.5 lists various stud-
ies and applications associated with events like shock generation, propagation, interaction
etc., observed independently or together in different liquids. Details of different Riemann
solvers and flux methods are presented with the help of relevant literature in Section 2.6.
The concept of MUSCL (Monotonic Upstream-centred Scheme for Conservation Laws)
method and details on the MUSCL type slope-limited solvers are presented in Section 2.7.

Section 2.8 summarises different friction models used in the modelling of liquid tran-
sients, with reference to some of the notable contributions in this field. The last section of
the chapter, Section 2.9 reviews some important contributions and studies on valve-induced
hydraulic surges.
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2.2 High-Pressure Applications of Liquids

Pressure is an important thermodynamic variable because of its strong relation with other
fluid properties such as temperature and density. The variables in a flow system such as
flow velocity and speed of sound in the fluid medium are also closely related to existing
pressure in that system. In hydrodynamic studies, it is a common observation that liquid
density and speed of sound in the liquid medium are treated as constants with respect
to varying fluid pressure. This is because these parameters are usually weak functions
of fluid pressure and variations in their magnitude with changing pressure are negligibly
small. However, there are flow situations where liquid density and signal speed in the liquid
medium exhibit appreciable variation with pressure. Most of such scenarios are associated
with high-pressure applications of liquids. In such applications, liquid density and sound
celerity vary over a wider scale, and these variations need to be accounted for understanding
the underlying flow physics better. Some of the flow scenarios and applications where
liquids are exposed to very high pressures are briefly explained here.

High-performance liquid chromatography (HPLC) is an indispensable chemical sep-
aration, identification and quantification technique which is used for the investigation of
classes of compounds and individual substances in a mixture. Conventional HPLC serves
up to pressures of around 350 bar. The more recent technology of Ultra high-pressure liq-
uid chromatography (UHPLC) operates at pressures up to 1000 bar. The basic concepts on
HPLC and UHPLC are available in the works [1, 2] and the biochemical and biomedical
applications of these processes are outlined in [3]. For a material with two distinct liq-
uid phases of different densities, the experimental observation of liquid-liquid transition is
very difficult. To observe the diffuse scattering from both liquid phases in such transitions,
extremely high pressure conditions are required [4]. There are numerous studies [5, 6] on
achieving metallic state in hydrogen by compressing it to extreme pressure conditions. The
work by Weir et al. [7] reports on shock experiments where liquid hydrogen is exposed
to pressures of the order of 140 GPa. In highly lubricated contacts as observed in rolling
element bearings, gears, cams, constant velocity joints, etc., situations arise where the lu-
bricants are exposed to extreme variations in pressure about 1 GPa and above [8].

There are numerous studies on the use of ionic liquids as operating fluids in high-
pressure applications [9,10] and on their behaviour under such high pressures [11,12]. The
ionic liquids are preferred due to their relatively low compressibility, which is desirable for
high-pressure applications. A research on the behaviour of various liquids and solutions
at high pressure is presented by Boucher and Murrell in [13]. Information on the physical
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and chemical behaviour of various high-pressure liquids and solutions and the details of
their thermo-physical properties, relative permittivity etc., were discussed by Taniguchi et
al. [14]. More high-pressure studies on different liquids are available in the work by Mao
et al. [15].

The existence of liquid water under extreme conditions and associated properties of the
liquid are significant in many industrial applications. For instance, liquid water is com-
pressed to extreme pressures in water jet cutting where the pressurized fluid even slices
through metals. The U.S. patents [16, 17] reports maximum cutting fluid pressures of the
order of 1.5 GPa in water jet cutters. A review of compressible liquid impact on solid
surfaces is provided by Lesser and Field in [18]. The impinging jet of water used for
quenching process as reported by Ramezanzadeh et al. in [19] also uses liquid water under
very high pressure. The underwater explosion is another domain where water gets com-
pressed substantially and associated density variation in the fluid is significant. Study on
the water waves generated by underwater explosions presented in [20] considers the flow
to be compressible in the initial phase before the shock wave separates from bubble front.
The studies [21–23] are also related to underwater explosions where compressible effects
in the liquid under pressure are significant. In the medical application called Sonic shock
lithotripsy [24], which is also known as Extracorporeal shock wave therapy, liquid water
gets compressed above 1000 bars [25].

Sonoluminescence [26, 27], the phenomenon by which light is emitted from implod-
ing bubbles in a liquid when excited by acoustic waves, involves water under very high
pressure. Oceanographic studies on the evolution of streams [28], and on the deep-sea ex-
plorations [29], require the property variations of sea water based on varying temperature
and pressure conditions. The recent studies by Chen et al. [30] and Houqun [31], reveal
that for earthquake-induced dynamic responses, neglecting the compressibility of overly-
ing water could underestimate hydrodynamic pressure at the bottom of an ocean and a dam.
In pressurized water nuclear reactors (PWR) [32], liquid water is compressed to pressures
above 15 MPa, to use it as a coolant at high temperatures. The hydraulic surge analysis
due to water-hammer resulting from sudden valve closures [33, 34], is another transient
phenomenon involving liquid compressibility effects due to the high-pressure magnitudes
involved. Liquid water is compressed substantially, and associated density variations are
significant for all the aforementioned cases.
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2.3 Compressible Modelling of Liquids

Most liquids behave as though they are gases that are already under extremely high pres-
sures. This explains why most liquids are commonly treated to be incompressible. As
external pressure varies by a few atmospheres, from 0.1 MPa to 0.2 MPa for instance, a
liquid behaves just like a gas would, when the gas pressure changes in similar way, from
2000.1 MPa to 2000.2 MPa for instance. However, as the applied pressure range reaches
considerably high magnitude, this assumption becomes invalid and compressibility effects
in the liquids become significant. Compressibility of the fluid plays a crucial role in hy-
draulic applications. The lower compressibility of the hydraulic liquid in a high-pressure
machine result in its higher efficiency [9]. There are numerous industrial applications and
scientific studies where the effect of liquid compressibility cannot be ignored. For all such
cases, the possibility of including relevant property variations in the liquid should be con-
sidered. An early study conducted by N. M. Philip on adiabatic and isothermal compress-
ibilities of 24 different liquids is available in [35]. Compressibility of water was established
through experiments by 1762, however, it took almost a hundred years to achieve the pre-
cise value for the same even at ambient pressures [36]. The effect of liquid compressibility
on acoustics and Kolmogorov spectrum of hydrodynamic turbulence is outlined in [37].
Fluid compressibility is a parameter that affects the performance of reservoirs. The effects
of oil compressibility on the production performance of fractured reservoirs is carried out
through simulation studies in [38]. The effect of liquid compressibility on bubble dynamics
and reactions inside the bubble, is computationally investigated by Fuster et al. in [39] and
Merouani et al. in [40]. The role of liquid compressibility in the volumetric and mechanical
losses in high pressure displacement pumps is investigated by Paszota in [41]. The effect
of compressibility of the drilling mud (treated as a liquid) on the pressure rise in a shut-in
well is explored by Henry in [42].

Numerical methods are widely employed in modelling compressible multi-phase flows
involving liquid compressibility effects. There are also many computational studies which
investigate the effects of liquid compressibility on the stability of mathematical models,
and also in determining the related multi-phase physics. Consequences of liquid compress-
ibility consideration on the mathematical well-posedness of multi-fluid equation system for
bubbly flows is investigated by Egashira and Kanagawa in [43]. The role of compressible
effects in a liquid in determining the interactions between oscillating bubbles is studied
by Zhang et al. in [44]. Deng et al. [45] discuss discontinuity-resolving reconstruction
for compressible multi-phase flows with moving interfaces. Re and Abgrall [46] present
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a novel pressure-based method for weakly compressible multi-phase flows. The effect of
liquid phase compressibility in the simulations using a two-fluid model is numerically in-
vestigated by Shokri and Esmaeili [47].

2.3.1 Equations of state for liquids

Perceptible variations in density and sound celerity in a liquid medium imply the require-
ment of additional relations in a mathematical model that could model the compressibility
effects in liquid. An equation of state (EOS) is a thermodynamic relation connecting dif-
ferent state variables to specify the state of matter for a given set of physical conditions.
We have the ideal gas equation to relate the various state properties of ideal gases and the
Van der Waals equation of state [48] for the corresponding case for real gases. Similarly,
many of the liquids we encounter in scientific applications also have one or more state
equations. A liquid EOS relates the various thermodynamic variables of a liquid such as
pressure, volume, temperature, or internal energy [49]. Most state equations also have an
associated relation for the speed of sound in the medium. EOS are very useful in estimating
unknown properties of fluids from known quantities. These relations can be used to model
compressibility effects in a liquid by estimating varying density and speed of sound in the
liquid medium from changing pressure values during a process.

A fundamental equation of state for liquid states of argon, nitrogen, and carbon dioxide
is available in [50]. A simple analytical EOS is presented in [51] for modelling liquid
phase of different metals. The EOS for non-magnetic liquid iron presented in [52] is used
in thermo-chemical modelling of the Earth’s core. The EOS such as the Van der Waals, the
Redlich-Kwong, the Soave, and the Peng-Robinson are among the widely used models in
oil industry [53]. Thermodynamic properties of pure ionic liquids can also be estimated
using state relations such as the extended SAFT-BACK EOS [54], the ePC-SAFT [55], the
fluctuation EOS [56] etc.

2.3.2 Equations of State for Water

There are different equations of state available for liquid water and for the saturation states
of water. The works by Rice and Walsh [57], Nowak [58], Gurtman et al. [59], Ree [60],
Chen et al. [61], Halbach and Chatterjee [62], Mueller and Gubbins [63], Wiryana et
al. [64], Jeffery and Austin [65] etc., are some important contributions to equations of state
for water in the last century. Hill et al. [66] presented a fundamental EOS for heavy water
and a reference EOS for the same liquid is proposed in [67]. The International Association
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for the Properties of Water and Steam (IAPWS) EOS for the estimation of thermodynamic
properties of ordinary water for general and scientific use is available in [68]. An ana-
lytical state equation for water is developed from the statistical associating fluid theory
(SAFT) by Chen eta al. [69]. Davitt et al. [70] introduced an EOS for water under negative
pressure. An EOS for water in relation with its quantum molecular dynamic simulations
at ultra-high pressures as in planetary interiors is proposed by French et al. [71]. Wide
range EOS for water and steam are proposed by Nigmatulin and Bolotnova [72]. Holten et
al. [73] proposed an EOS for the prediction of thermodynamic state variables of cold and
super cooled water for pressures up to 400 MPa, which can be further extrapolated up to
1000 MPa range. An experimental equation of state for water down to the negative pressure
range of −120 MPa is proposed by Pallares et al. [74]. Notable contributions on the state
equations for sea water include the works by Millero et al. [75], Fofonoff [76], Nycander
et al. [77] etc. Millero provides a historical review on the EOSs for seawater in [78]. A
comparative study was carried out by Hayward [79] on different compressibility equations
for liquids. The study by Li [80] suggests the suitability of the Tait EOS for representing
the P − V − T relationship for water and the Tait-Gibson EOS for sea water respectively.

There are some equations of state which are commonly used to model the compress-
ibility of liquid water, such as the Tait equation, the stiffened gas equation and many of
their extensions. The Tait equation for relating the pressure and density of liquid water
under isothermal conditions was proposed by P. G. Tait [81]. Since then the Tait EOS has
undergone numerous modifications starting with the temperature-dependent version of this
EOS presented by Tamman a few years later in [82]. MacDonald [83] has reviewed the
utility of the Tait equation and the Murnaghan equation for liquids and solids. The Tumlirz
EOS [84] and the Tamman EOS for pure water are rearrangements of the linear secant-
modulus equation used by Tait. The historical evolution of the Tait equation is presented
in [85]. The Mie–Gruneisen equation is an equation of state relating the volume of a solid
to the applied pressure [86]. A Mie-Gruneisen type of EOS for liquid water is developed
by Davis in [87]. The Mie-Gruneisen EOS is extended to study liquid water by Huang [88]
where the Mie-Gruneisen constant is derived from shock jump condition. The stiffened
gas equation proposed by Harlow and Amsden [89] is a modified form of the Grüneisen
equation of state. The stiffened gas equation is among the most widely used EOS for water
for modelling single phase flows as well as multi-phase flow situations. The Noble Abel
Stiffened Gas EOS proposed by Le Métayer and Saurel [90] for the prediction of saturation
states of water brings about significant improvement to the stiffened gas equation.

Water is treated to be inviscid and compressible in the works of Liu et al. [21], Mor-
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ley and Williamson [91], and Deng et al. [45] where the Mie-Gruneisen EOS is used to
determine the pressure of compressed and expanded water. A two-phase compressible
flow solver is suggested by Li et al. [22] where they numerically investigate the bubble
dynamics in underwater explosion and treats compressible effects in water by using the
Tait EOS [81]. Gurovich et al. [23] explains the compression loading of a copper target to
extreme pressures of the order of 2 × 1011 Pa using compressed water flow generated by
the underwater electrical explosion of a wire array. In that study, a polytropic EOS is used
for calculating the variable density of water. A quantitative estimation of hydrodynamic
characteristics and value of the nose over-pressure of a planing plate of a finite extension,
at subsonic and supersonic velocities with an attached and detached compression shock,
is carried out by Maiboroda [92]. This study employs an isentropic EOS for modelling
water compressibility. The application of the Stiffend gas EOS can be found in the works
of Saurel and Abgrall [93], Allaire et al. [94], Le Métayer et al. [95], FlÅtten et al. [96] etc.
The prediction of high-pressure volumetric properties of compressed liquids using a two
states model is presented by Jasiok et al. in [97]. Dolan et al. [98] proposed a metastable
limit for the compressed form of liquid water. More theory on the compressibility of liquid
water is available in the work by Yasutomi [99].

2.4 Shock Tube Problems and Their Importance in Com-
pressible Flows

Shock waves are small transition layers over which the physical quantities such as pres-
sure, density, and temperature change very rapidly. The shock tube [100–102] is a device
in which normal shock waves are generated by rupturing a diaphragm separating a high-
pressure fluid from a fluid at low pressure. Shock tube facilities are generally used to
generate extreme temperature and pressure conditions under which behaviour of materials
and objects are investigated. Some of the applications of shock tube are, in the investigation
of chemical kinetics of reactions at high temperatures [103, 104], in the performance eval-
uation of thermal protection systems of a body during re-entry from space back to earth’s
atmosphere [105–113], in studying the impact of blast waves on biological specimens in
biomedical research [114,115], etc. The applications of shock waves in therapeutical stud-
ies are outlined in [24,116,117]. Shock tubes are also widely employed in the investigation
and theoretical understanding of compressible flow phenomena and fluid transients includ-
ing gas and shock dynamics. The behaviour of different fluids in their highly compressed
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state is experimentally studied using various shock compressing techniques. The wave
motion associated with flow conditions like explosions, seismic movements, sudden flow
interruptions etc., involves the generation and propagation of shocks through the respec-
tive fluid media. A brief history of the development of shock tubes, the device’s principle
of operation and some important results for high-temperature gas dynamics obtained on
shock tubes in recent time are outlined in [118]. The 3D schematic of a typical shock tube
geometry is shown in Figure 2.1.

Figure 2.1: The 3D schematic of a shock tube.

A typical shock tube setup consists of a long tube separated into two sections by a
diaphragm located inside it. In single-fluid shock studies, these sections will be filled with
the same fluid but at different initial states. The initial conditions of temperature and flow
velocity may or may not vary between the two sections based on the situation under study.
However, the most important parameter that initially varies across the diaphragm is fluid
pressure. The section containing fluid under high-pressure is the ‘driver section’ and the
section that holds the fluid at a relatively lower pressure is called as the ‘driven section’.

2.4.1 Gaseous Shock Tube Studies

There are many studies available in the literature where the high-temperature, high-pressure
behaviour and the chemical kinetics of various gases and gas mixtures are studied with the
help of different shock tube configurations. Glass and Patterson [119] presented one of
the first studies on the theoretical and experimental aspects of shock-tube flows. A com-
prehensive study on the geometric forms and structure of different types of shock waves
that occur in a perfect gas is presented by Pain and Rogers [120]. The equilibrium air
radiation for a selected range of wavelength is experimentally investigated using a shock
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tube in [121]. Various shock tube techniques are used in understanding the kinetics and
thermodynamics related to the thermal decompositions of acyclic and aromatic fuels as
pointed out by Kern and Xie [122]. Davidson and Hanson [123] presented the corrections
required for shock tube studies of real gases at high pressures to consider the effects on
temperature, pressure, and density. Chojnicki et al. [124] used one-dimensional shock-tube
experiments for investigating dynamics of rapidly decompressed gas-particle mixtures and
associated shock waves, with application to the initial stages of Vulcanian and Plinian erup-
tions. Ananthu and Kumar [125] carried out numerical performance analysis of shock tube
for different driver and driven gases. Gas shock tubes are used by Kumar and Nedungadi to
generate blast wave signatures for studying the interaction between blast waves and human
bodies [126].

2.4.2 The Gas Shock Tube Problem of Sod

Gas shock tube problem or simply shock tube problem, is one of the most established and
widely used benchmark problems in the field of computational fluid dynamics for com-
pressible flows. This is due to the multiple benefits offered by this problem, like simplicity
in the problem setup, ease of computational modelling and most importantly the availability
of an exact solution to the problem. Shock tube physics and analytical procedure to obtain
the exact solution to the gas shock tube problem are clearly outlined in [127]. The thickness
of transition layer for a strong shock is of the order of magnitude of the mean–free path of
molecules, which is about 10−7 m. Replacing shock waves as mathematical discontinuities
is, therefore, a reasonable approximation [128]. However, the discontinuous approxima-
tion of very weak shock waves such as sonic booms can be very inaccurate [129]. For an in
depth discussion on shock thickness one may refer to [130]. Gary A. Sod investigated the
gas shock tube problem numerically using computational tools called the Riemann solvers
in [131], due to which the gas shock tube problem is more often referred to as Sod shock
tube problem. In his work [131], Sod used the Euler equations as the set of governing equa-
tions for transient modelling of the shock tube and solved the problem on a one-dimensional
domain. A schematic of the one-dimensional representation of gas shock tube is provided
in Figure 2.2.

The initial condition of the shock tube problem consists of a discontinuity separating
two uniform states. In a gas shock tube problem, the uniform states on either side of the
diaphragm are defined using variables such as pressure, density and flow velocity. The
initial conditions of pressure, density and fluid velocity are labelled as PL, ρL, uL in the
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Figure 2.2: The 1D schematic of a gas shock tube.

left side of the diaphragm and PR, ρR, uR in its right side and these zones are marked ′L′

and ′R′ respectively. For the one-dimensional problem model, unit length is chosen for the
sealed tube which is the physical domain of the problem, and the diaphragm is positioned
half way of the tube i.e., at x0 = 0.5 units from the left boundary. The initial property
values on either side of the diaphragm are set as follows:

PL = 1.0

ρL = 1.0

uL = 0

and
PR = 0.1

ρR = 0.125

uR = 0

Initially the fluid on either side of the diaphragm is at rest. On the rupture of the diaphragm,
the pressurised gas on the left is expected to move towards right thus forming a compression
wave front. In the mean time, an expansion fan propagates into the left compressed region.
The successive compression waves coalesce to form a shock which moves further right
at a supersonic speed into the low pressure side. Across the contact surface formed the
density and temperature are discontinuous. The waves traversing through the fluid results
in the formation of different zones and the extent of each region varies with time. The
motive is to predict the transient phenomena prior to shock/expansion wave reflection at
the boundaries. The transient problem thus evolved for an ideal gas, with few waves to
be captured and their relative effect on the fluid properties, defines the one-dimensional
shock-tube problem.

The fluid chosen for the problem is air and is treated as an ideal gas. The viscous
effects are considered to be negligible along the tube walls and the tube is assumed to be
long enough to avoid wave reflections from the boundaries over the computational time.
A set of non-linear hyperbolic conservation laws, the one-dimensional equations of gas
dynamics, forms the system of governing equation for the problem. In conservation form,
the system of governing equations is given by
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∂ρ

∂t
+
∂(ρu)

∂x
= 0 (2.1a)

∂(ρu)

∂t
+
∂(ρu2 + P )

∂x
= 0 (2.1b)

∂(ρe)

∂t
+
∂(ρeu+ Pu)

∂x
= 0 (2.1c)

where, ρ is the density, u the velocity, P the pressure, and e the specific total energy of the
fluid. In the vector form, the system of equations may be expressed as follows:

∂U

∂t
+
∂F (U)

∂x
= 0 (2.2)

where U is the vector of conserved variable and F = F (U) is the corresponding flux vector
given by

U =

 ρρu
ρe

 and F =

 ρu

ρu2 + P

ρeu+ Pu

 .
The specific total energy (e) and specific internal energy (ε) are connected by the relation

e = ε+
1

2
u2 (2.3)

For a perfect gas, the specific internal energy is given by the relation

ε =
1

γ − 1

P

ρ
(2.4)

where the ratio of specific heats, γ = 1.4 for air. The expression for the speed of sound in
air is given by

a =

√
γP

ρ
, (2.5)

The governing equation (2.2) forms a coupled non-linear hyperbolic system. The system
of equations can be solved analytically for the shock tube problem as discussed in the
following section.

The solution structure of one-dimensional shock tube problem is as shown in Figure 2.3.
A total of five different regions are observed in the x-t diagram. The regions marked
‘L’, ‘E’, ‘2’, ‘1’, and ‘R’ are all centred at the initial position of the diaphragm i.e., at
x = x0. ‘L’ and ‘R’ are the unaffected zones of high pressure and low pressure respec-
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tively, over which no waves have traversed. Zone ‘1’ is the region over which the shock has
traversed. ‘2’ is the zone bounded by the expansion fan ‘E’ to the left and by the contact
discontinuity to the right. The one-dimensional shock tube problem has an exact solution,

Figure 2.3: x-t diagram for the exact solution of the shock tube problem

which makes this problem the most common benchmark problem for compressible flow
solvers. The complete procedure involved in the development of the exact analytical so-
lution to this problem is provided in Appendix B. The exact solution to the Sod’s problem
after 0.2 seconds from the rupture of the diaphragm is shown in Figure 2.4. The velocity,
density, pressure and specific internal energy plots are shown for a domain of unit length
where the initial position of diaphragm is at x0 = 0.5.

2.5 Studies and Applications Related to Liquid Shocks

The applications and studies related to liquid shock span over varied areas. The study of
shock waves in a liquid containing gas bubbles by Campbell and Pitcher [132], and the
shock initiation of detonation in liquid explosives by Campbell et al. [133] are some of
the early reported works in this field. A reflecting-shock-wave type experimental tech-
nique is described by Walsh and Rice [134] to measure the important thermodynamic
variables at high pressures. Lyzenga et al. [135] experimentally measured the tempera-
ture variations in the shock-compressed water using the optical pyrometry technique. On
the studies related to the impact of liquid jet on solid surfaces [18], the liquid is consid-
ered compressible with the shocks moving into the liquid interior following collision with
solid surface. A review of various techniques used for estimation of the viscosity of var-
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Figure 2.4: Analytical solution of Sod’s problem at t = 0.2 s

ious shock-compressed fluids, which also include liquids, is presented by Al’Tshuler et
al. [136]. Cooke and Chen [137], studied on the shock capturing for pure water using gen-
eral equation of state. The thermal analysis of the shock response of pyrotechnic mixtures
by Lee and Finnegan [138], is an application of shock in the field of chemistry. In the
case of shock wave lithotripsy, the extracorporeal acoustic shock wave propagates through
the liquid and leads to high positive pressures [25]. The electronic conduction studies and
the Hugoniot relation for water from shock velocity measurements, in shock compressed
high-pressure water, are reported in the work of Celliers et al. [139]. Studies on the water
samples undergoing compression from peak pressures achieved with multiple shock waves
in nanosecond duration, leading to the ultrafast freezing of the liquid, are carried out by
Dolan et al. in [140, 141]. Various researches on underwater shock waves applied to the
development of different therapeutic devices are outlined in [142]. Batani et al. [143] stud-
ied the variation in liquid refractive index associated with the compression of liquid water
to megabar pressure range by using laser-driven shock waves.

The development of shock Hugoniot curves of different liquids needed to perform pre-
cise numerical simulations of shock wave/tissue interaction is presented by Gojani et al.
in [144]. Gojani et al. also reports the experimental results for the determination of reliable
shock Hugoniot curves of liquids. More details on the shock wave generation in liquid
water for different biological studies are available in [145]. The handbook of shock waves
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by Ben et al. [146] provides further insight into the shock waves in liquids. The elasticity
of an inertial liquid shock is explored by Biance et al. in [147]. The simulation studies
of shock-waves in water generated by a nanosecond-laser pulse are outlined by Kubecka
et al. in [148]. A recent U. S. patent [149], reports the use of shock waves to sufficiently
compress a jet of liquid precursor for the high-pressure synthesis of materials. Liquid film
breakup induced by shock waves is experimentally investigated by Song et al. in [150], and
the detonation combustion wave in liquid kerosene–air mixture is numerically analyzed by
Debnath and Pandey in [151]. Investigation of the interface deformation during droplet
breakup by Kaiser et al. [152], studies the pressure-wave pattern formation after the pas-
sage of shock thorough the liquid using a compressible model. Similarly, the recent article
by Ash [153] discusses on how shock-like waves form in the raindrop before it shatters
off the hydrophobic surfaces. The study on pressurized thermal shock (PTS) in stratified
liquid-vapour systems by El-Said et al. [154], rightly points out the inability of the available
CFD codes in modelling the two-phase water hammer (TPWH) flow, due to the strongly
compressible nature of the associated flow phenomena. The recent study by Li et al. [155]
on the dynamic state of liquids under blast wave loading discusses the shock compression
behaviour of liquids, and the interaction of rarefaction waves propagating in the liquid.

2.6 Riemann Solvers and Flux Methods

The classical Riemann problem [156, 157] is an initial-value problem for a system of ho-
mogeneous PDEs. The initial setup of this problem consists of two constant states forming
a discontinuity [158, 159]. The Riemann problem plays a significant role in the develop-
ment of numerical methods for the computation of flows with discontinuous solutions. This
problem is very helpful for the interpretation of governing relations like the Euler conser-
vation equations. This is because all the important flow features such as the shocks and
rarefaction waves appear in the form of characteristics in the solution to this problem. The
family of numerical solution techniques used to solve the Riemann problems are known
as the Riemann solvers. They employ specific algorithms for computing the numerical
flux across a discontinuity in the Riemann problem. Toro [128] provides a comprehensive,
coherent and practical presentation of various Riemann solver techniques.

There are exact Riemann solvers as well as approximate Riemann solvers. The exact
Riemann solver iteratively solves the Riemann problem and the solution principle is in-
trinsically linked to the Godunov method. The first exact Riemann solver for the Euler
equations was proposed by Sergei K. Godunov [160]. The approximate Riemann solvers
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were developed because of heavy computational cost associated with the iterative type ex-
act solvers and the necessity to approximate certain areas in the solution. Exactly solving a
single Riemann problem may not seem to be computationally very costly. However, when
the Riemann solver is employed as a building block in a finite volume method, it can prove
to be prohibitively expensive. Such a case necessitates the solution of a Riemann problem
at every cell edge for every time step [161].

Approximate, non-iterative solutions based on the situation modelled, may provide suf-
ficient data for computational purposes. Approximate solution to the Riemann problem can
be obtained using the Godunov-type methods through two different approaches. The first
approach uses an approximation for numerical flux employed in numerical method. In the
second approach, a state is approximated, followed by the evaluation of flux function at
this state. A comparison of various approximate Riemann solvers for solving the Riemann
problem in a compressible liquid is presented by Ivings et al. in [162]. A brief review
of a few approximate Riemann solvers and some numerical flux functions used with these
approximate solvers are provided here.

The Roe solver is one of the best–known of all approximate Riemann solvers and it
belongs to the class of Flux Difference Splitting (FDS) methods. This approximate solver
proposed by Roe [163], is related to the Godunov scheme, using which the inter-cell nu-
merical flux at computational cell interface on a discretised space-time domain is estimated.
The method by Roe has undergone a lot of modifications and refinements since its incep-
tion. These developments have also made this method versatile, making it suitable for
a variety of physical problems. Some of the major refinements to the Roe method were
proposed by Roe and Pike [164], which reduced the computational cost associated with the
Roe averaged Jacobian matrix. The application of the Roe scheme was extended to a variety
of multiphase flow problems by Sainsaulieu [165], which avoided the phase splitting part
in the algorithm. The Roe scheme was parallelly implemented to two–dimensional gas dy-
namic applications by Giraud and Manzini [166]. LeVeque and Shyue [167] implemented
this solver related to two-dimensional front tracking computations. Rieper [168] suggested
a fix to circumvent the reduced accuracy of the Roe’s solver for low-Mach number simu-
lations. A weak formulation of the Roe-type Riemann solver is presented by Castro and
Toro in [169] for solving the general hyperbolic systems. A finite volume and unstructured
grid-based well-balanced Roe scheme for local inertial equations related to flood modelling
is presented by Martins et al. [170].

The Osher solver [171] developed by Osher and Chakravarthy is another method that
belongs to the FDS family. Extension of the Engquist–Osher’s scheme [172] for the scalar
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conservation laws for solving the system of Euler equations led to the development of the
Osher method. In the Osher’s flux approach, phase expanse between the left region and the
right region is sub-divided into simple wave sub-paths. A distinctive feature of the Osher
method is the improved performance of this solver near slow-moving shock waves [173,
174]. In the FDS family of methods like the Roe’s and Osher’s, the flux computation is
based on all the three waves according to variable differences at cell interface.

Harten, Lax, and van Leer in 1983 developed an approximate Riemann solver for com-
puting flows with discontinuities, named after them as the HLL solver [175]. The solver
has a two-wave model which restricts its ability to capture the intermediate waves like the
contact discontinuity. In 1988, the two-wave HLL solver incorporated the wave speed es-
timates proposed by Einfeldt which came to be known as the HLLE solver [176]. Einfeldt
further worked on these methods to propose the HLLEM solver [177]. Following the phi-
losophy of HLL scheme, Toro et al. in 1992 developed a solver based on a three-wave
model called the HLLC solver [178]. The new scheme provides better resolution to inter-
mediate waves. The HLLC solver initially computes the slowest and fastest signal speeds
(SL and SR) respectively, using which it assesses the middle wave speed, S∗. The middle
wave speed further divides the central star-region of the Riemann solution profile into two
sub star-regions, which are the left star (U∗L) and right star (U∗R) regions. The three-wave
model of HLLC and the formation of different zones in the solution profile are shown us-
ing the x − t diagram in Figure 2.5. The flux computation follows an algorithm and the

Figure 2.5: The HLLC three wave model

ultimate choice of flux at each cell interface, F hllc
i+ 1

2

, is based on the sign of computed signal
velocities. The HLLC flux is used with Godunov’s first-order method for computation. The
HLLC scheme can be written in the following generic way:

Un+1
i = Un

i +
∆t

∆x

(
F hllc
i+ 1

2
− F hllc

i− 1
2

)
(2.6a)
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where

F hllc
i+ 1

2
=



FLi+ 1
2
, if 0 ≤ SLi+ 1

2

F∗Li+ 1
2
, if SLi+ 1

2
≤ 0 ≤ S∗i+ 1

2

F∗Ri+ 1
2
, if S∗i+ 1

2
≤ 0 ≤ SRi+ 1

2

FRi+ 1
2
, if SRi+ 1

2
≤ 0

(2.6b)

The Euler equations have three distinct characteristic fields in one, two and three space
dimensions. This makes the three-wave solver model HLLC a complete Riemann solver,
for the Euler equations as approximate wave structure of HLLC contains all characteristic
fields of the exact problem. The procedure for computing and selecting the appropriate
fluxes at interfaces using the HLLC three-wave model is described in Appendix A.

There is another family of methods known as the Flux Vector Splitting (FVS) meth-
ods. In the FVS approach, the flux vector at each cell interface is split into two separate
components, one with the positive and the other with the negative direction. Splitting of
the flux vector into positive and negative vectors is based on the sign of the correspond-
ing eigenvalues. The Steger–Warming [179] is an FVS type splitting method. However,
this flux method faces difficulty in solution approach in the vicinity of sonic points due to
non-differentiability at such locations. To circumvent this limitation, Van Leer proposed
an advanced version of this FVS method in [180], and this method was later named after
him. This method had the desirable advancements such as the split Jacobian matrices and
that the split fluxes are degenerate for subsonic flow. This flux method is diffusive leading
to poorly resolved boundary layer in viscous simulations.

The AUSM+-up flux algorithm is an advanced version of the Advection Upstream Split-
ting Method (AUSM) by Liou and Steffen [181], which is a flux vector splitting method
as the name suggests. The inviscid flux vector F (U) is split into two physically distinct
parts, the convective part F (c) and the pressure part F (p), i.e., F = F (c) + F (p). This
method takes into account the physical nature of convection and acoustic propagation pro-
cess while treating them numerically. The convective flux term is treated as a quantity
getting advected at velocity ui+ 1

2
at the interface, whereas the pressure flux is governed

by acoustic speed a in the medium. AUSM method has undergone many modifications
as reported by the works [182–184], and complete evolution of this method is available
in [185]. The AUSM method have a notable drawback in the form of pressure oscillations
along the grid direction with very small velocity component. This is primarily due to the
lack of dissipative mechanism in pressure field. The AUSM+-up proposed by Liou [186],
and modified by Chang and Liou [187], mitigates this problem to some extent and is de-
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signed to provide high accuracy results at all flow speeds. The AUSM+-up algorithm is
given by

Un+1
i = Un

i −
∆t

∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
(2.7)

where
Fi+ 1

2
= F

(c)

i+ 1
2

+ F
(p)

i+ 1
2

.

As in the case of basic AUSM scheme, the inviscid flux vector F is split into two physically
distinct parts; the convective part, F (c) and the pressure part, F (p). However, the flux terms
F (c) and F (p) are redefined as follows

F
(c)

i+ 1
2

= ui+ 1
2

 ρ

ρu

ρe+ P


L/R

= Mi+ 1
2
ai+ 1

2

 ρ

ρu

ρe+ P


L/R

(2.8a)

F
(p)

i+ 1
2

=

 0

Pi+ 1
2

0

 . (2.8b)

HereM is the Mach number of flow, which is the ratio of the flow velocity u to the acoustic
signal speed a. The detailed algorithm of the AUSM+-up scheme with the complete set of
relations is given in the Appendix A. A detailed study on different numerical flux functions
used in Riemann solvers for ideal gases is presented by Kitamura in [188].

2.7 MUSCL Type Slope Limited Riemann Solvers

The concept of MUSCL type schemes for non-linear conservation laws is developed by
Bram Van Leer, and he presented it through a series of papers [189–193] between 1973-
1979. The abbreviation MUSCL stands for Monotonic Upstream-centred Scheme for Con-
servation Laws. The works of Van Leer are among the first attempts to achieve higher
order accuracy by modifying the piece-wise data associated with the first-order method
of Godunov [160] proposed in 1959. The MUSCL approach relies on data reconstruction
for obtaining high–order of accuracy. The MUSCL reconstruction is constrained such that
spurious oscillations are avoided, justifying the usage of the word monotone in the name of
the method. The flux at each cell boundary is calculated from the left and right states after
reconstruction and slope limiting. These fluxes are then assigned as inputs to the Riemann
solver, and the solutions thus obtained, are averaged and used to advance the solution in
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time.

In a one-dimensional spatial domain [0, L], which is discretized intoN computing cells,
Ii[xi−1/2, xi+1/2], and assuming a uniform mesh, we have the mesh size, 4x = xi+1/2 −
xi−1/2, to be a constant. For the Initial Boundary Value Problem (IBVP) governed by the
Euler equations, a system of non-linear hyperbolic conservation laws as follows

Ut + F (U)x = 0 (2.9)

the initial condition is given as
U(x, 0) = U (0)(x)

and the boundary conditions are defined as

U(0, t) = Ul(t) and U(L, t) = Ur(t)

the IBVP problem is expressed using an explicit and fully discrete conservative scheme as

Un+1
i = Un

i +
4t
4x

[
Fi− 1

2
− Fi+ 1

2

]
(2.10)

where4t is the time step size computed based on the CFL criteria.

The objective of using the MUSCL method is to construct a second-order cell interface
flux Fi+ 1

2
as an extension of the Godunov’s first order upwind method. The first step of the

MUSCL algorithm is called the data reconstruction step. In this step, the cell average values
Un
i are replaced locally in each cell Ii[xi−1/2, xi+1/2] by the piece-wise linear functions as

follows
Ui(x) = Un

i +
(x− xi)
4x

4i, x ε [0,4x] (2.11)

where 4i is a suitably chosen slope vector. The piece-wise linear MUSCL reconstruction
step for three consecutive computational cells are illustrated in Figure 2.6

The values of Ui(x) at left and right boundaries of a cell Ii notated respectively as UL
i

and UR
i , are called the boundary extrapolated values. They are defined as follows:

UL
i = Un

i −
1

2
4i (2.12a)

UR
i = Un

i +
1

2
4i (2.12b)

The reconstruction process retains the conservation as the integral of Ui(x) over any cell
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Figure 2.6: Piece-wise linear MUSCL reconstruction for three consecutive computing cells

Ii is same as Un
i . We also have to remember that for the Euler equations, U and 4i are

three-component vectors. For the MUSCL-Hancock method [194, 195], the second step is
used to evolve the boundary extrapolated values to a time4t/2 as shown below.

U
L

i = UL
i +

1

2

4t
4x

[
F (UL

i )− F (UR
i )
]

(2.13a)

U
R

i = UR
i +

1

2

4t
4x

[
F (UL

i )− F (UR
i )
]

(2.13b)

The inter-cell fluxes F (UL
i ) and F (UR

i ) are evaluated from the boundary extrapolated val-
ues UL

i and UR
i respectively of each cell Ii. These initially extrapolated and further evolved

values at the cell boundaries constitute a Riemann problem at each cell interface ‘i + 1/2’
where

UL ≡ U
R

i and UR ≡ U
L

i+1 (2.14)

These Riemann problems are solved to obtain the similarity solution of the form Ui+ 1
2
(x/t).

The inter-cell flux Fi+ 1
2

in Equation (2.12) is computed from the Riemann solution as fol-
lows

Fi+ 1
2

= F
(
Ui+ 1

2
(0)
)

(2.15)

where Ui+ 1
2
(0) is the value of Ui+ 1

2
(x/t) at x/t = 0. By using these values of inter-cell

fluxes, the value of the cell-averaged variable vector U is updated to the n+ 1th time level
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as per Equation (2.12), and the solution is thus marched forward in time.

A possible choice of slope vector4i is

4i =
1

2
(1 + ω)4i− 1

2
+

1

2
(1− ω)4i+ 1

2
(2.16)

where,
4i− 1

2
= Un

i − Un
i−1 and 4i+ 1

2
= Un

i+1 − Un
i

and ω ε [−1, 1]. More accurate piece–wise MUSCL data reconstructions are possible, like
the piece–wise quadratic reconstruction available in [196].

The higher order spatial discretisation schemes usually exhibit spurious oscillations
due to sharp changes in solution domain arising from the presence of shocks, discontinu-
ities etc. The slope limiters have a major role in limiting the solution gradient near shocks
and discontinuities. The pioneering works in the field of slope limiters (also called flux
limiters) [197–199] are associated with Boris and Book. The limiter functions are usually
constrained to be greater than or equal to zero. For cases of sharp gradients, zero gradi-
ents, and slope direction changes, the limiter function takes a value of zero, such that the
flux is represented by a low-resolution scheme. Similarly, for smooth solutions, the limiter
value is equal to 1, which represents a high-resolution scheme for the flux. Based on the
difference in switching characteristics, there are numerous limiters available. The selec-
tion of a limiter in a computational model is based on the particular problem handled and
solution schemes used. As none of the available limiter functions are found to work well
for all problems, a particular choice of this function is usually made on a trial and error ba-
sis. Harten introduced the concept of Total Variation Diminishing (TVD) schemes in [200]
following the flux limiter approach. A comparative study of the TVD-limiters is available
in [201,202]. The work by Luttwak and Falcovitz [203] discusses slope limiting for vectors
by proposing a novel vector limiting algorithm, and a geometry independent slope limiter
for the discontinuous Galerkin method is presented by Aizinger in [204]. The effect of
limiting functions in the accuracy of numerical solutions are discussed by Liu et al. [205]
and Ladonkina et al. [206]. Advanced slope limiters for Euler equations are presented by
Kitamura and Hashimoto in [207] and by Bragin et al. in [208], and a direction-aware slope
limiter for three-dimensional cubic grids is proposed by Velechovsky et al. in [209].
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2.8 Friction Models for Liquid Transients

In the numerical modelling of liquid transients, properly quantifying frictional losses in
the systems is crucial to the accuracy of flow simulations. There are steady and unsteady
models available for estimating the transiently fixed and varying losses associated with the
flow. There are few points to be considered while applying a friction model for simulating
highly transient liquid flows. For flow situations involving high pressures, the liquid can be
treated as slightly compressible. Such a treatment of the fluid shall help in accounting for
small variations in liquid density and speed of sound during the transient. The assumption
that the pipe material exhibits elastic effects and computing the signal propagation celer-
ity inside the pipe based on this, improve the accuracy of characteristics modelling. The
importance of including the unsteady friction models and the viscoelastic considerations
during the modelling of pipe fluid transients is outlined by Duan et al. [210]. Most of
the liquid transients are associated with sharp variations in different flow parameters and
neglecting these variations in a few parameters can lead to computational inaccuracies.

In the flow simulations, the steady component of friction is very often modelled using
the Darcy-Weisbach relation [211], which defines the steady part of the friction Fs as

Fs =
f

d

u |u|
2g

(2.17)

where, f is the Darcy-Weisbach friction factor, d is the pipe-diameter, u is the flow velocity,
and g is the accelaration due to gravity. The quasi-steady friction models assume that the
unsteady friction has no contribution to energy losses in the flow. These models include
only the quasi-steady part and is thus computationally economical.

During a hydraulic transient in a pipe system, the generated pressure waves propagate
inside the pipeline and dissipate down over a period of time. The system consequently
reaches another steady state. This dissipation of energy in the system is a result of hy-
draulic resistance offered by internal fluid friction and the friction at system boundaries.
The friction models considering only the steady part are commonly found to be insufficient
in accounting for the complete frictional losses associated with transient flows. This is be-
cause considerable loss occurs in transient flows due to the unsteadiness of the flow, making
it necessary to quantify these losses by including an unsteady component of friction. The
unsteady friction models can be classified into two groups based on the timeline of the flow
acceleration data used in these models.

The first group of unsteady friction models uses past flow acceleration data for the cal-
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culation of unsteady friction value. The unsteady friction models proposed by Zielke [212],
Trikha [213], Vardy and Brown [214] etc. all belong to this group. The analytical model
developed by Zielke [212] defines unsteady head loss as a function of the flow accelera-
tion and the weighted velocity changes from the previous time instant. The definition of
unsteady head loss per unit length, Fus, from the Zielke model is expressed as follows

Fus(t) =
16ν

gd2

∫ t

0

∂u

∂t
(u) ∗W (t− u)du (2.18)

where ν is the kinematic viscosity, W is the weighting function, and ∗ is the convolu-
tion operator. Trikha [213] and Vardy and Hwang [215] developed characteristics based
models for transient friction in pipes. While Zielke [212] proposed a weighting function
appropriate for laminar flows, Trikha [213] simplified this model for better computational
efficiency. Vardy and Brown extended the definition of these weighting functions for tur-
bulent flows in smooth pipes through a series of works [214, 216, 217], followed by the
application to rough pipes [218]. However, the computation results of Vardy and Brown
are of short duration, which is insufficient to understand the trend of energy decay in the
transient flow.

The second group of unsteady friction models uses instantaneous value of acceleration
as observed with the models of Daily et al. [219], Brunone et al. [220, 221]. Daily et
al. [219] were among the first to suggest the dependence of unsteady friction losses on the
flow acceleration. The friction model developed by them from experimental studies defines
unsteady friction as follows.

Fs =
f

d

u2

2g
+
k1
g

du

dt
(2.19)

where, k1 is a non-dimensional coefficient which takes a value in the range of 0.01-0.015
for accelerating flows and a value of 0.62 for decelerating flows. Carstens and Roller [222]
later proposed the parameter k1 as a function of the flow Reynolds number.

An additional convective acceleration term was included in the friction model by Brunone
et al. [220]. It was included such that, the unsteady friction is present when u ∂u/∂t > 0

and the unsteady part is removed for u ∂u/∂t < 0. In the derivation of classical water ham-
mer equations, the velocity gradient term, ∂u/∂x, is usually ignored due to its negligible
magnitude. This term after multiplying with signal celerity, a, is added to instantaneous
acceleration, ∂u/∂t. These two acceleration terms are further combined and then taken
product with a constant coefficient, k2 in the Brunonne’s unsteady friction model, as shown
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below.
Fs =

f

d

u2

2g
+
k2
g

(
∂u

∂t
− a∂u

∂x

)
(2.20)

where k2 is an experimentally evaluated parameter that plays a crucial role in the friction
model. This parameter may be assumed as a constant or can be defined as a function of the
initial Reynolds number. The unsteady friction models defined using instantaneous values
in the flow is relatively lucid and computationally efficient.

The effects of viscous shear in liquid transients in a cylindrical tube were explored by
Holmboe and Rouleau [223] through two different experiments using a rectangular pres-
sure pulse. Schultz [224] tried to understand the impact of unsteady friction on pressure
wave propagation inside tunnels. Bergant et al. [225] reviewed various unsteady friction
models developed for transient pipe flows and confirmed the valid range of application of
these models. Select unsteady friction models for transient pipe flow simulation are experi-
mentally investigated and validated by Adamkowski and Lewandowski [226]. Vítkovskỳ et
al. [227] tested various unsteady friction models for their suitability in modelling different
types of flow transients using experimental data. Norooz et al. [228] present a review of
the different unsteady friction models for one-dimensional transient pipe flows.

2.9 Valve-induced Hydraulic Surges

The fast closure of valves is a common scenario observed in various piping systems. Such
closures subsequently result in sudden change of flow conditions in the system. The sud-
den change in the velocity of the fluid in motion causes a surge in fluid pressure and this
phenomenon is commonly known as the Water hammer effect. Water hammer is a perfect
example of a liquid transient where the fluid-compressibility effects cannot be neglected.
The inertia of the forward-moving fluid before it is brought to rest compresses the fluid
volume ahead of it against the changing boundary. During this process of deceleration,
kinetic energy of the flow is transformed into equivalent pressure energy. The compression
front thus developed propagates as a wave through the pipeline travelling at the speed of
sound. The maximum pressures during such a surge can exceed the initial static pressure
by several orders of magnitude. This information is very crucial during the design stage to
ensure safety to the system components and accessories. Sudden valve closures not only
induce high-pressure situations but can also create low pressures due to the formation of
rarefaction waves. This may further lead to cavitation if the local pressure at any point in
the system drops below the vapour pressure of the liquid.
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There are numerous analytical and experimental studies on valve-induced hydraulic
surges, where the transient variation of different flow parameters are investigated. Mitra
and Rouleau [229] studied the axial and radial variations observed in the transient pressure
waves propagating through the liquid transmission lines, generated from valve closures.
Jelev [230] presented a hysteretic friction-based method for modelling the damping of pres-
sure oscillation during hydraulic surges. This method considers water column dynamics,
compressibility of fluid and energy losses by the elasticity of pipe walls for a pressurized
pipe. Liou [231] investigated the maximum pressure head emanating from linear closure of
valves using a non-dimensional variable formulation. Brunone et al. [232] experimentally
measured the velocity for valve-induced transients to demonstrate the presence of flow re-
circulation, flow reversal and increase in the turbulence intensity for the transient event.
Numerous simulations and experiments carried out by Ramos et al. [233] investigated the
dynamic response of pipelines based on different aspects such as pipe materials, diame-
ters, thickness, lengths and transient conditions. Covas et al. presented the dynamic effect
of pipe-wall viscoelasticity in valve-induced hydraulic transients in their works [234,235].
Neuhaus and Dudlik [34] presented data from several valve-closure experiments performed
at the PPP test rig at Fraunhofer for different initial temperatures and system pressures.
This work also discusses both the importance of including and the difficulty of modelling
the numerous effects that can occur during such transient events.

Choi et al. [236] discussed the issues related to pressure monitoring for valve-induced
transient flow in water pipelines, such as the influence of sampling location and sampling
interval on pressure measurements. Perez and El-Bayoumi [237] studied the effect of valve
characteristics of a motor-operated valve such as flow coefficient, valve curve and stroke
time on the surge pressures in delivery terminals. Three-dimensional CFD simulation of
valve-induced water hammer phenomena in a simple tank-pipeline valve system is pre-
sented by Yang et al. [238]. The CFD model used the sliding mesh technique and con-
sidered the compressibility effects in water. Jung and Karney [239] clearly outline the
key differences and merits of different unsteady pipe flow models such as the water ham-
mer models, the rigid water column analysis, the quasi-steady analysis, and the Joukowski
approach. Bertaglia et al. [240] performed a comparative study on the relative accuracy
and efficiency of various methods used for numerical simulation of hydraulic transients in
visco-elastic pipes.

The impact of valve closure duration and trends on the surge characteristics are explored
through different studies. For turbulent conditions, the effect of valve-closure schedule on
the surge characteristics was numerically studied by Azoury et al. [241] using the MOC
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method. This study also proposed a chart for determining the valve schedule for minimis-
ing surge pressure. The study by Liou [231] graphically demonstrated the dependency
of maximum head generated during a linear valve closure on the period of closure of the
valve. Bazargan-Lari et al. [242] proposed a mathematical curve developed using a multi-
objective optimisation model, for the optimal valve closing rule for controlling the surge
pressure. A recent study by Yuce and Omer [243] investigated the effect of various valve
closure schemes in pipelines such as sudden, linear and stepwise closures on the hydraulic
transient characteristics.
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Chapter 3

A New Equation of State for Compress-
ible Liquid Water

3.1 Introduction

Water is the most common liquid in daily life situations. Though it is frequently observed
in both industrial and non-industrial flow applications, water is rarely modelled as a com-
pressible fluid. From atmospheric pressure up to a few hundred bars of pressure, water is
essentially an incompressible liquid as its density does not exhibit a strong functional rela-
tionship with its pressure. However, there are flow situations and applications where liquid
water is exposed to large variations of pressure and temperature. Different industrial ap-
plications where liquid water is exposed to very high pressures are outlined in Section 2.2.
For flow situations where water density exhibits a strong association with pressure or tem-
perature or both, adequate equations of state are necessary to address the compressibility
effects in the liquid. Details of the compressible modelling of liquid water from different
studies and information regarding various EOSs for water are presented in Section 2.3. The
main reason for the incompressible treatment of water by most mathematical models is the
presence of complexities associated with the use of EOSs. Ideally, an EOS for a liquid
should have a relatively simple structure for the ease of incorporation into existing math-
ematical models along with the ability to provide accurate property estimates. However,
there are limitations for most of the available EOSs for water in the form of a limited range
of operation, complicated structure etc. In modelling compressible liquid flows, the relia-
bility of the EOS used over the specified property range and the ease of its incorporation
into flow model determines the overall efficiency of the model.

This chapter analyses some select equations of state which are frequently used in com-
pressible modelling of water. EOS such as the Tait, the Stiffened Gas, and an EOS de-
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veloped by Metayer and Saurel for predicting the saturation states of water, known as the
Noble Abel Stiffened Gas (NASG), are considered here. Isothermal density data from Na-
tional Institute of Standards and Technology (NIST) database for different temperatures
within a specified range and over the wide pressure range of 1 bar to 10,000 bar were ob-
tained. A modification to the NASG EOS is proposed to apply it for reliable prediction of
liquid water properties away from the saturation conditions. The new EOS so developed is
named as the ‘Modified NASG EOS’. Accuracy of all the four EOS is quantitatively evalu-
ated by comparing the predicted densities with the corresponding NIST data over the wide
pressure range. Performance of the EOS is also evaluated over selected temperature range.
This chapter also discusses the qualitative ability of different state equations in reliably
modelling isothermal and non-isothermal flow situations.

Section 3.2 of the chapter briefly explains some select EOS for water. The details of
the development of ‘Modified NASG EOS’ is presented in Section 3.3 along with the eval-
uation strategy adopted for this compressible model. Section 3.4 presents the results from
comparative study and discusses the major observations and findings.

3.2 Commonly Used Equations of State for Water

Modelling of water as a compressible liquid requires relations which connect the proper-
ties of water such as pressure, density, temperature etc. These relations should also perform
satisfactorily at the pressure ranges where compressible effects in water become predomi-
nant. There are many EOSs available for water which are applicable over different pressure
and temperature ranges. Some of them are defined over a wide range of pressure, and the
demerits associated with most of such EOS are either the reduced accuracy in property pre-
dictions or their inability to capture complete physics of the problem. Those equations of
state which are applicable over a very narrow range of pressure have the advantage of pro-
ducing accurate results within their stipulated range, but outside this range, the predicted
values may be highly inaccurate. Here, three different EOSs are initially considered which
are frequently used for compressible modelling of water, viz., the Tait EOS, the Stiffened
Gas EOS, and the NASG EOS. The comparatively lucid structure and ease of incorporation
into flow equations are the two major attributes considered while these EOS were chosen
for the study. Below we provide a brief description of each of these EOS.

32



3.2.1 The Tait Equation of State

Scottish mathematician and physicist Peter Guthrie Tait proposed this EOS [81]. The equa-
tion has gone through a number of modifications over the last century, and one such modi-
fication is by R. H. Cole in 1948 for modelling the response of liquid water to underwater
explosions as reported in [244]. The historical evolution of the Tait equation is presented
in [85]. A latest version of Tait EOS as given in [245] relates pressure P and density ρ as
follows:

P = K0

[(
ρ

ρ0

)θ
− 1

]
+ P0 (3.1)

In equation (3.1), P0 and ρ0 are respectively the pressure and the density of water at the
reference temperature. Parameters K0 and θ are weak functions of temperature and pres-
sure. These parameters are held constant and are assigned the following values, θ = 7 and
K0 = 3× 108 Pa. This is an isothermal EOS due to which there is no coupling established
between temperature and density. The caloric equation that is thermodynamically consis-
tent with the pressure-density relation, is a constant specific heat relation which defines the
specific internal energy ε as follows:

ε = Cv (T − T0) + ε0 (3.2)

In equation (3.2) Cv is the specific heat at constant volume for water with a value of
4.183 kJ/kgK and T0 is the reference temperature taken to be 273.15 K. The value of spe-
cific internal energy at the reference temperature, ε0 = 0.617 kJ/kg. The speed of sound c
with the Tait equation is computed from the following relation:

c =

[
θ (P − P0 +K0)

ρ

]1/2
(3.3)

The Tait equation is very accurate despite its isothermal behaviour. The limitation of this
EOS is mainly in its application to non-isothermal flow modelling.

3.2.2 The Stiffened Gas Equation of State

The Stiffened Gas EOS is a simplified form of Grüneisen EOS [246]. The Stiffened-gas
model proposed by Harlow and Amsden in [89] and used by FlÅtten et al. in [96] relates
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pressure P , density ρ, and temperature T as follows:

P = ρ (γ − 1)CvT − P∞ (3.4)

In equation (3.4) P∞ is a constant parameter representing the molecular attraction between
water molecules, Cv is the specific heat at constant volume and γ is the ratio of specific
heats for the liquid. The expression of stiffened gas EOS is identical to ideal gas equation
for zero value of the parameter P∞. The speed of sound relation consistent with this EOS
is as follows

c =

[
γ

(P + P∞)

ρ

] 1
2

(3.5)

The values of the parameters in equation (3.5) for liquid water are γ = 2.85, P∞ = 8.3302×
108 Pa, and Cp = 4155 J/kgK. As shown in the section of results, Stiffened gas EOS over-
predicts the density of water. Another drawback of this EOS is the returning of negative
pressure values for density values lower than reference density. A regularized version of
stiffened-gas equation of state is presented by Ghidaglia and Mrabet [247] that corrects
this unphysical behaviour of the EOS. Despite these inaccuracies, Stiffened gas equation
is amongst the most widely used EOS for water due to its simple structure and ease of
inclusion into flow models. An adiabatic version of stiffened gas EOS known as ’Cole
equation of state’ is also available for liquids [248].

3.2.3 The Noble-Abel Stiffened Gas (NASG) Equation of State

Noble-Abel Stiffened Gas EOS combines the Noble-Abel EOS [249] and the Stiffened
Gas EOS. This EOS brings about significant improvement in Stiffened Gas equation and
is primarily meant for the prediction of saturation properties of certain liquids. Métayer
and Saurel formulated this equation in [90] where the EOS parameters for different fluids
are determined from their respective experimental saturation curves. The NASG caloric
equation relates the pressure P , the specific volume v, and the specific internal energy ε as
follows:

P = (γ − 1)
(ε− q)
(v − b)

− γP∞ (3.6)

where γ, P∞, q, and b are constant coefficients characteristic of the thermodynamic proper-
ties of fluid. Specifically, q is the heat bond of liquid water and b represents the co-volume
of the fluid. The combined term (γ − 1)(ε− q) represents thermal agitation, (v− b) repre-
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sents repulsive short distance effects linked to molecular motion, and γP∞ corresponds to
attractive effects leading to molecular cohesion in condensed states. The value of NASG
coefficients for liquid water in temperature range 300-500K is given in Table 3.1. The
quantities ε and v are computed from the relevant equations which are available in [90].

Table 3.1: Coefficients for the NASG EOS

Cp Cv γ P∞ b q

(J/kgK) (J/kgK) (Pa) (m3/kg) (J/kg)

4285 3610 1.19 7.028×108 6.61×10−4 -1177788

3.3 The Modified-NASG Equation of State

The original NASG EOS proposed in [90] is for the prediction of saturation properties of
water. The reference state used for calculating parameter P∞ for NASG EOS is the satura-
tion state corresponding to pressure P0 = 1.0453 bar at which density ρ0 = 957.74 kg/m3

and speed of sound c0 = 1542.0 m/s. As a result, this EOS is found to over-predict the den-
sity of water at lower pressure range of 1×105 Pa which is its major drawback. The NASG
EOS thus demands a robust modification which may enable it to predict the property of
water away from saturation conditions more accurately, without significantly altering the
structure of NASG EOS. Therefore, the proposed modification to this EOS is in line with
preserving its basic structure given by Equation (3.6).

The major step in the modification is to recalculate the parameter P∞ using a new
reference state. The NIST values of density and speed of sound at the temperature of 300 K
and the pressure of 1 × 105 Pa are 996.56 kg/m3 and 1501.5 m/s respectively. Therefore,
we use a new reference state that is very close to this, which is {P0, T0, ρ0, c0}={1 ×
105 Pa, 300 K, 997.0 kg/m3, 1500 m/s}. The specific volume relation and the speed of sound
relation are given as follows:

v =
(γ − 1)CvT

P + P∞
+ b (3.7)

c =

[
γv2 (P + P∞)

v − b

]1/2
(3.8)

With the new reference state the value of P∞ and b are to be recomputed using the set of
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equations (3.7) and (3.8). Rearranging equation (3.7) we get:

v − b =
(γ − 1)CvT

P + P∞

On substituting this expression of (v − b) into the sound speed relation given by equa-
tion (3.8), we arrive at the following relation:

c =

[
γv2 (P + P∞)2

(γ − 1)CvT

]1/2

Rearranging the above equation for P∞ we get:

P∞ =
c

v

[
(γ − 1)CvT

γ

]1/2
− P

On substituting the reference property values and the fixed parametric values as follows:

P∞ =
1500

(1/997)

[
(1.19− 1)× 3610× 300

1.19

]1/2
− 1× 105 = 6.2178× 108 Pa

Now, rearranging for b from the equation (3.7):

b = v − (γ − 1)CvT

P + P∞

On substituting the reference property values,the fixed parametric values and the updated
value of P∞ as follows:

b =
1

997
− (1.19− 1)× 3610× 300

1× 105 + 6.2178× 108
= 6.7212× 10−4 m3/kg

The values of P∞ and b are thus calculated to be 6.2178× 108 Pa and 6.7212× 10−4 m3/kg
respectively. The values of parameters Cp, Cv, γ, and q are kept unaltered from the original
NASG formulation. The coefficients for the modified NASG EOS are given in Table 3.2.

Table 3.2: Coefficients for the modified NASG EOS

Cp Cv γ P∞ b q

(J/kgK) (J/kgK) (Pa) (m3/kg) (J/kg)

4285 3610 1.19 6.2178×108 6.7212×10−4 -1177788

36



3.3.1 Evaluation Strategy

For a reliable evaluation of the proposed EOS, density estimates from each EOS is com-
pared with corresponding data from the National Institute of Standards and Technology
(NIST). Refer to [68, 250] for the EOS and auxiliary models used by the NIST for gener-
ating the thermo-physical data for water. Isothermal density estimates at ten different tem-
peratures between the range 280-370 K and over the pressure range of 1×105 Pa- 1×109 Pa
are generated with the Tait EOS, the Stiffened Gas EOS, the NASG EOS, and the pro-
posed modified version of the NASG EOS. This temperature range is chosen because it
lies between the freezing point temperature (273.15 K) and the boiling point temperature
(373.15 K) of water at atmospheric pressure. The specified pressure range is chosen be-
cause, the highest pressure data available in the NIST database is for 1×109 Pa and the
lowest range 1×105 Pa is set close to the atmospheric pressure. The generated values are
compared against the NIST isothermal data at the same temperature over the same pressure
range. Accuracy of the EOS at each temperature range is quantified by calculating the av-
erage percentage error over the entire pressure range at that temperature. The trend in the
variation of error with the temperature range is also analysed. To have a better understand-
ing of the safe range of application of each EOS, the maximum percentage error at each
temperature from every EOS is also calculated.

3.4 Results and Discussion

This section outlines major observations of the study. Isothermal density values are gener-
ated with the Tait EOS, the Stiffened Gas EOS, the NASG EOS, and the modified NASG
EOS at ten different temperatures in the range 280 -370 K, and over the pressure range of
1 × 105 Pa to 1 × 109 Pa. These values are compared against the density values from the
NIST isothermal database for the corresponding states. Accuracy of various equations of
state at each temperature level is quantified by computing the respective average % error
over the complete pressure range. These average % error values are reported in Table 3.3.
Conclusions on the reliability of an EOS cannot be arrived at only by knowing the average
error over a specified range. Information on maximum deviation of estimated values with
EOS from reference values and the respective error bound over this range is also important.
This will reassure that at every state point within the specified property limits, the EOS
under consideration is equally reliable. The maximum % error in the density estimates
with each EOS against the NIST data for all the temperature ranges studied are reported in
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Table 3.4.

Table 3.3: Average % error in density estimates with EOSs against the NIST database

Temperature (K)
Average % error

Tait Stiffened Gas NASG Modified NASG

280 0.81 40.10 5.62 2.25
290 0.50 41.29 5.03 1.79
300 0.24 43.13 4.51 1.39
310 0.31 39.29 4.20 1.12
320 0.69 35.61 3.92 0.97
330 1.14 32.35 3.66 0.87
340 1.60 29.53 3.41 0.83
350 2.08 26.89 3.18 0.82
360 2.57 24.80 2.97 0.83
370 3.07 22.82 2.78 0.87

From Table 3.3 it is observed that the average % error values associated with Stiffened
Gas EOS are extremely large compared to other EOS considered. As an example, the low-
est value of average error observed with Stiffened Gas EOS at a temperature of 370 K is
above 20 %.The trend observed in the average error with this EOS is such that the error ini-
tially shows an increase with increase in temperature from 280 K till 300 K and then shows
a continuous decrease with further rise in temperature. The highest average error value of
43.13 % is observed at the temperature of 300 K. The values of maximum % error in den-
sity from Table 3.4, clearly suggests the non-reliability of Stiffened Gas EOS for modelling
water compressibility. The trend observed in the variation of maximum error with temper-
ature for this EOS, is same as that observed with the average error. The maximum error
at all the ten temperatures considered crosses the 50 % bound, and the highest error value
reported is 82.67 % at 300 K.

Comparison between the Stiffened Gas EOS, the Tait EOS, the NASG EOS and the
proposed modified version of the NASG EOS with the NIST isothermal data for 300 K
is shown in Figure 3.1. Isothermal density values predicted by each of the EOS at 300 K
over complete pressure range is displayed in the Figure 3.1(a) along with NIST data in con-
tinuous bold line. Figure 3.1(b) provides the corresponding % error computed against the
NIST data for this temperature. Figures 3.2 and 3.3 display the comparison of densities and
associated errors with different EOS for the temperatures of 330 K and 360 K respectively.
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Table 3.4: Maximum % error in density estimates with EOSs against the NIST database

Temperature (K)
Maximum % error

Tait Stiffened Gas NASG Modified NASG

280 1.22 70.36 7.05 2.40
290 0.93 76.10 6.05 2.06
300 0.66 82.67 5.21 1.78
310 0.56 77.90 4.58 1.53
320 1.00 73.05 4.24 1.40
330 1.47 68.50 3.95 1.99
340 1.96 64.30 3.71 2.51
350 2.50 60.17 3.48 2.95
360 3.08 56.60 3.29 3.32
370 3.79 53.08 3.11 3.63

If the complete density versus pressure plot for Stiffened Gas EOS were to be included
in these figures, the respective plots for other state equations could not have been clearly
displayed due to the large disparity in the density scales involved. For this reason, only
a portion of the density versus pressure plot for this EOS is shown in all these figures.
The partly visible data itself implies large deviations associated with Stiffened Gas EOS in
comparison to NIST data. The results of Stiffened Gas equation is limited in the error plots
also, as the error in density estimates is found to be very large and hence would impede the
clear visualisation of results from other EOS.

The average error in density estimates with Tait EOS follows a trend where the max-
imum accuracy of this EOS is observed at 300 K and the accuracy reduces to either side
of the temperature scale as one moves away from 300 K. This observation is attributed to
the fact that the parameters P0 and ρ0 in Tait EOS is defined at the reference temperature
of 300 K. It is also worthwhile to note that Tait EOS is highly accurate over temperature
range of 280 - 320 K where the average error is below 1 %. The maximum error in density
estimates with Tait EOS also exhibits a similar trend, with the exception that the minimum
value is observed against temperature of 310 K. The results from Tait EOS shifting farther
away from the NIST data at higher temperatures are clearly depicted in Figures 3.2 and
3.3. However, we could also see that the highest error reported with this EOS for the entire
range considered is under 4 %.

From the values in Table 3.3, the NASG EOS shows a steady decrease in both average

39



0 . 0 2 . 0 x 1 0 8 4 . 0 x 1 0 8 6 . 0 x 1 0 8 8 . 0 x 1 0 8 1 . 0 x 1 0 9
9 5 0

1 0 0 0

1 0 5 0

1 1 0 0

1 1 5 0

1 2 0 0

1 2 5 0

1 3 0 0

1 3 5 0

De
ns

ity 
(kg

/m
3 )

P r e s s u r e  ( P a )

 S t i f f e n e d  G a s
 T a i t
 M o d i f i e d  N A S G
 N A S G
 N I S T

(a)

0 . 0 2 . 0 x 1 0 8 4 . 0 x 1 0 8 6 . 0 x 1 0 8 8 . 0 x 1 0 8 1 . 0 x 1 0 9
0

2

4

6

8

1 0

Err
or 

%

P r e s s u r e  ( P a )

 S t i f f e n e d  G a s
 T a i t
 N A S G
 M o d i f i e d  N A S G

(b)

Figure 3.1: Comparison of EOS with NIST data at 300 K

error and maximum error with increase in the temperature range. This behaviour of NASG
EOS is expected because it is originally developed to predict the properties of water close
to the saturated liquid line. As the state of liquid moves farther away from the saturation
region, accuracy of the property estimates using this EOS diminishes. The average error
reaches slightly above the 5 % bound with NASG EOS for temperatures below 300 K. The
5 % bound in maximum error with this EOS is observed for temperatures below 310 K, and
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Figure 3.2: Comparison of EOS with NIST data at 330 K

the highest value of error within the entire range studied is just above 7 %.

It is observed from Table 3.3 that the average error of the modified NASG EOS contin-
uously decreases from 280 K to 350 K, and then slightly increase towards 370 K. However,
from Table 3.4 it is observed that maximum error in density estimate for the modified EOS
continuously decreases and reaches a minimum at about 320 K and increases thereafter.
This is because, the parameters of the modified NASG EOS are recomputed using a new
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Figure 3.3: Comparison of EOS with NIST data at 360 K

reference state at the temperature of 300 K and pressure of 1 × 105 Pa, and as the temper-
ature moves farther away from 300 K the accuracy of prediction at lower pressure range
decreases resulting in increase of maximum error. This increase in maximum error is not
reflected in the average error value up to 350 K. This is because the under-prediction of
density with modified NASG EOS occurs only towards the lower pressure range and the
error over the remaining range of pressure is very small in magnitude. The density plot and
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the error plot at 330 K as given in Figures 3.2(a) and 3.2(b) demonstrate this very clearly.

From the error values reported in Table 3.3 it could be concluded that density estimates
using modified NASG EOS is superior to the original version of NASG EOS over the entire
temperature range studied. It can also be seen from Figure 3.1 that error estimate in density
is superior for the entire range of pressure at 300 K when modified EOS is used. From
Figure 3.1 (b), we can see that the maximum error for NASG EOS which is slightly above
5 %, is brought down to below 2 % by the proposed modification to this EOS. The modified
NASG EOS is observed to be highly accurate over higher temperature range of 330 K to
370 K with average error below 1 % and is clearly superior to Tait EOS in this temperature
range. However, at the temperature ranges close to 300 K, as observed from Fig. 3.1, Tait
EOS predicts density closest to NIST data with maximum error below 1 %.

It can be observed from the Figure 3.2, for temperature range close to 330 K, for pres-
sures above 1×108 Pa, the modified NASG EOS is much more accurate than Tait EOS, and
a major portion of density estimates in this range falls below 1 % error bound. For higher
temperatures close to 360 K range, as Figure 3.3 demonstrates, modified NASG is clearly
dominant over all the other EOS. Except for lower pressure ranges, this EOS offers density
estimates with error below 0.5 %, which is almost one fourth of the error associated with
Tait EOS over the same region. From the entire data available in Tables 3.3 and 3.4, we
could clearly observe that lowest error bounds are maintained by modified NASG EOS,
which falls below 4 % and is also marginally superior to that of Tait EOS.

Reliability of various equations of state in estimating different fluid properties could be
elucidated from the quantitative analysis performed here. However, a qualitative analysis
is also needed to determine the applicability of these EOS for various flow problems. The
Stiffened Gas, the NASG, and the modified NASG, all three are non-isothermal equations
of state. However, the Tait EOS, which is amongst the most accurate state equations for
water, is isothermal. That is to say that the Tait EOS is incapable of relating variations
in fluid temperature to other fluid properties. Because of this drawback, the application
of Tait EOS is limited to isothermal and near-isothermal flow cases. Therefore, Tait EOS
could not be relied upon for modelling flow problems involving considerable variation in
temperature. Though the other three non-isothermal EOS mentioned could relate fluid
temperature to other fluid properties, there are also few limitations. As already explained,
Stiffened Gas EOS is non-reliable because of the very low accuracy in property estimates.
The NASG EOS can be reliably applied for modelling isothermal and non-isothermal flow
problems, subject to the limited accuracy of this EOS.

The modified NASG EOS is, therefore, the most suitable choice for modelling com-
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pressibility effects in water for isothermal and non-isothermal flow cases, especially where
high accuracy is expected in fluid property estimates. For example, we could consider the
theoretical problem of a liquid shock tube with water as the tube fluid. For such a non-
isothermal compressible-flow problem, where the transient variations in temperature and
pressure are expected to be large, the EOS used for modelling compressibility effects in
liquid is also expected to robust. An isothermal EOS, irrespective of its accuracy, may not
model the complete physics of such a problem.

From the quantitative evaluation of equations of state by comparing them with the NIST
data, and by analysing them qualitatively for their applicability, we claim overall superiority
of the modified version of NASG EOS over the other three equations of state considered.
The high accuracy in density estimates provided by modified NASG EOS over the entire
range of pressure and temperature studied, coupled with its ability to capture the physics
of problems for wide range of temperature variation, clearly demonstrates the superiority
of this equation of state. The modified NASG EOS is hence recommended for situations
where high accuracy in density estimation is desired and to model compressible liquid
water over the temperature range of 280 K to 370 K and pressure range extending from
1×105 Pa to 1×109 Pa, within which maximum error is under 4 %.

3.5 Summary

An equation of state (EOS) for compressible water is presented for the application over a
wide range of pressure. The proposed EOS is a modified form of Noble Abel Stiffened Gas
equation (NASG) which was originally developed for the prediction of saturation properties
of water. Three well-known EOS for water viz., the Tait EOS, the Stiffened Gas EOS,
and the NASG EOS are used in the comparative study of the proposed EOS. Accuracy of
density estimates of the modified EOS is quantified by comparing it with the published
NIST data. Evaluative study of the EOS is performed over pressure range of 1×105 Pa to
1×109 Pa and temperature range of 280 K to 370 K. The analysis reveals supremacy of the
modified version of the NASG EOS over the original version for its improved accuracy and
suggests its applicability over a wide range of pressure. The accuracy of the proposed EOS
is very high and even comparable with that of the Tait EOS at lower temperature range. At
higher temperature range from 330 K to 370 K this EOS is found to be far more accurate
than Tait EOS. A qualitative analysis is also performed based on the capability of various
EOS to model isothermal and non-isothermal flow problems. The combined analysis is
used to demonstrate the robustness of modified NASG EOS. The superiority of modified
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NASG EOS over Tait EOS in modelling non-isothermal flow problems with high accuracy
is also revealed in this study.

45





Chapter 4

Analytical Solution to the Water Shock
Tube: A Benchmark Problem in Com-
pressible Liquid Flows

4.1 Introduction

Developing flow solvers for numerical simulation of compressible liquid flows with sharp
change in properties and benchmarking them is a challenging task. This is mainly due
to the lack of relevant test case problems for which analytical solution is available. The
conventional shock-tube problem of Sod [251] which uses air as working fluid, is the most
commonly used test case for benchmarking flow solvers developed for simulation of com-
pressible flows. The main reason for selecting Sod’s shock-tube problem is that it has a
relatively simple setup and an exact solution [252] available. The application of this test
problem, however, is limited to gases, since analytical solution with liquid shock-tube prob-
lem is not currently available in the literature. More information on gas shock tube problem
such as problem setup, associated flow physics, and its various applications are presented
in Section 2.4 of Chapter 2.

In this chapter we attempts to develop an analytical solution for shock tube problem
with liquid water as the working fluid. The main pre-requisite for the development of an an-
alytical solution for a problem involving compressible liquid is an equation of state (EOS)
for liquid. The liquid EOS plays a crucial role in the development of solution by providing
additional relations which are required for mathematical closure. We have earlier devel-
oped an equation of state for compressible water called the Modified NASG EOS [253] in
Chapter 3. This equation of state is capable of producing high accuracy density estimates
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over a wide range of pressure. It is reformulated and combined into the analytical solu-
tion for a gas shock tube, to develop the new analytical solution for liquid (water) shock
tube problem. Information on various studies and applications related to liquid shocks and
shock tube experiments are available in Section 2.5 of Chapter 2.

This chapter is organised as follows. Section 4.2 explains setup of the water shock tube
problem. Selection of a suitable equation of state and the steps involved in its reformulation
into a simpler form are outlined in Section 4.3. The complete analytical solution procedure
including various modified thermodynamic relations are presented in Section 4.4. Impor-
tant results and observations related to the exact solution developed are explained and dis-
cussed in the sections that follow. The expected structure of solution for water shock tube
problem and its range of application are explained in Section 4.5. Solutions to water shock
tube and air shock tube for a selected problem setup are compared against each other in
Section 4.6. Section 4.7 demonstrates the applicability of the developed analytical solution
over the complete range of properties specified through solutions obtained for different
cases of the problem. Section 4.8 briefly summarises this chapter.

4.2 The Water Shock Tube Problem

The water shock tube problem is a modification of one-dimensional shock tube problem
of Sod [251], where fluid inside the shock tube is single phase liquid water. Similar to the
case for a gas shock tube, there are two chambers containing liquid at different pressures,
separated by a diaphragm. Schematic of the initial problem setup is shown in Figure 4.1.

Figure 4.1: Schematic of the Water shock tube problem setup.

A one-dimensional shock tube geometry is used with a length of L. The diaphragm is
initially located at a distance of x0 from the left closed-end boundary. The left chamber of
shock tube holds water under comparatively high pressure of PL and the chamber on the
right contains water at lower pressure PR. Initially, the fluid is assumed to be stationary
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with flow velocities in both chambers, uL = uR = 0. The flow is initially at isothermal
conditions inside the entire shock tube, i.e., TL = TR . Liquid water inside the shock
tube is modelled as compressible and densities ρL and ρR are estimated using a suitable
liquid equation of state. The water shock tube problem is solved for flow properties at a
time tA from the rupture of the diaphragm. This time period is selected such that, within
this duration no shock reflections or wave interactions are initiated. This is because, with
reflection of waves at boundaries and from consequent interactions, the physics of flow
becomes very complicated.

Similar to gas shock tube problem, liquid shock tube problem also offers numerous
advantages when used as a test problem for benchmarking flow solvers. Simplicity in
problem setup is one of its notable advantages as it eases modelling of this problem using a
variety of numerical solvers with relatively simple codes. Sufficiency of one-dimensional
treatment is another main benefit offered by this problem. From the perspective of flow
physics, liquid shock tube problem involves abrupt variations in fluid temperature, pressure,
density, speed of sound etc. Additionally, solution to this problem is expected to have flow
features like shock, expansion fan, and contact-discontinuity. The above factors make this
problem a perfect candidate for using it as a benchmark problem for compressible flow
solvers. As a result, numerical solvers tested using this problem are checked for a variety
of qualities that are required to conclusively solve this problem.

There are two important considerations for the development of analytical solution to
liquid shock tube problem. The first one is to identify a suitable and accurate liquid equa-
tion of state to model liquid compressibility effects. The chosen liquid EOS should also
smoothly fit into rest of the solution procedure. The second consideration is to develop
a relatively simple solution procedure that would be capable of accurately estimating the
location of different zones and could also provide corresponding property values over these
zones.

4.3 The Equation of State and its Reformulation

Water density is nearly constant up to a few bars of pressure above the atmospheric pres-
sure, however, for pressures above 10 MPa, variation in density cannot be ignored. A suit-
able liquid equation of state is needed to compute the variations in density, as it could relate
pressure and temperature to this fluid property. Generally, liquid water EOS are defined
over relatively small pressure ranges over which they are accurate. Tait EOS [81, 85, 245]
and Modified NASG EOS [253] are two highly accurate equations of state for water defined
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over a wide range of pressure. Since Tait EOS cannot provide proper coupling between
fluid density and temperature [253], the Modified NASG EOS has been selected as liquid
EOS in the present work.

As the name suggests, the Modified NASG EOS is a modification to Noble-Abel Stiff-
ened Gas equation proposed by Métayer and Saurel [90]. The caloric relation of Modified
NASG EOS is given as follows:

P = (γ − 1)
(ε− q)
(v − b)

− γP∞ (4.1)

The equations for specific volume v and speed of sound c are as follows:

v =
(γ − 1)CvT

P + P∞
+ b (4.2)

c =

[
γv2 (P + P∞)

v − b

]1/2
(4.3)

We intend to make use of the analytical solution procedure used for a gas shock tube
with certain modifications. For this, liquid EOS needs a reformulation similar to that of
ideal gas equation of state, P = ρRT , to make it compatible for the analytical solution pro-
cedure. Keeping this in mind, specific volume relation in Equation (4.2) can be rearranged
as follows:

P + P∞ =
(γ − 1)CvT

v − b
(4.4)

Further, to simplify expressions used hereafter, we define new variables such as stiffened
pressure P̄ and stiffened density ρ̄ as follows:

P̄ = P + P∞ (4.5)

ρ̄ =
1

v − b
(4.6)

For a liquid modelled as compressible fluid using a stiffened equation of state, the under-
lying theory is that, for lower values of absolute pressure P , the absolute liquid density ρ
is almost a constant. While, for higher values of P , which is of the order of parameter P∞,
liquid density ρ exhibits considerable variation with pressure. For Modified NASG EOS
used in this study, by defining two new variables in Equations (4.5) and (4.6), this idea is
further simplified. Here, one could just consider that, for the liquid under consideration,
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new density variable ρ̄ varies based on new pressure variable P̄ for all ranges. To take this
idea closer to that of an ideal gas, we define a new constant parameter RW for the liquid
that is similar to characteristic gas constant. The liquid constant parameter RW is defined
as follows:

RW = (γ − 1)Cv (4.7)

From the above definitions, Modified NASG EOS in Equation (4.4) takes the form:

P̄ = ρ̄RWT (4.8)

which has the form of an ideal gas equation of state. Along with this, a stiffened speed of
sound (c̄) is also defined based on stiffened pressure P̄ and stiffened density ρ̄ as follows:

c̄ =

√
γP̄

ρ̄
(4.9)

Reformulation of the Modified NASG EOS as mentioned above resulted in two new simpli-
fied relations given by Equations (4.8) and (4.9), which will be used in analytical solution
procedure. Detailed theories on equations of state, bond energies and heat capacities are
available in [254].

4.4 The Analytical Solution

Following the rupture of diaphragm inside shock tube and before the generated shock wave
reflects at any of the boundaries, the domain of shock tube is typically composed of five
zones as displayed in Figure 4.2. The zones marked as L and R are respectively left and
right undisturbed regions where the properties are unchanged from initial conditions. This
is because, within this time period, no wave has traversed through these zones. Zone 1
is the region between contact surface and shock, over which shock wave has already tra-
versed. Zone 2 is the region between contact surface and trailing edge of the expansion
wave. This is the region through which rarefaction waves have completed propagation.
The zone marked E is the region where expansion fan spreads at the given moment. Inside
the expansion wave, there is continuous variation of flow properties from values at zone 2
to that at zone L.

Analytical solution procedure described below is in line with the procedure outlined in
the reference [252] for gas shock tube problem. The procedure uses several thermodynamic
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Figure 4.2: Different zone formations inside the shock tube before reflection at boundaries

relations such as isentropic flow relations, equation of state for fluid, Rankine-Hugoniot re-
lation, and acoustic relations for the speed of wave propagation in fluid. The property rela-
tions used for gaseous case are reformulated with corresponding relations for liquid case. In
the analytical solution procedure, all properties are denoted using appropriate subscripts to
identify their location. The solution procedure starts with development of an expression for
the unknown pressure ratio P1/PR across the shock, from the known diaphragm pressure
ratio PL/PR. Replacing pressure, density, and speed of sound by corresponding stiffened
relations defined above in Equations (4.5) to (4.9), and then following a similar procedure
as used in the case of gas shock tube, we arrive at an expression for shock pressure ratio as
follows:

P̄L
P̄R

=
P̄1

P̄R

1−
(γ − 1)

(
c̄R
c̄L

)(
P̄1

P̄R
− 1

)
√

2γ

√
2γ + (γ + 1)

(
P̄1

P̄R
− 1

)

−
[

2γ
γ−1

]
(4.10)

As Equation (4.10) is an implicit expression, standard iterative methods such as Regula-
Falsi can be applied to solve shock pressure ratio. From the new shock pressure ratio
obtained, the value of P̄1 is calculated by substituting the known value of P̄R. The ab-
solute pressure upstream of the shock can be then computed back using Equation (4.5) as
P1 = P̄1 − P∞. The speed of sound at each region is computed from the acoustic rela-
tion consistent with EOS given by Equation (4.3). Shock speed, uS , is calculated from the
following relation:

uS = cR

√(
γ + 1

2γ

)
P̄1

P̄R
+

(
γ − 1

2γ

)
(4.11)
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Flow velocity in the upstream region of the shock, u1, is estimated using the relation:

u1 =
c̄R
γ

(
P̄1

P̄R
− 1

)√√√√√√√
(

2γ

γ + 1

)
P̄1

P̄R
+

(
γ − 1

γ + 1

) (4.12)

Stiffened density in the upstream region of the shock, ρ̄1, is computed from modified
Rankine-Hugoniot relation as follows:

ρ̄1 = ρ̄R

(
γ + 1

γ − 1

)
P̄1

P̄R
+ 1(

γ + 1

γ − 1

)
+
P̄1

P̄R

(4.13)

Absolute density in the upstream region of the shock, ρ1, is obtained back using Equa-
tion (4.6) as follows:

ρ1 =
ρ̄1

1 + bρ̄1
(4.14)

The specific internal energy ε over all zones is computed using the relation (4.1). Since
there are no discontinuities present in flow velocity and pressure across the contact surface,
these properties have the same values over zones 1 and 2. Therefore, we have:

u2 = u1 and P2 = P1 (4.15)

The density value over region 2 is computed using isentropic relation across the expansion
fan as follows:

ρ̄2 = ρ̄L

(
P̄2

P̄L

) 1
γ

(4.16)

As already mentioned, absolute value of liquid density over this region is computed back
using Equation (4.6). After obtaining necessary expressions to compute the required prop-
erties over different zones, the major task remaining is to locate various zones at any given
time.

Different zones need to be identified and represented in the (x, t) plane. The typical
representation of zones in the (x, t) plane for gas shock tube problem was shown in Fig-
ure 2.3 in Chapter 2. Liquid shock tube problem has a similar representation of zones on
these co-ordinates. All different waves generated are centred at the initial position of the
diaphragm, i.e., at (x0,0). Shock wave and contact discontinuity propagate through uniform
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zones. Due to this, they have constant velocities and hence they are displayed as straight
lines in the (x, t) diagram. The expansion wave propagates through expansion fan (E),
inside which flow parameters vary continuously. We also observed that shock wave and
contact discontinuity are propagated to the right of the initial position of the diaphragm,
while the expansion fan propagated to its left. Figure 4.3 is the x − t diagram that shows
propagation of different waves and characteristics.

Figure 4.3: The x− t diagram showing the characteristic propagation

While considering the relation of parameters in zone (2) to those in zone (L), we could
observe that only C0 and C+ characteristics cross the expansion fan to search for infor-
mation in region (L). The expansion fan (E) is bounded on the left by C− characteristic
originating from point x0. This characteristic also belongs to region (L), due to which the
line of slope dx/dt = −cL. The right extreme of the expansion fan is bounded by an-
other C− characteristic originating from the same point x0. However, this characteristic is
considered to belong to region (2), resulting in the line of slope, dx/dt = u2 − c2.

Inside the expansion fan, we know that there will be a continuous variation in properties
as we observe with gas shock tube. For a liquid shock tube, we cannot predict whether these
changes will be gradual or abrupt. However, we follow the same procedure that is used for
a gas shock tube problem. We begin by considering a point (x, t) inside the expansion fan
(E) at any time instant t, such that, xA ≤ x ≤ xB. This point belongs to a C− characteristic
starting from the initial location of diaphragm x0 [255], therefore we have:

x− x0
t

= uE(x)− cE(x) (4.17)

From C+ characteristics originating from zone (L) and entering into the expansion fan (E)
we have:

cE(x) + (γ − 1)
uE(x)

2
= cL (4.18)
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Combining Equations (4.17) and (4.18) for isentropic flow inside the expansion fan, we
arrive at the following relation for the speed of sound inside the fan:

cE(x) =
2cL

1 + γ
+

(
1− γ
1 + γ

)(
x− x0
t

)
(4.19)

Using isentropic relation, the value of stiffened pressure inside the expansion fan is esti-
mated as:

P̄E(x) = P̄L

(
cE(x)

cL

) 2γ
γ−1

(4.20)

Subsequently the absolute value of pressure inside the expansion fan is computed using
Equation (4.5) as follows:

PE(x) = P̄E(x)− P∞ (4.21)

Isentropic relation is also used for the calculation of stiffened density values inside expan-
sion wave which are given by:

ρ̄E(x) = ρ̄L

(
P̄E(x)

P̄L

) 1
γ

(4.22)

Absolute values of density inside this zone are obtained back using the relation (4.6) as
follows:

ρE(x) =
ρ̄E(x)

1 + bρ̄E(x)
(4.23)

The specific internal energy values inside the expansion fan are estimated using the rela-
tion (4.1). From the computed values of stiffened pressure and stiffened density, stiffened
speed of sound for the zone is estimated using Equation (4.9) as follows:

c̄E(x) =

√
γP̄E(x)

ρ̄E(x)
(4.24)

The velocity inside the expansion fan is computed using Equation (4.18) as:

uE(x) =

(
2

γ − 1

)
(c̄L − c̄E(x)) (4.25)

Temperature over different zones in shock tube domain are computed using Equa-
tion (4.4) as shown below:

T =
(P + P∞)(v − b)

(γ − 1)Cv
(4.26)
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The extent of different zones in liquid shock tube solution are computed from respective
sound speeds and flow velocities available across these zones. The respective relations for
the case of a gas shock tube are available in [255], and for liquid shock tube problem these
relations are as follows:

x0 = x0 (fixed) (4.27a)

xA = x0 − cLt (4.27b)

xB = x0 + (u2 − c2) t (4.27c)

xC = x0 + u2t (4.27d)

xD = x0 + uSt (4.27e)

Finally, the analytical solution over the entire solution domain is represented as follows:

W (x, t) =



WL ; x < xA

WE ; xA ≤ x < xB

W2 ; xB ≤ x < xC

W1 ; xC ≤ x < xD

WR ; x ≥ xD

where W (x, t) =


ρ

u

P

T

c

 (4.28)

W in Equation (4.28) represents solution vector whose components are required prim-
itive flow variables. This solution vector carries different values based on the zone over
which it is defined. As there are five zones in the domain, the vector is also split into five
piece-wise solutions as given by Equation (4.28). At any time instant after the rupture of
diaphragm, all zones except the expansion zone (E) carry constant value for the solution
vector over that entire zone. For the expansion fan, however, the solution is a function of
spatial distance inside shock tube domain.

4.5 Structure of Solution and Range of Applicability

In Section 4.3, we have seen the reformulation of Modified NASG EOS to a simpler form
similar to an ideal gas equation. In the previous section, Section 4.4, the complete pro-
cedure for developing analytical solution for water shock tube problem was discussed. It
also showed the inclusion of reformulated EOS into the solution procedure. In Section 4.4,
complete analytical solution to water shock tube problem is also presented in the form of
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a set of piece-wise solutions applicable over different zones formed in the solution pro-
file. The typical structure of solution profiles for flow properties, viz., velocity, pressure,
density, and temperature for a gas shock tube are shown in the Figure 4.4. Based on the
piece-wise analytical solution developed for water shock tube problem, we also expect a
similar structure of solution. Different zones in the solution profiles are marked L, E, 2, 1,
and R as shown in Figure 4.2.

Figure 4.4: The typical structure of analytical solution for the water shock tube problem.

AS we can see form Figure 4.4, the solution is divided into five different zones. It
can be observed that all flow variables are discontinuous across the shock. The pressure
and velocity remain uniform over the region between the shock and trailing edge of the
expansion fan (zones 1 and 2). The properties density and temperature, however, exhibit
a jump discontinuity across the contact surface. We could also observe that inside the
expansion fan (zone E), all properties vary continuously. Zones L and R are respectively
the leftmost and rightmost zones over which no waves have traversed within the duration
used in computation. Because of this, the properties in these zones are unaltered from their
initial conditions.

Though we are able to obtain the structure of the solution to water shock tube problem,
it may be insufficient for complete understanding of the behaviour of the solution. The
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scale over which different flow properties change depends on initial pressure ratio across
the diaphragm, chemical composition of the gas, shock tube geometry etc. Though the
basic structure remains the same, the extent of variation of properties, the sharpness of
different flow features etc., may vary. For better understanding of this behaviour we need
to obtain and observe the solution profiles for different physical configurations. However,
the prerequisite to this is the knowledge of the range of applicability of the newly developed
analytical solution itself.

The suitable range of application of the analytical solution for water shock tube prob-
lem is the same as the prescribed range for the equation of state of liquid. The range of
application of the liquid EOS extends over pressure of 0.1 MPa-1000 MPa and temperature
of 273 K-373 K. Outside this range, as we cannot claim reliability of the equation of state,
the solution developed using this relation also becomes unreliable. To present the results
over this entire specified range, we solved different cases of water shock problem by chang-
ing initial conditions. The ranges of properties are selected in such a way that they span the
complete applicable range of pressure and temperature.

4.6 Solutions of Water Shock Tube and Air Shock Tube:
A Comparison

During the developmental stages of analytical solution to water (liquid) shock tube prob-
lem, we have frequently referred to corresponding stages in air (gas) shock tube problem.
This is because of the similarities in flow physics and also to understand the salient differ-
ences between the cases for a liquid and a gas. Consequently, in the developed analytical
solution for liquid case we could again observe many similarities with that of gaseous case.
We proceed further and obtain the solution profiles for water shock tube problem for a
chosen set of initial physical conditions. Before independently analysing these results, we
need to compare them with solution profiles for air shock tube problem. However, for the
comparison to be focussed on core parameters, we have to minimise difference associated
with physical setup for the two fluids to the maximum possible extent. Therefore, we ob-
tained the solution to water shock tube problem and air shock tube problem for the same
one-dimensional shock tube geometry and initial thermodynamic conditions such as pres-
sure and temperature. Moreover, the solution profiles for both cases are obtained after the
same duration from the rupture of the diaphragm. The common initial setup used for the
two problems is shown in the Figure 4.5.
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Figure 4.5: The common problem setup for the water and air shock tube cases

The shock tube has a total length of L = 3 m and the diaphragm is initially located at a
distance of x0 = 2 m from the left closed-end boundary. The pressure in the high pressure
driver section towards the left side of the diaphragm, PL = 1 MPa and the driven section
pressure PR = 0.1 MPa. Initially, the fluids on both sections of the shock tube are station-
ary and the temperature is 300 K over the entire shock tube domain. The difference in the
setup for the two fluids are the fluids themselves and their corresponding fluid densities.
The diaphragm is assumed to have undergone an instantaneous rupture. The solution pro-
files after a duration of 400µs from this rupture are used for the comparative study. The
analytical solutions with two different tube fluids are compared in Figure 4.6.

The profiles for water shock tube are displayed using continuous blue curves while
those for air shock tube are represented using red curves. From the figure, the structure
of solution profiles for water shock tube is observed to be similar to that of the gas shock
tube, with five distinct zones present. However, difference in the spread of zones for the
two fluids is notable. Water being the denser fluid has a higher speed of sound in the
medium compared to that of air. This leads to more spread out zones for water shock tube
case because of the farther wave motion within a given time duration. However, inside
the expansion fan, the observation is in contrast to the above. The profiles show a sharper
expansion zone with water as the tube fluid, and almost resemble another discontinuity for
the selected problem setup. The air shock tube shows a wider expansion fan with a gradual
variation of properties. This observation could be attributed to the larger relative variation
in the sound speed across the fan for the air medium compared to a minor change for the
liquid case. It should also be mentioned that the expansion fan for air shock tube seems
to be little sharp compared to what we usually observe in gas shock tube problems. This
is due to the short duration after which the solution profiles are selected. For the same
air shock tube setup, as the time progresses the expansion region widens and the property
variations become more gradual.
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Figure 4.6: Analytical solution profiles for the Water shock tube and the Air shock tube
problems for PL = 1 MPa, PR = 0.1 MPa, and T = 300 K

On analysing the scales of different property profiles, it could be observed that the
properties vary over a wider range for air shock tube problem compared to that of the
liquid case. The large variations in the density of air compared to that of water could be
attributed to the relatively higher compressibility of the gas. The higher value of specific
heat for water is the reason why variation in temperature for this liquid is observed to be
substantially lower to that of gas. The maximum value of velocity developed in the zones
1 and 2 is also low for the case of water. The higher velocity observed with the case of air,
for the same pressure difference, could be directly associated with the fluid’s lower density.

4.7 Analytical Solution Over the Specified Range

As already mentioned in Section 4.5, the range over which analytical solution is claimed
to exist is the same as the range of application of equation of state. In this section, we in-
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tend to demonstrate the existence of the proposed analytical solution over the same range.
This shall be achieved by solving different cases of the problem and presenting these so-
lutions with relevant explanations. The demonstration over complete pressure range and
temperature range shall be carried out separately in two steps.

The pressure range over which the proposed solution is expected to exist is 0.1 MPa-
1000 MPa. In the previous section, we have already presented solutions up to 1 MPa range.
To cover the remaining pressure range, we consider three cases of the shock tube problem.
The water shock tube problem with driver section pressures of PL = 10 MPa, 100 MPa,
and 1000 MPa, and a driven section pressure of PR = 0.1 MPa are considered. The initial
temperature for all the three cases are 300 K. From these initial conditions of temperature
and pressure the problems were solved analytically.

The analytical solutions to water shock tube problem corresponding to the driver section
pressures of 10 MPa, 100 MPa, and 1000 MPa are shown respectively in the Figures 4.7,
4.8, and 4.9.
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Figure 4.7: Analytical solution profiles for PL = 10 MPa and T = 300 K

The figures display spatial distribution of the flow properties viz. velocity, pressure,
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density and temperature inside the shock tube domain. The results displayed correspond to
the time instant after 200 µ s from the rupture of the diaphragm.

As previously observed for the driver section pressure of PL = 1 MPa, the expansion
fan in the solution profiles are not much spread out for the driver section pressures of
10 MPa and 100 MPa. This is clearly observable form Figures 4.7 and 4.8. Such a narrow
expansion fan is the consequence of relatively small order of variation in liquid density and
wave speed, for the pressure scales involved. However, the results corresponding to the
driver section pressure of 1000 MPa displayed in Figure 4.9, shows a spread-out expansion
fan. This expansion region is similar to what we commonly observe in gas shock tubes.
This observation for the very high pressure case can be attributed to the large initial pressure
difference across the diaphragm. For such a large initial pressure difference, liquid density
and speed of sound vary over a wider scale resulting in a spread-out expansion zone.
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Figure 4.8: Analytical solution profiles for PL = 100 MPa and T = 300 K

The change in fluid density across contact discontinuity is correctly captured in solution
profiles. This capability is attributed to non-isothermal property of the equation of state
used for fluid. The modified NASG EOS establishes a proper coupling between density
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and temperature of liquid. The scale over which liquid density varies for different pressure
ranges is a clear indication of the impact of higher pressure on liquid compressibility. For
the case of PL = 10 MPa, density magnitude inside shock tube varies over the range of
997.0 kg/m3 to 1002.2 kg/m3. The maximum value of density in the domain increases to
1044.7 kg/m3 and 1251.6 kg/m3 respectively for PL =100 MPa and 1000 MPa.
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Figure 4.9: Analytical solution profiles for PL = 1000 MPa and T = 300 K

For an increase in the initial pressure difference across the diaphragm, there is a cor-
responding increase observed in the magnitude of velocity in the region between the ex-
pansion fan and the shock. The maximum value of velocity developed in the domain for
the driver section pressures of 10 MPa, 100 MPa, and 1000 MPa are respectively 3.3 m/s,
30.8 m/s, and 199.7 m/s. The initial diaphragm pressure ratio has a similar effect on the
range of temperature variation inside shock tube. For a larger diaphragm pressure ratio, the
range of variation of temperature is wider. This is an obvious observation for a fluid that
has the pressure proportional to its temperature. For the driver section pressures of 10 MPa,
100 MPa, and 1000 MPa, the range of temperature variation inside shock tube are respec-
tively 299.6 - 300.4 K, 296.4 - 303.6 K, and 277.4 - 324.0 K. These maximum variations in
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the temperature are observed in the form of jump discontinuities across contact surface in
solution profiles. The solution plots for the three cases discussed here along with associated
observations clearly demonstrated the existence of analytical solution to water shock tube
problem over complete pressure range of 0.1 MPa - 1000 MPa.

The next step is to demonstrate the existence of analytical solution over specified tem-
perature range of 273 K - 373 K. The study is therefore further extended by considering
three different operating temperatures for liquid shock tube problem, within the specified
temperature range. The temperature values chosen for these different cases of the shock
tube are 280 K, 325 K, and 370 K. A driver section pressure of 500 MPa and a driven sec-
tion pressure of 0.1 MPa is chosen for all three cases. The pressure values are chosen in
such a way that the driver section pressure represents the average value of the pressure
range studied and the driven section pressure represents the lowest pressure value in the
range considered. The analytical solutions for water shock tube with the three operating
temperature ranges are displayed in Figure 4.10.

From the solution profiles displayed in Figure 4.10 for different cases of water shock
tube problem, the presence of five typical zones in the shock tube domain are clearly visi-
ble. We could also observe the typical flow features like shock wave, contact discontinuity
and expansion fan in these profiles. In Figure 4.10(b), the intermediate pressure common
to the zones between the shock and expansion fan, do not show much variation for the
different cases considered. This is because of the common diaphragm pressure ratio for
all the three cases. The temperature profiles shown in Figure 4.10(d), exhibit a clear shift
due to the different ranges of temperature selected for the study. Figure 4.10(c) displays
density profiles and show that these profiles shift downwards the scale with the increase in
operating temperature. Such a downward shift is attributed to the expansion of liquid with
increase in temperature, as liquid density varies inversely with this property. The decrease
in the density of liquid with an increase in temperature also leads to a higher velocity for
the same pressure difference. This trend can be observed form Figure 4.10(a), where the
highest velocity is reported for highest temperature range and vice-versa. The structure of
the solution remains the same for all three temperature ranges studied. Through this anal-
ysis, using results from different temperature ranges, the existence of analytical solution
over specified temperature range of 273 K - 373 K is also successfully demonstrated.

The availability of analytical solution has converted water shock tube problem into
a simple and powerful test case for the validation of numerical solvers. The developed
analytical solution can serve as an easy-to-use benchmark result for testing numerical so-
lutions from various computational algorithms. This capability of the developed solution
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Figure 4.10: Comparison of the analytical solution profiles for PL = 500 MPa, PR =
0.1 MPa and T = 280 K, T = 325 K, and T = 370 K

is demonstrated with the help of various numerical methods in the next chapter.

The analytical solution procedure used in this chapter for water shock tube problem
can also be considered as a template that could be extended to develop solutions for shock
tubes with other liquids. However, this may require appropriate equations of state for the
liquids modelled, and a suitable strategy to present the EOS in a standard form. This is to
make the EOS compatible with the rest of the solution procedure.

4.8 Summary

The analytical solution for a liquid shock tube with water as the working fluid is success-
fully developed in this chapter. Liquid water compressibility effects are modelled using the
high-accuracy Modified NASG equation of state. The procedure used for developing ana-
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lytical solution of a typical gas shock tube is suitably modified by including this EOS for
liquid water. Applicability of the suggested analytical solution over a wide range of pres-
sure is demonstrated by obtaining the solution for different driver section pressures. By
presenting the results for liquid shock tube problem for three separate operating tempera-
tures, the existence of the analytical solution over the proposed temperature range is also
verified. The solution procedure developed could capture the complete physics associated
with liquid shock tube problem, with the same ease with which a gas shock tube problem is
solved. The solution structure observed for water shock tube problem is compared against
that of an air shock tube problem for the same operating conditions. This liquid shock
tube problem with an analytical solution can serve as a standard benchmark problem for
large variety of compressible liquid flow computational models. The analytical solution
procedure outlined in this chapter can be readily extended to other liquids subject to the
availability of respective equation of states.
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Chapter 5

Numerical Simulation of Water Shock Tube
Problem

5.1 Introduction

In this chapter we will numerically solve water shock tube problem with the help of suit-
able computational algorithm. The numerical results obtained will be validated using the
analytical solution already developed in Chapter 4. To understand the major steps required
for computationally solving a compressible liquid flow problem, we need to begin with the
most basic problem in compressible liquid flows. In this chapter, we begin by numerically
solving the air shock tube problem. Details on the air shock tube problem, its problem
setup, solution structure, etc. were already discussed in Chapter 2. Information regard-
ing different computational algorithms used for numerically solving this problem is also
provided in Chapter 2.

In Section 5.2 of this chapter, the computational capability of some basic Riemann
solvers and flux methods are compared by solving Sod’s shock tube problem. This com-
parison is further extended to advanced slope-limiter type Riemann solvers. The optimal
computational method for liquid shock tube simulation is determined based on this com-
parative study. Section 5.3 discusses the selection of a suitable mathematical model and
inclusion of liquid compressibility effects into this model. Computational strategy adopted
for numerically solving this model is also discussed. In the subsequent section, Section 5.4,
numerical results generated from simulation are validated using analytical solution to the
problem. Different cases of water shock tube problem are used to compare the two solu-
tions over the specified range of application. Extension of the analytical and numerical so-
lution techniques to water shock tube problems involving slightly complex problem setup
is examined in Section 5.5. Section 5.6 considers the inclusion of a few frequently used
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equations of state for water into the mathematical model. This section presents numerical
results obtained for water shock tube problem using these selected EOS. The relative capa-
bilities and limitations of the equations of state used in modelling compressible effects in
liquid are also examined. The last section, 5.7 summarises the contents of this chapter.

5.2 Computational Methods for Solving Gas Shock Tube
Problem

In this section we will solve Sod’s problem using flux methods such as the Lax Wendroff
(two-step) flux [256], the MacCormack flux [257, 258], and some approximate Riemann
solver fluxes like the AUSM+-up flux [186] and the HLLC flux [128]. The MacCormack
method is a two-step method, with a predictor step followed by a corrector step. The
MacCormack and the Lax Wendroff (two-step) flux used in [131] use artificial viscosity
for smoothing the solution profiles by controlling the oscillations observed in the solution.
In this study, however, these two schemes are used in their most basic form without the
addition of artificial viscosity in order to make a more sensible evaluation of these schemes.
The two-step Lax Wendroff algorithm is as follows:

U
n+1/2
i+1/2 =

1

2

(
Un
i+1 + uni

)
− ∆t

2∆x

(
F (Un

i+1)− F (Un
i )
)

(5.1a)

Un+1
i = Un

i −
∆t

∆x

(
F (U

n+1/2
i+1/2 )− F (U

n+1/2
i−1/2 )

)
(5.1b)

In the first step U(x, t) is evaluated at half time steps n+ 1/2 and half grid points i+ 1/2.
In the second step, values at the next time step n+ 1 are calculated using the data for n and
n+ 1/2. The two-step algorithm for MacCormack method is given by:

Un+1
i = Un

i −
∆t

∆x
(F n

i+1 − F n
i ) (5.2a)

Un+1
i =

1

2
(Un

i + Un+1
i )− ∆t

2∆x
(F n+1

i − F n+1
i−1 ) (5.2b)

where F n+1 = F (Un+1). In the predictor step, provisional values of the conserved vari-
ables at an intermediate time level n+ 1 is obtained from the property values at the nth time
level and the corresponding fluxes are evaluated. In the subsequent corrector step, property
values computed at intermediate time level are used to obtain the corrected values of con-
served variables and fluxes at the (n + 1)th time level. Details of the AUSM+-up and the
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HLLC flux methods are presented in Section 2.6. Both these methods have comparatively
long algorithms and these are available in Appendix A.

The AUSM+-up flux uses a pressure diffusion term MP to improve the calculations at
low Mach numbers. The definition of MP is presented in Equation (A.34). The range of
the parametersKP and σ included in the definition ofMP are provided by Equation (A.35).
For the present problem, these parameters take up the values of KP = 0.3, σ = 1.0. A
parameter β is used in the definition of the split Mach numbers as visible in the Equa-
tion (A.33). This parameter is assigned a fixed value of 0.125 as shown in Equation (A.35).
The interface pressure Pi+ 1

2
is estimated as in Equation (A.36). Equation (A.38) defines a

diffusion term PU that is used in the calculation of interface pressure. The range of pa-
rameter KU in the definition of PU is given by Equation (A.39). In the modelling of Sod’s
problem KU takes a value of 0.1. The value of the scaling factor fa is evaluated using
the relation (A.31). As suggested in [127], the M∞ corresponding to initial pressure ratio
across the diaphragm is 1.0 which assigns a magnitude of 1.0 for the scaling factor fa. This
value of fa is substituted in to Equation (A.39) to compute the parameter α.

HLLC flux is used with Godunov’s first-order method for computation. The HLLC al-
gorithm starts with the calculation of averaged value of speed of sound and density at cell
interfaces as in Equation (A.3). This is followed by the computation of pressure from prim-
itive variable Riemann solver using relation (A.4). The signal wave speeds of the left trav-
elling and the right travelling waves at a cell-interface are estimated using relations (A.8)
and (A.9) respectively. The intermediate wave’s speed is estimated as shown in Equa-
tion (A.10). Based on these signal speeds, different variable vectors at each cell-interface
are calculated as shown in equations (A.11) - (A.14). The different flux vectors possible at
a cell-interface are computed using relations (A.15) - (A.18). Finally, based on the signal
speeds, the HLLC flux at any cell-interface is decided as shown in Equation (A.2).

Solution profiles for the Sod’s problem obtained using different flux methods discussed
here are presented in Figure 5.1. The problem was solved on a one-dimensional numerical
domain with 100 uniform divisions. Data points for the numerical solution from various
flux methods are displayed using different markers and analytical solution to the problem
is shown using continuous black curves. Sub-figures on the leftmost, the central, and the
rightmost columns of Figure 5.1 display density, pressure, and velocity profiles respec-
tively. The results displayed are those after 0.2 units of non-dimensional time from the
rupture of the diaphragm. 100 equally spaced numerical data points are used in the plots.

The solution profiles clearly imply non-suitability of the MacCormack and the Lax-
Wendroff fluxes in solving the Riemann problem. Both these methods are found to gen-
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Figure 5.1: Property profiles generated by different flux methods for Sod’s problem

erate spurious oscillations near the sharp features in the solution profile. This is a typical
observation with second-order accurate numerical flux methods. These dispersive errors
in the proximity of high gradients in the solution profile are attributed to the Gibbs phe-
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nomenon [259]. Though these two methods resolve the remaining zones of the solution
profile with reasonable accuracy, the oscillations cannot be minimised without the inclu-
sion of additional dissipation mechanisms into the algorithm, like artificial viscosity. In the
case of two-step Lax-Wendroff flux, the oscillations are generated in the proximity of shock
and contact discontinuity, whereas, the MacCormack flux produces oscillations mostly near
contact surface and trailing edge of the expansion wave, where it is most severe.

Analyzing the results generated using the AUSM+-up and the HLLC fluxes, we could
distinctly observe the advantage offered by these two methods over formerly discussed
second-order algorithms. Even with first-order accurate formulations, the AUSM+-up and
the HLLC fluxes could produce reasonably accurate solution estimates for gas shock tube
problem. Compared to formerly discussed second-order methods, these two flux meth-
ods do exhibit a small amount of dissipation near sharp features in the solution. The
AUSM+-up and the HLLC fluxes, however, generate highly stable solution profiles that
are completely dispersion free. On comparing the two oscillation free Riemann solver flux
methods, we could observe that the HLLC flux resolves the profiles slightly better than
the AUSM+-up flux. This is due to the more efficient three-wave model of the HLLC
algorithm. Closer analysis of solution profiles reveals that all three main features in the
solution viz., shock, contact surface and expansion fan are better resolved by the HLLC
flux. Moreover, the HLLC algorithm allows a Courant number of 1.0, while the AUSM+-
up algorithm is found to become unstable above a Courant number of 0.9, for gas shock
tube problem. Similarly, on measuring the speed of computation, the HLLC method was
found to be almost 10% to 15% faster compared to the AUSM+-up method,while solving
with grid resolutions ranging from 100 divisions to 10,000 divisions. From the comparative
analysis carried out on various flux methods in their pure form, we could conclude that the
HLLC flux is the most suitable to be used as a Riemann solver for gas shock tube type of
problems.

The higher order spatial discretization methods generally exhibit spurious oscillations
due to sharp changes in the solution. These large gradients in the solution arise due to the
presence of shocks, discontinuities etc. The slope limiters have a major role in limiting
the solution gradient near shocks and discontinuities. Details on the MUSCL based slope
limited Riemann solvers are presented in Section 2.7. The MUSCL approach uses data
reconstruction technique for attaining high–order of accuracy. The HLLC solver which was
found to be the best flux method, is used with the MUSCL based approach. The MUSCL
schemes used in this study are also TVD schemes as the limited slopes are used in the
algorithm. Three different limiting functions are used along with the MUSCL scheme, viz.
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the MinMod (MM) limiter [260–262], the Monotonized Central (MC) limiter [158, 191],
and the van Albada (VA) limiter [263].

The property profiles generated for Sod’s problem by using MUSCL-based HLLC flux
Riemann solver that includes different slope limiter algorithms, is displayed in Figure 5.2.
Results generated using the MUSCL based HLLC flux without any slope limiter function
is also included in this figure. This is to show the improvement brought forward by slope
limiters in the solution profiles. The numerical solution profiles are plotted using 100
equally spaced data points. A CFL value of 0.5 was found to be optimal for the MUSCL-
HLLC solver with different slope limiters for solving the Sod’s problem.
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Figure 5.2: Property profiles generated for Sod’s problem by MUSCL-based HLLC solver
using various limiters

From the numerical solution profiles displayed using different coloured markers in
Figure5.2, we could see that various limiters improve the sharpness and accuracy of the

72



MUSCL-based HLLC flux. The profiles generated without a limiter algorithm shows heavy
dissipation around all sharp features in the solution. The results generated using different
limiter algorithms are very close to each other. However, on a closer look we could see
that the sharpest reproduction of different property profiles is produced with the MC type
limiter algorithm. This solver combination is also the one that produces results closest
to analytical solution to the problem. The MM and the VA type limiters are marginally
inferior to the MC type limiter.

5.3 Numerical Modelling of Water Shock Tube Problem

The analytical solution procedure discussed in the previous chapter is based on several
thermodynamic relations which are applicable for processes taking place inside the shock
tube domain. To demonstrate that a numerical solution based on the governing set of par-
tial differential equation matches with the analytical solution, we are numerically solving a
mathematical model. This is because, generally, for compressible flow problems, the gov-
erning equations for the flow constitute a system of non-linear partial differential equations
(PDEs). Such set of equations do not have analytical solution and hence one may have to
rely on numerical methods and algorithms to solve them. The numerical modelling of water
shock tube problem involves two main steps. The first step is to identify a suitable math-
ematical model which could provide the desired set of governing equations. The second
step is the selection of a computational algorithm to numerically solve the mathematical
model based on initial and boundary conditions. These two steps are explained in detail in
the following sub-sections.

5.3.1 Selection of the mathematical model

We know that water shock tube problem is a modification of the one-dimensional shock
tube problem of Sod [251], with the major difference being the use of liquid water in place
of air as the shock tube fluid. The initial problem setup is as shown in Figure 5.3.

In the setup, inside a 3 m long tube, a diaphragm separates liquid water under very high
pressure (driver section) from water at a comparatively low pressure (driven section). The
fluid chosen for the problem is liquid water and the flow is assumed to be inviscid and
non-heat conducting. Since water is treated as a compressible fluid, the governing equa-
tions chosen are one-dimensional equations of compressible flow as given in the Sod shock
tube problem [251]. The one-dimensional continuity, momentum, and energy equations in
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Figure 5.3: The 1D schematic of a liquid shock tube.

conservation form are given by:

∂ρ

∂t
+
∂(ρu)

∂x
= 0

∂(ρu)

∂t
+
∂(ρu2 + P )

∂x
= 0

∂(ρe)

∂t
+
∂(ρeu+ Pu)

∂x
= 0

As the number of unknowns exceeds the number of equations, the closure of mathe-
matical model is achieved by using a liquid equation of state. The modified NASG EOS is
the liquid EOS used. This EOS relates various properties of compressible liquid as given
in Equations (3.6) - (3.8). Density values of the liquid are computed from this assigned
equation of state using pressure and temperature values.

The one-dimensional compressible flow relations form a non-linear system of PDEs
that does not have an analytical solution. Therefore, this system of PDEs is solved nu-
merically for water shock tube problem by using a suitable computational algorithm. The
computational strategy employed in solving this problem numerically is discussed in the
following subsection.

5.3.2 Computational strategy

The 3 m long shock tube which forms the physical domain of the problem is treated as
a one-dimensional domain in the numerical model. For solving the problem numerically,
this one-dimensional domain is divided into uniform control volumes. The MUSCL solver
with the HLLC flux and the MC type limiter function was found to be the best combination
from modelling study on the Sod’s problem. This solver combination is used as compu-
tational algorithm to numerically solve water shock tube problem. Major assumptions in
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the numerical modelling are the following: The flow and the associated variation in all
the flow variables are assumed to be one-dimensional. The fluid is considered to be non-
viscous and non-heat conducting. The process of rupture of the diaphragm is assumed to
be instantaneous or infinitely fast.

A total of six different cases of water shock tube setup are selected for numerical mod-
elling. In the first set, three configurations are selected with initial pressure of water in
high pressure chamber to the left of the diaphragm chosen as PL =10 MPa, 100 MPa,
and 1000 MPa. Water in the right chamber is maintained at a fixed pressure value of
PR =0.1 MPa for all three configurations. The diaphragm is initially positioned at a dis-
tance of 2 m from the left closed end of the tube. Fluid over the entire domain is assumed
to be stationary prior to the rupture of the diaphragm, i.e., uL = uR = 0. Temperature of
the fluid on both sides of the diaphragm are initially at TL = TR = 300 K.

In the second set, three more configurations are selected with the initial driver section
pressure of water fixed at PL =500 MPa and driven section pressure fixed at PR =0.1 MPa
for all cases. The fluid is again assumed to be stationary at the start of the problem. The
three cases correspond to three different operating temperatures of 280 K, 325 K, and 370 K
in the shock tube domain.

The 3.0 m long domain is divided into 6,000 uniform control volumes and is marched
forward in time until 200µs is reached. The spatial variations of properties in the domain at
the end of computation are compared with the analytical solution. The time duration after
which results are sought is carefully decided to avoid reflection of the shock or expansion
wave from the boundaries of the domain.

5.4 Validation of the Numerical Results

Liquid shock tube problem is numerically solved and the numerical results generated are
compared with the analytical solution to the problem for their validation. The analytical
and the numerical solutions to the water shock tube problem corresponding to the driver
section pressures of 10 MPa, 100 MPa, and 1000 MPa are shown in Figures 5.4, 5.5, and 5.6
respectively. These figures display the spatial distribution of flow properties viz. velocity,
pressure, density and temperature inside the shock tube domain, after a duration of 200µs
from the rupture of the diaphragm. The numerical solution presented is grid-independent,
and in the figures, we have used 100 equally spaced data points to plot each solution profile.
A CFL value of 0.5 is found to be optimal for time step calculation, and the corresponding
time step size is close to 1.5× 10−7 s.
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Property profiles obtained from numerical results suggests that upon the rupture of
diaphragm, a shock is formed that propagates to the right of the initial location of the
diaphragm and an expansion fan formed propagates to the left. In between these two waves
a moving contact discontinuity is formed across which density and temperature exhibit
sharp variation. The magnitudes of velocity and pressure are invariant over the region
bounded by the trailing edge of expansion fan and the shock. Though the magnitude of
variation of properties with water shock tube is different from those observed in air shock
tube, the solution structure essentially remains the same.
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Figure 5.4: Comparison of the analytical and numerical solution profiles for PL = 10 MPa,
PR = 0.1 MPa at T = 300 K

Scattered symbols are used to plot the numerical data points and the continuous black
curves represent analytical solutions. The numerical results obtained for all different driver
pressures exhibit very close agreement with their respective analytical solutions. This close
match between the numerical and analytical solutions is not limited to the estimated mag-
nitude of properties over different zones. The numerically predicted location of various
zones formed in the shock tube domain and flow features such as expansion fan, contact
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Figure 5.5: Comparison of the analytical and numerical solution profiles for PL =
100 MPa, PR = 0.1 MPa at T = 300 K

discontinuity and shock exhibit an accurate match with the exact solution.

Similar to the observation with analytical solution, the mathematical model used here
also has successfully simulated complete physics of the problem. The non-isothermal equa-
tion of state used to relate fluid properties also played a crucial role in this. The analytical
solution involved a series of fundamental relations that governed different thermodynamic
processes occurring inside the shock tube. The numerical solution is, however, obtained
by computationally solving a system of partial differential equations (the one-dimensional
compressible flow equations) with respective initial and boundary conditions. The high
similarity observed for the solutions to the same problem obtained through two different
approaches clearly suggest dependability of this solution.

Numerical solutions for the second set of water shock tube problems over different
temperature ranges are also obtained. Further, these numerical results are compared against
their corresponding analytical solutions. Solution profiles for the initial temperature ranges
of 280 K, 325 K, and 370 K are respectively displayed in Figures 5.7, 5.8, and 5.9. As
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Figure 5.6: Comparison of the analytical and numerical solution profiles for PL =
100 MPa, PR = 0.1 MPa at T = 300 K

already mentioned, all these three cases correspond to a driver section pressure of 500 MPa
and a driven section pressure of 0.1 MPa.

All these figures suggest a close agreement between the computational and analytical
results. Detailed explanations on the observations related to flow physics and on the values
of properties over different zones are presented in Section 4.7 of Chapter 4. The numerical
results presented here are grid independent solutions obtained at a resolution of 6,000 divi-
sions and are plotted using 100 equally spaced data points. The optimal CFL value is again
found to be close to 0.5.

We have seen some variations in the structure of solution profiles while we modelled
cases involving different initial driver section pressures. These variations were observed
mostly in relation with the spread of the expansion fan. However, for different operating
temperature ranges, such visible variations in the solution structure are absent. This is
because of the wider scale over which pressure varies for these cases as compared to the
narrower scale of variation for temperature.
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Figure 5.7: Comparison of the analytical and numerical solution profiles for PL =
500 MPa, PR = 0.1 MPa at T = 280 K

We have already seen property profiles for six different cases of water shock tube from
the figures displayed. To understand the property magnitudes predicted in the numerical
solutions over different zones, for each of these cases modelled, these values are displayed
in Tables 5.1 and 5.2.

From the property values reported in Tables 5.1 and 5.2 over different zones, the follow-
ing observations are made. The flow velocity developed over zones 1 and 2 increases with
the rise in driver section pressure. For a fixed value of driven section pressure, the higher
value of driver pressure corresponds to a higher diaphragm pressure ratio, and this induces
a higher flow velocity. Table 5.2 reports a rise in flow velocity over zones 1 and 2 for an
increase in operating temperature, for the same diaphragm pressure ratio. This observation
is related to the lower density of liquid at higher temperature.

The difference in pressure values observed over zones 1 and 2 from Table 5.1 for various
driver pressure cases is an obvious observation because of the varying diaphragm pressure
ratio. As visible from Table 5.2, while the diaphragm pressure ratio is held constant, pres-
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Figure 5.8: Comparison of the analytical and numerical solution profiles for PL =
500 MPa, PR = 0.1 MPa at T = 325 K

sure values over zones 1 and 2 remains nearly the same irrespective of the variations in
operating temperature. We could also notice the increase in the density of liquid for higher
driver pressures and the maximum density value reported in Table 5.1 is 1251.6 kg/m3 cor-
responding to the maximum pressure of 1000 MPa. This is a reliable observation as the
equation of state used for the liquid was already shown to be dependable over this pressure
range. With the increase in temperature range, a small dip in the density of liquid can be
observed over each zone resulting from fluid expansion.

The range over which liquid temperature varies inside the shock tube shows an increase
with the rise in the diaphragm pressure ratio. However, such notable variations in the tem-
perature range are not observed for different operating temperature cases. Instead, we could
observe a complete upward shift of this range for higher values of operating temperatures.
The property values over the expansion zone (E) are not displayed in any of the tables.
This is because, unlike other zones with fixed value of properties, the expansion zone has
a continuous variation of properties. Property magnitudes over this zone vary between the
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Figure 5.9: Comparison of the analytical and numerical solution profiles for PL =
500 MPa, PR = 0.1 MPa at T = 370 K

values over zone L and zone 2.

More than just a qualitative analysis of results, the comparative study presented in this
section demonstrates the ability of the proposed analytical solution to validate numerical
results from different computational algorithms. In this section we have discussed different
cases of water shock tube problem where either the driver section pressure or the operating
temperature is different. We have compared only those cases where either pressure or
temperature is different. However, we also need to see the performance of the analytical
solution and numerical results for a case where the initial problem setup is slightly more
complex. In the next section we are trying to solve such a shock tube problem where all
three properties viz., pressure, temperature and velocity are initially discontinuous across
the diaphragm.
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Table 5.1: Property values over various zones for the water shock tube cases with different
driver pressures

Property Zone
Driver section pressure

10 MPa 100 MPa 1000 MPa

Velocity
(m/sec)

L 0.0 0.0 0.0
2 3.3 30.8 199.7
1 3.3 30.8 199.7
R 0.0 0.0 0.0

Pressure
(MPa)

L 10 100 1000
2 5.0 48.3 372.1
1 5.0 48.3 372.1
R 0.1 0.1 0.1

Density
(kg/m3)

L 1002.2 1044.7 1251.6
2 1000.0 1024.8 1157.3
1 999.2 1017.2 1116.9
R 997.0 997.0 997.0

Temperature
(K)

L 300 300 300
2 299.6 296.4 277.4
1 300.4 303.6 324.0
R 300 300 300

5.5 The Effect of Initial Conditions on the Solution of Wa-
ter Shock Tube Problem

We know that the Sod’s problem has a standard initial condition. In this problem, initially,
only pressure varies across the diaphragm. The initial temperature is same throughout and
the flow is assumed to be stationary over the entire domain. Density of the fluid initially
varies based on pressure conditions, as they are related through the relevant EOS. Both the
formation of different zones in the solution and the trends observed in property profiles
are dependent on the initial conditions for a shock tube problem. For all the different
cases of water shock tube problem discussed till now, we have employed a similar set of
standard initial conditions. To explore the behaviour of the solution for more complex
initial conditions, a new and varied case of water shock tube problem was considered as
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Table 5.2: Property values over various zones for the water shock tube cases with different
operating temperatures

Property Zone
Operating temperature

280 K 325 K 370 K

Velocity
(m/sec)

L 0.0 0.0 0.0
2 118.6 127.4 136.6
1 118.6 127.4 136.6
R 0.0 0.0 0.0

Pressure
(MPa)

L 500 500 500
2 207.7 208.8 210.2
1 207.7 208.8 210.2
R 0.1 0.1 0.1

Density
(kg/m3)

L 1184.9 1147.9 1113.1
2 1121.0 1077.9 1038.5
1 1093.6 1048.3 1008.4
R 1018.9 969.7 925.2

Temperature
(K)

L 280 325 370
2 266.9 309.7 352.7
1 293.4 340.6 387.8
R 280 325 370

discussed below. The initial setup of this problem is shown in Figure 5.10.

Figure 5.10: 1D schematic of the initial setup for the varied water shock tube problem.

In this problem, as usual, we can see that the pressure is different across the diaphragm.
The driver section pressure is 500 MPa and the driven section pressure is 5 MPa. From
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Figure 5.10 it may be noted that, we introduced discontinuous initial conditions for both
temperature and velocity across the diaphragm. Driver section has a temperature of 350 K
and a velocity of 1 m/s, while the driven section temperature is 300 K and the flow in this
section is stationary (0 m/s). The shock tube geometry is unaltered from previous cases and
has a 3 m long domain.

We intend to explore capability of the analytical solution developed in Chapter 4 to
adapt to this slightly complex problem setup. Further, we numerically solve this prob-
lem using the same mathematical model described in Section 5.3. The numerical results
so obtained are then validated against the analytical solution. Analytical and numerical
results for this specific case discussed after 200µs from the rupture of the diaphragm, are
compared in the property plots in Figure 5.11.
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Figure 5.11: Comparison of the analytical and numerical solution profiles for PL =
500 MPa, PR = 5 MPa, TL = 350 K, TR = 300 K, VL = 1 m/s, and VR = 0 m/s,

From Figure 5.11, we could observe that there are some notable variations in the so-
lution profiles compared to standard shock tube problem. While pressure profile does not
exhibit any difference in the solution structure, the remaining property profiles do report
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certain variations. The temperature profile shows a piece-wise decreasing pattern form the
left towards the right of the shock tube domain. Compared to the usual observation where
temperature in zone 1 is greater than that of zone 2, here we have the reverse. This is be-
cause the initial temperature in zone L is comparatively high compared to that of zone R.
Though the rarefaction waves cause a decrease of temperature over zone 2 while the shock
wave induces a temperature rise in zone 1, overall both these are insufficient to overcome
the high initial temperature difference.

There are also certain notable variations in the density profiles for this problem. Fluid
density over zone 1 is usually observed to be lower to that of zone 2, which is not the
observed case here. Here we observe that the density over zone 1 is higher than that of
zone 2. This observation can be explained as follows. While the higher pressure over
zone 2 tends to increase fluid density, the higher value of temperature over this zone has
the opposite effect on fluid density. The expansion induced on the liquid by the higher
temperature finally results in a lower density in zone 2 compared to that in zone 1. The
velocity profile also shows a variation in the velocities on the left most and right most
zones based on the initial conditions. However, as we usually observe, the flow velocities
over zones 1 and 2 are equalised.

We could conclude that this water shock tube problem with slightly different initial
conditions is satisfactorily modelled by the proposed analytical solution procedure. We
can now examine the numerical results for the same problem displayed using scattered
symbols in Figure 5.11. We see a close match between the numerical and the analytical
solution profiles for this problem. This case study of water shock tube simultaneously
demonstrates two aspects related to the analytical solution. The first one is versatility of
the solution procedure that makes it capable of being applied to slightly modified versions
of the shock tube problem. The second aspect is the effective benchmarking capability of
the proposed solution for varied flow cases.

5.6 The Effect of EOS on the Solution of Water Shock
Tube Problem

We know that modelling of water as a compressible liquid requires relations that connect
the properties of water such as pressure, density, temperature etc. These relations should
also perform satisfactorily over the property ranges where compressible effects in water
become predominant. In this section we present details of the numerical simulation of water
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shock tube problem using a few selected equations of state for water. The numerical results
obtained were compared based on major observations from the solution profiles. Further,
we discuss the merits and demerits associated with each of the specific EOS considered in
the comparison. The initial problem setup of the water shock problem used for this study
is shown in Figure 5.12.

Figure 5.12: 1D schematic of the initial setup for the water shock tube problem for com-
paring different EOS.

A driver section pressure of 100 MPa and a driven section pressure of 0.1 MPa were
considered for the setup. An initial temperature of 300 K and velocity of 0 m/s (stationary)
over the complete domain were also preferred.

Four equations of state for liquid water were used in this study to model the compress-
ibility effects in liquid. The Tait EOS and the Stiffened Gas EOS, the two most frequently
used EOS for water were considered along with the NASG EOS and the modified version of
NASG EOS. The comparatively lucid structure and the ease of incorporation into the flow
equations were the two major attributes considered while these EOS were selected for this
study. Jolgam et al. in their study of the equations of state for simulation of multi-phase
flows [264], use both the Tait EOS and the Stiffened Gas EOS to govern compressible
property variations in water. More details on these EOS are available in Section 3.2 of
Chapter 3.

The one-dimensional water shock tube problem was numerically solved using each of
the four specified EOS for water and the property profiles after 200µs from the rupture of
the diaphragm are plotted in Figure 5.13. Figures 5.13(a) through 5.13(d) display velocity,
pressure, density and temperature profiles respectively. The respective numerical values of
each of these properties over different zones are enlisted in Table 5.3.

Significant variations observed in the solution profiles obtained with different state
equations and are evident from the corresponding property magnitudes reported in Ta-
ble 5.3. The variations reported are more prominent for density and temperature. Major
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Figure 5.13: Property profiles generated for the water shock tube problem with various
EOSs for water.

observations from the analysis are discussed here in detail. The property profiles with Tait
equation have not reported any density variation across the contact discontinuity, which is
otherwise observed with the other three equations of state. This shortcoming of the EOS
may be attributed to the lack of coupling between pressure-density and caloric relations.
However, the results reveal that the equation does capture the jump in temperature across
the contact surface.

The magnitude of velocity predicted by the Tait and the Stiffened gas equations ex-
hibits very close match for both the cases. The profiles of velocity over its equalised zone
stretching over zones 1 and 2 in the plot in Figure 5.13 (a) confirms this claim. However, a
slightly lower value is predicted for the same property with the NASG equation. The mod-
ified NASG predicts the velocity value close to those from the Tait and the Stiffened gas
equations. . The pressure estimates from all four equations of state for the central pressure
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Table 5.3: Property values over various zones for the water shock tube cases with different
equations of state

Property Zone
Equation of state

Tait Stiffened Gas NASG Modified NASG

Velocity
(m/sec)

L 0.0 0.0 0.0 0.0
2 31.71 30.17 27.6 30.97
1 31.71 30.17 27.6 30.97
R 0.0 0.0 0.0 0.0

Pressure
(MPa)

L 100 100 100 100
2 48 48 48 48
1 48 48 48 48
R 0.1 0.1 0.1 0.1

Density
(kg/m3)

L 1038.8 1153.1 1090.9 1044.7
2 1018.3 1130.2 1073.7 1024.9
1 1018.3 1050.1 1067.0 1017.3
R 997.0 1029.6 1049.3 997.0

Temperature
(K)

L 300 300 300 300
2 299.66 289.10 296 296.45
1 300.12 311.13 302.44 303.58
R 300 300 300 300

equalised zone between the expansion fan and shock vary within a very narrow range. The
rounding off gives a value of 48 MPa as the estimated pressure in this region with all the
four EOS employed.

The fluid property which exhibits maximum variation in its magnitude with different
state equations is the fluid density. Density values of water at a temperature of 300 K and
for the pressure ranges of 0.1 MPa and 100 MPa from the NIST database are 996.56 kg/m3

and 1037.20 kg/m3 respectively. Density estimates from different equations of state in the
zones formed are reported in Table 5.3. The corresponding percentage error in the density
prediction with each EOS with respect to the NIST data is presented in Table 5.4.

Of all the state equations employed, Tait equation predicts a density closest to the NIST
standard database. Density evaluation with the Stiffened gas equation exhibits the largest
deviation from the standard values and the reported error is too large to recommend its use,
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Table 5.4: Percentage error in density from each EOS compared to NIST data

Pressure Range (MPa)
% Error in density for EOS

Tait Stiffened gas NASG Modified NASG

0.1 0.044 3.32 5.29 0.044
100 0.155 11.18 5.18 0.72

especially at higher pressure ranges. The NASG equation is noticed to perform mid-way
between the other two choices. The density estimate error magnitude places it slightly
inferior to the Tait equation, whereas the same is an improvement over the Stiffened gas
equation. A trend of error growth in density estimates is observed with the Tait and Stiff-
ened gas equations with the increase of pressure range. However, the error associated
with the Tait equation is only 0.155% for the pressure range of 100 MPa. For Stiffened
gas equation, the estimated density and NIST value exhibit fast-growing divergence with
rise in pressure range. The error in density prediction which was under 5% for the 0.1 MPa
range, shoots above 10 % for the 100 MPa range with the stiffened gas EOS. This is consid-
erable deviation from the NIST data and this over prediction of density with the Stiffened
gas EOS is clearly visible in Figure 5.13 (c). The error percentage is observed to diminish
in magnitude with increase in pressure range for the NASG EOS and the maximum error
reported is 5.29% at the lowest pressure range of 0.1 MPa. The NASG, primarily being an
EOS modelled with the aim of relating pressure, density and caloric properties of saturated
water, is expected to show variations while applied with liquid water away from saturation
conditions.

The modified NASG equation is observed to produce superior results over its original
version as well as the Stiffened gas EOS. Through the refinement of parameters, the state
equation emerges adapted for application over a wider expanse away from the saturation
conditions. The error in density estimate reducing from 5.29% to a mere 0.044% at the
lower pressure range of 0.1 MPa strengthens the claim. Error reported with the original
version of the NASG equation for pressure ranges of 0.1 MPa and 100 MPa reduced from
5.29% and 5.18% respectively to 0.044% and 0.72%, which is a clear indication of im-
provement in accuracy of the EOS with the proposed modification. Thus, the modified
NASG EOS is comparable to the accuracy of the Tait equation with the clear advantage
of properly coupled pressure-density and caloric relations. The state equation also exhibits
the general trend of error growth with higher pressure ranges.

The temperature predicted over different zones also exhibits notable variations with the
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EOS used. The lowest variation of temperature range inside the liquid shock tube is pre-
dicted by the Tait EOS with the range of variation between 299.66 K-300.12 K. The Stiff-
ened gas EOS reported the highest variation in temperature range which extends between
289.10 K and 311.13 K. The inherent inaccuracies associated with specific heat values of
water for the Stiffened gas equation is a possible reason for the excessively extended pre-
diction of temperature range by this EOS. The NASG and modified NASG EOS predicted
the range of temperature variation in between the above discussed values, and these values
are also close to each other. While the NASG predicts it between 296 K and 302.44 K, the
modified NASG provides the temperature estimates in the range of 296.45 K-303.58 K.

Another observation made in the results with different state equations is the variation in
the extent of the central zone bounded by expansion wave and shock over which pressure
and velocity are equalised. These variations could be attributed to the difference types of
EOS used in the formulation of speed of sound. Based on the speed of signal propagation
the expanse over which the initial flow conditions are disturbed can vary over a given time
period.

On the basis of the reported error in the property estimates in comparison with the NIST
standard database as well as from the scrutiny of the relative capability in modelling the
complete physics of the flow problem, the modified version of NASG equation substantiates
its superiority. The modified NASG EOS is thus recommended in the modelling of liquid
water flows involving very wide pressure ranges where compressible effects of the liquid
and thermal effects on density are to be considered.

5.7 Summary

In this chapter we presented a comparative study on a few selected computational algo-
rithms by modelling the Sods’s shock tube problem. The HLLC was found to be the best
flux method in its pure form. This HLLC flux was further combined with the MUSCL-
based system along with a few slope limiter algorithms. The MUSCL-HLLC flux with
MC type limiter was found to be the optimal solver combination from simulation studies
on the one-dimensional Sod’s shock tube problem. Further, the chapter discussed the use
of one-dimensional equations for compressible flow as the suitable mathematical model
for numerically solving water shock tube problem. The selection of modified NASG EOS
as the closure relation and its appropriateness in modelling the compressibility effects in
water were also explained. The computational strategy employed in the chapter was also
discussed along with this. Six different cases of the water shock tube problem were solved
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numerically and these numerical results were validated by comparing them against the ana-
lytical solutions. Very close agreement was observed between the numerical and analytical
solutions for all the cases considered. The six cases were subdivided into three cases each
for studying the numerical results under specified range of pressure and temperature. To
understand the applicability of the analytical and numerical solution techniques to a slightly
varied problem setup, a new case of the water shock tube problem was considered with a
somewhat complex initial condition. This study demonstrated the ability of the analytical
solution and the numerical methodology used to adapt to a variety of problem setups and
their ability to capture the physics of the problem. The last section of the chapter tried to
numerically simulate the water shock tube problem using a few selected EOS for water to
understand the difference in solution based on the state equation for liquid used. This study
provided many valuable observations like the large deviations in results using the Stiffened
gas EOS, the incapability of the Tait EOS to model non-isothermal flow cases despite its
high accuracy, etc. The study also showed the superiority of the modified NASG EOS in
accurately modelling the compressibility effects of liquid water under isothermal and non-
isothermal conditions. The close match observed between the analytical and numerical
solutions to the water shock tube problem that were achieved using entirely different ap-
proaches proved the reliability of the solutions presented. This chapter also demonstrates
that the analytical solution developed for liquid shock tube could be successfully used for
the validation of numerical solutions obtained with various computational algorithms for
compressible liquid flows.
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Chapter 6

Hydraulic Surge Estimation: The Con-
cept of Adaptive-Damping

6.1 Introduction

We have discussed several cases where liquids are compressed under extreme pressures
in Section 2.2 of Chapter 2. Water in its liquid state finds application in many industrial
and nonindustrial systems where the system pressure is extremely high. Under such flow
scenarios the compressibility effects in the liquid becomes significant. Hydraulic surges
in transfer pipelines triggered by sudden valve closures are commonly observed in indus-
trial, laboratory, and domestic flow situations. The experimentally measured pressure data
frequently shows that the maximum pressures reached during a hydraulic surge surpasses
the operating pressure by a considerable margin. This information is crucial to the safety
of a system and simulation of such flow cases demands high accuracy. The numerical
simulation results for such flow situations are usually observed to have deviations from
the experimentally measured data. The incapability of the mathematical model to capture
certain flow physics is a major cause for such inaccuracies. Treating the liquids to be com-
pressible for high-pressure conditions, usage of advanced pressure damping models, etc.,
in the mathematical model shall improve simulation accuracy.

In this chapter we present a single-phase mathematical model for the simulation of
valve induced hydraulic surges that are non-cavitating or nearly non-cavitating. The pro-
posed model includes two major improvements in relation to flow physics modelling. The
first one is that this model considers the compressibility effects in liquid through the in-
clusion of a dedicated equation of state. The second speciality is that the model includes
an adaptive damping technique for surge data prediction by introducing a variable pressure
wave damping coefficient.
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Section 6.2 discusses the importance of studying and estimating hydraulic surges in dif-
ferent flow systems. This section also explains some catastrophic system failures reported
in the literature, that were triggered by the unexpected hydraulic surges in those systems.
Section 6.3 describes the particulars of two selected high-pressure rapid valve-closure ex-
periments. The step by step procedure adopted in developing a mathematical model for
the simulation of non-cavitating hydraulic surges is explained in Section 6.4. The selec-
tion of a suitable mathematical model and the incorporation of the compressible model for
the liquid into it are described in the Section 6.5. The proposed mathematical model is
presented in Section 6.6 in its corresponding matrix form. The subsequent Section 6.7 de-
scribes the computational strategy to numerically simulate hydraulic surge problem using
the Split Coefficient Matrix Method (SCM). Results from the simulation using the two-
equation compressible-liquid model is presented in Section 6.8, where it is compared with
the experimental data along with a discussion of the major observations. Section 6.9 in-
troduces the concept of adaptive damping in pressure surge prediction by defining a new
variable pressure wave damping coefficient (VPDC) as a function. The subsequent Sec-
tion 6.10 presents the simulation results obtained using the two-equation model with the
VPDC and discusses the differences observed in the results from those obtained using the
same model with a constant pressure wave damping coefficient. The numerical results for
transient cases are also thoroughly analysed and compared with the corresponding experi-
mental data. The final Section 6.11 summarises the chapter.

6.2 Hydraulic Surges in Systems

The hydraulic surge in pipes is a widely studied flow phenomenon due to its high practical
relevance in water-supply for industrial and non-industrial applications. The importance
of studies on the surge in pressure due to events like sudden closure of valves cannot be
overemphasised. A thorough analysis of the surge in fluid properties is required for any
flow transient for the safety of the structure to avoid hazardous failures. This is why we
closely monitor pressure variations at strategic locations in a flow system. The surge data
is expected to provide information on the peak pressures reached inside a flow system for
a given period of operation. Along with maximum and minimum magnitudes of pressure,
the time at which they occur and the exact location inside the flow system where they are
expected are also important. This hydraulic surge, or what we commonly call as the water
hammer phenomena, is reported to have caused numerous fluid transfer system failures
over different parts of the world. The extreme surge in pressure in systems is capable of
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causing multiple failures such as rupturing of the pipe fittings, valve failures, failure of heat
exchanger components, breaking of the welded joints in pipes, damage to the pipe supports,
overstressing of the pressure gauges, etc. The photographs of certain failed components due
to hydraulic surges are displayed in Figure 6.1.

Figure 6.1: Photographs of failed components form hydraulic surges

A ruptured cast iron pipe from a water hammer event is displayed in Figure 6.2 (a). The
Sayano Shushenskaya Dam incident on 17th of August, 2009, which claimed the lives of
75 people, was reportedly from a turbine draft tube water hammer triggered by a sudden
gate valve closure [265]. A liquid ammonia hydraulic shock has led to the catastrophic
failure of a 12-inch suction pipe at the Millard Refrigeration Services facility in Theodore,
Alabama on 23rd August, 2010 [266]. The rupture of this pipe resulted in the release of
large quantities anhydrous ammonia in excess of 32,000 pounds. Figure 6.2 (b) shows the
image of the ruptured suction pipe.

Figure 6.2: Photographs of the ruptured pipes from hydraulic surges

Hydraulic shocks or water hammers are the result of conversion of the kinetic energy of
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a flowing fluid into elastic energy. This effect becomes prominent only for sudden accelera-
tions or declaration of a flow. The fluid is deformed at the changing boundary because of the
inertia associated with flowing fluid. The fluid deformation is accompanied by correspond-
ing transient variations in pressure. The surge pressure waves thus generated propagates at
the speed of sound in the liquid, which is close to 1250 m/s. This high momentum makes
the pressure surge very dangerous as it can lead to devastating effects over all parts of the
piping system it reaches.

A historical review of water-hammer with column separation is available in [267]. Leis-
hear [268] provides a summary of water hammer-induced pipe failures. Theory and exper-
iments on fluid transients in systems and the studies on various parameters affecting water
hammer are available in the books [269, 270]. The work by de Freitas Rachid [271] anal-
yses the damage evolution induced by pressure transients, and the study by Khudayarov
and Turaev [272] mathematically simulates non-linear oscillations in viscoelastic pipelines
conveying fluid. Modelling and optimising hydraulic transients in water distribution sys-
tems, using the classical gradient and heuristic optimisation techniques, are reported by
Skulovich et al. in [273]. Numerical detection of cavitation damage level and location on
dam spillways is reported in [274]. The recent work by Leishear [275] reveals that water
hammer is the main initiator of almost every underground water main breaks.

Provoost [276] carried out an early investigation into cavitation in pipelines due to
water hammer. Numerous two-phase cavitation models such as those by Shu [277], Covas
et al. [278], Kaliatka et al. [279] are available in the literature for predicting hydraulic
surges in pipes. The works by Kucienska et al. [280], Tian et al. [281], and Soares et
al. [282] report different two-phase cavitational hammer models. Sadafi et al. describe a
generalised interface vaporous cavitation model in [283], while Pinho et al. [284] present a
full cavitation model for two-phase water hammer modelling. In these two-phase cavitation
models, the gaseous components are modelled as compressible fluids, whereas the liquid
component, which is usually water, is invariably treated to be incompressible. There are
many practical situations like the displacement of waxy crude oils studied by Frigaard et al.
in [285], or the motion of ultrasonic cavitation bubble studied by Qu et al. in [286], where
liquid compressibility consideration, though mild, may contribute to the completeness of
the model. The simulation of transient flows in viscoelastic pipes with vapour cavitation
by Hadj-Taïeb and Hadj-Taïeb [287], employs a compressible model for both liquid and
gaseous phases.

For hydraulic surges arising from sudden valve closures at high operating pressures, the
cavitation effects are generally absent. For such cases, a comparatively simple mathemat-
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ical model is preferred such that it drastically reduces the computational cost to simulate
flow transient.

6.3 The Valve-Induced Hydraulic Surge Experiments

We selected two valve-closure experiments with sufficiently high operating pressures such
that they are non-cavitating cases and could be safely simulated using a single-phase model.
These two high pressure experiments were conducted by Neuhas et al. [288] at the Pi-
lot Plant Pipework (PPP) test rig at Fraunhofer UMSICHT. Experimental and numerical
studies on water hammer induced flow transients at the PPP test rig are also available
in [289, 290]. The schematic of the PPP experimental setup with measurement points are
shown in Figure 6.3.

Figure 6.3: Schematic of the Fraunhofer UMSICHT PPP experimental setup with mea-
surement points.

The experimental procedure is as follows. Demineralised tap water from reservoir B1 is
pumped into a 110 mm inner diameter and 170 m long steel pipeline. This pumping initially
pressurises the entire pipeline to the high pressure maintained inside the reservoir. The
valve located between the pressure transducers P02 and P03 closes almost instantaneously
at time t = 0 while the pump remains running. Due to the sudden closure of the valve,
a strong rarefaction wave is generated towards the downstream of it. This wave traverses
further downstream towards reservoir B1. Vapour bubbles can form at locations where the
fluid pressure goes below its vapour pressure. The rarefaction waves generated oscillate in
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the pipe system and undergo multiple reflections at the boundaries until they get dissipated
completely.

The two high pressure experiments chosen for validation of the method are Experiment
No. 415 and Experiment No. 347 mentioned in [288]. The details of these experiments are
provided in Table 6.1.

Table 6.1: Details of the experimental conditions

Experiment Fluid Velocity, u Flow Rate, Q Temperature, T Pressure, PR
No [m/s] [m3/hr] [◦C] [bar]

415 1.00 33.2 21.9 19.65
347 1.01 33.4 20.3 12.50

The valve closure Experiments No. 415 and No. 347 reported in [288] correspond to
the operating pressure ranges of 19.65 bar and 12.50 bar, respectively, with the temperature
close to 20 ◦C. For these two high-pressure experiments, the lowest values of transient pres-
sure measured are well above the saturation pressure of liquid and because of this the effects
due to cavitation are absent. The pressure transducer P03 shown in Figure 6.3, located at
a distance of 0.2 m downstream of the valve, records the transient pressure data. The ex-
perimentally measured pressure values at the location P03 for the Experiment Nos.415 and
347 are displayed in Figures 6.4 and 6.5.
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Figure 6.4: The measured pressure values at P03 for experiment 415.
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The pressure data was recorded for a duration of 3 seconds from the initiation of the
valve closure for Experiment No. 415. However, for Experiment No. 347, the pressure data
recording continued till 5 seconds from the valve closure. These durations are also based
on the relative time within which the pressure oscillations almost damp down completely
inside the system. A strong rarefaction wave is generated just downstream of the valve
immediately after its closure as the inertia of moving fluid creates a low-pressure area
in the downstream region of the valve. The crests (peaks) and troughs (anti-peaks) seen
from the experimental pressure profile indicate the rarefaction waves propagating to and
fro along the length of the pipe, undergoing multiple reflections at boundaries. Due to
frictional forces in the pipe flow system, these waves lose their energy and dissipate into a
steady-state, which is evident from the decreasing amplitude of pressure with time.
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Figure 6.5: The measured pressure values at P03 for experiment 347.

Beginning from an initial condition of 19.65 bar, the pressure during the valve-induced
surge reached a maximum value close to 35 bar for Experiment No. 415. The minimum
pressure recorded by pressure transducer at P03 is around 6 bar for this experiment which
is due to impact of the rarefaction waves generated. In the case of Experiment No. 347,
highest pressure recorded by the pressure pick-up is close to 30 bar. These experimentally
measured data for the selected cases shall be later used for the validation of the mathemat-
ical model we propose.
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6.4 Procedure for Model Development

In this chapter, we intend to develop a simplified mathematical model that would be com-
putationally inexpensive to simulate non-cavitating hydraulic surges. The model should
also be able to address the compressibility effects in liquid during the surge, in addition to
the savings offered in computation. We also intend to incorporate a variable pressure wave
damping coefficient (VPDC) to this model to improve the prediction of transient variations
in pressure during the surge. The procedure followed to develop the intended model is
explained below.

Neuhaus et al. presented a three-equation model in [34] for the calculation of thermo-
hydraulic pressure surges in pipes. This is a two-phase model intended for the simulation
of cavitational hammers and is a computationally expensive one. This model is to be mod-
ified into a two-equation model for single-phase cases. The modified model could then be
used for the simulation of hydraulic surges for high-pressure flow cases where cavitation
effects are negligible. A suitable equation of state (EOS) for liquid should be further in-
corporated into this single-phase model to account for the compressibility effects in liquid.
The selected EOS should be able to relate fluid density and signal wave speed to pressure.
The specific EOS we intend to use is the modified Noble-Abel Stiffened Gas equation of
state (modified NASG EOS) [253], which is a highly accurate non-isothermal EOS for
liquid water. Further, we will define a variable pressure wave damping coefficient as a
replacement to the typical constant friction coefficient. This is to improve the accuracy of
numerical solver for predicting oscillations in pressure during the surge. The variable pres-
sure wave damping coefficient would be defined as a tunable function of the local pressure
fluctuations.

On finalizing the mathematical model, a suitable computational strategy shall be adopted
for the numerical simulation of hydraulic surge associated with sudden valve closure ex-
periments. The Split-Coefficient Matrix (SCM) method [291] that uses characteristic direc-
tion based splitting, would be used for modelling wave propagation during fluid transient.
The proposed computational model will be then validated by using experimentally mea-
sured data reported in [288]. The two-equation model shall be compared to the original
three-equation model to showcase model simplification and improvements in saving cost
of computation. The flow chart shown below illustrates the research methodology used.

Selection of an existing mathematical model (the three-equation model) for cavitating
hydraulic surges.

⇓
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Simplifying this mathematical model (to the two-equation model) to make it suitable for
non-cavitating hydraulic surges at high operating pressures.

⇓
Inclusion of compressibility effects in liquid by incorporating a suitable EOS for liquid

into the model.

⇓
Developing a computational strategy to use this mathematical model to numerically

simulate practical flow cases.

⇓
Analysing the results for any variations and improvement with the proposed compressible

model.

⇓
Defining a variable pressure wave damping coefficient (VPDC) based on local fluctuations

of pressure in the flow field.

⇓
Incorporation of the VPDC into the two-equation compressible-liquid model to provide

adaptive damping capability to the solver model.

⇓
Numerically solving the non-cavitating hydraulic surges using the VPDC incorporated

two-equation compressible-liquid model.

⇓
Analysing numerical results from the proposed model against the experimental data and
numerical results from the original 3-equation model, to understand the improvements

brought by this model in the simulation of hydraulic surges.

6.5 The Mathematical Model

This section provides details of the three-equation model for cavitational hammer and its
simplification into a two-equation model. The selection of a suitable liquid EOS and its
incorporation into mathematical model are also discussed.

6.5.1 The three-equation model

A three-equation two-phase model is proposed by Neuhaus et al. in [34] for numerical sim-
ulation of cavitational hammer and related thermo-hydraulic pressure surges. This system
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includes separate conservation equations for the mass of each phase (liquid and gas) and a
combined momentum equation for both the phases, assuming that there is no slip in veloc-
ity between the phases. Below we present the conservation equations for mass in the liquid
phase, in the gas phase (air + vapour) and the combined momentum equation for both the
phases (in that order).

(1− α)

aL2
∂P

∂t
− ρL

∂α

∂t
+

(1− α)u

aL2
∂P

∂x
− ρLu

∂α

∂x
+ (1− α)ρL

∂u

∂x
= −ΓV − ΓA (6.1a)
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ρM

∂P

∂x
= − 4τ

ρMd
(6.1c)

where P , u, ρ, and α are respectively the pressure, axial velocity, density, and void
fraction of the flow. The symbol a represents speed of propagation of wave in the medium
and τ is the shear force due to skin friction. ΓV denotes mass transfer due to vaporisa-
tion/condensation and ΓA is the mass transfer due to air release, and d is the pipe diameter.
The variables x and t ddenotes spatial and temporal coordinates. The subscripts L,G, V,A,
and M respectively denote the liquid, gas, vapour, air, and the two-phase mixture. The
liquid-gas mixture density, ρM , is computed using the following relation:

ρM = (1− α)ρL + αρG (6.2)

The flow model also incorporates steady and unsteady friction models as well as the ef-
fects of degassing. An optional structural model is also included in the system to take into
account the effects of fluid-structure interactions (FSI). The results from this mathemati-
cal model are validated against a series of experiments at the Pilot Plant Pipework (PPP),
Fraunhofer UMSICHT. The report by Neuhaus et al. [288] shows results from the three-
equation mathematical model performing well with two-phase flow cases at low operating
pressures. For high operating pressures reported in [288], this model performs satisfactorily
only with the incorporation of FSI into it. The simulation results for Experiment Nos. 415
and 347 using the three-equation model are respectively displayed in Figures 6.6 and 6.7.

We could clearly observe variations between the numerical results and the experimen-
tally measured data in the figures. The numerical results displayed are obtained without
using FSI algorithm in the mathematical model. The damping down of pressure waves as
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Figure 6.6: Simulation results for Experiment 415 using the 3-Equation model with steady
and unsteady friction models
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Figure 6.7: Simulation results for Experiment 347 using the 3-Equation model with steady
and unsteady friction models

observed in the experiment could not be reproduced by the steady friction model. However,
the highest peaks that appear initially in the transient are closely predicted by the steady
friction model. Though there exists high inaccuracies in the initial phase of transient pre-
dicted, the unsteady friction model correctly indicates dissipation of the pressure waves.
While there are notable deviations in amplitudes of peaks and anti-peaks in the numeri-
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cal pressure profiles, frequency of transient pressure variations from the simulations are
observed to be close to that of the experimental observation.

6.5.2 The two-equation compressible-liquid model

Here we propose a single-phase two-equation model as a modification to the three-equation
model described above for flow situations where there are no cavitation effects. The pro-
posed model tries to simulate flow physics without using the FSI algorithm in it, which
considerably reduces the computational complexity. For single-phase flow in a horizontal
pipe, in the absence of cavitation effects, the three-equation model discussed above reduces
to a two-equation system as follows:

1

a2
∂P

∂t
+
u

a2
∂P

∂x
+ ρ

∂u

∂x
= 0 (6.3a)
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∂u

∂x
+

1

ρ

∂P

∂x
= −4τ

ρd
(6.3b)

Equation (6.1a) reduces to Equation (6.3a), which represents the mass balance for the
liquid, and Equation (6.1c) reduces to Equation (6.3b), which represents the momentum
balance for the liquid phase. The mass balance for gas phases given by Equation (6.1b)
identically satisfies due to single-phase consideration, and the subscripts for flow variables
are dropped as only one phase is dealt with in the model. Equations (6.3a) and (6.3b) form
a system of PDEs with the dependent variables u, P , and ρ. The temperature is assumed
to be constant during the flow process and energy balances are thus automatically satisfied.
The density ρ of liquid is treated as a variable using an appropriate compressible model
as discussed in Section 6.5.2.1. Initially the shear stress τ is estimated using the same
unsteady friction model as used with the three-equation model that uses a constant friction
coefficient for pressure wave damping effects. The source term in the momentum equation
represents the head losses per unit length due to frictional effects. This term is the sum of
the head losses due to steady and unsteady friction.

6.5.2.1 The compressible modelling of water

We know that the accuracy associated with any surge analysis is dependent on the accuracy
of data inputs entered in to the system. Only with this accurate input a computation model
can faithfully reproduce the real system conditions. Wherever a liquid is exposed to ex-
treme pressure conditions, compressibility effects in that liquid will become significant. In

104



such situations, we could move a step closer to the actual field conditions by modelling the
liquid as a compressible fluid. This shall also improve the simulation accuracy. While we
take a closer look at flow transients generated from instantaneous or fast valve closures, we
could see that the liquid is frequently exposed to large pressures. This is evident from the
surge data for such flow situations, where we closely monitor pressure variations at strate-
gic locations in a flow system. For the selected experimental setups, water is modelled as
a compressible liquid because it is subjected to very high pressures both at operating and
surge conditions.

The density of liquid water is estimated using the modified NASG equation of state
(EOS) proposed in [253]. This EOS relates pressure P , specific volume v, and specific
internal energy ε of the liquid as follows:

P = (γ − 1)
(ε− q)
(v − b)

− γP∞

The relation for speed of sound in unconfined liquid compatible with the EOS is given as
follows:

c =

√
γv2 (P + P∞)

v − b
Radial expansion of the pipe is considered while estimating the speed of propagation of
wave (a) in water using the following relation:

a =
1√

1

c2
+ (1− ν2) ρd

Es

(6.4)

In Equation (6.4), ν and E are respectively the Poisson’s ratio and the Young’s modulus of
pipe material, and s is the pipe wall thickness.

6.6 Compact Form of the Mathematical Model

The two-equation model is initially converted to the corresponding matrix form and the re-
sulting matrix system is then solved in a two-step process. The process involves converting
the governing equations into characteristic form and solving them using the split coefficient
matrix technique. The details are as given below:

The governing relations of the two-equation model given by Equations (6.3a) and (6.3b)
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can be written in the compact matrix from as follows:


1

a2
0

0 1



∂P

∂t

∂u

∂t

+


u

a2
ρ

1

ρ
u



∂P

∂x

∂u

∂x

 =


0

−4τ

ρd

 (6.5)

Equation (6.5) is of the form

A
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In Equation (6.6)
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u

]
(6.7)

Premultiplying Equation (6.7) by A−1, we obtain the following standard form:

∂U

∂t
+ C

∂U

∂x
= A−1S (6.8)

From the coefficient matrices A and B in Equation (6.7), the corresponding Jacobian
matrix C and the eigenvalue matrix ∧ are obtained as follows:

C = A−1B =


u ρa2

1

ρ
u

 and ∧ =

 u− a 0

0 u+ a

 (6.9)

Splitting the Jacoian matrix C in Equation (6.9) into the left and the right eigenvector ma-
trices (Z and Z−1), we obtain:

C = Z ∧ Z−1 =

 −ρa ρa

1 1


 u− a 0

0 u+ a



− 1

2ρa

1

2

1

2ρa

1

2

 (6.10)

In the first step of computation, the source term is excluded from Equation (6.8) and the
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resulting equation takes the form:

∂U

∂t
+ C

∂U

∂x
= 0 (6.11)

The split form of the Jacobian matrix C from Equation (6.10) is substituted into Equa-
tion (6.11). The resulting equation is premultiplied by Z−1 to obtain the following relation:

Z−1
∂U

∂t
+ ∧Z−1∂U

∂x
= 0 (6.12)

Defining the characteristic vector W as given in [128], such that

∂W = Z−1∂U (6.13)

Equation (6.12) changes to the following relation

∂W

∂t
+ ∧ ∂W

∂x
= 0 (6.14)

Linearizing Equation (6.13) similar to [292] we can compute the characteristic variable
vector W using the following relation:

W = Z−1U =


− p

2ρa
+
u

2

p

2ρa
+
u

2

 (6.15)

Equation (6.11) is thus transformed to the corresponding characteristic form in Equation (6.14).

6.7 The Computational Strategy

In this section we present the computational strategy adopted to numerically solve the math-
ematical model explained in couple of previous sections. This includes the determination
of a suitable computational domain with relevant initial and boundary conditions and the
selection of an appropriate numerical algorithm to solve the system of PDEs in the matrix
form. These are explained in detail below.
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6.7.1 Details of the computational domain

The entire downstream side of the valve up to reservoir B1, as shown in Figure 6.3, which is
149.4 m long, is chosen as the computational domain. In our model, we have not considered
fluid-structure interactions in pipe flow. A simplified one-dimensional straight pipe section
of the length 149.4 m is assumed for computation as shown in Figure 6.8.

Figure 6.8: Schematic of the computation domain

As we could see, the left end of the domain is the fast closing valve and at the right
boundary we have a pressure reservoir. Initially flow is taking place from the left through
the fully open valve towards the right to the reservoir maintained at a fixed pressure. The
computation starts when the valve closure just begins and continues till the time duration
for which corresponding experimental data is available. We assume a fixed initial velocity
inside the entire domain as per the experimental specifications. The left boundary is given a
transiently varying inflow velocity condition while the right boundary has a fixed pressure
outlet condition. The inlet pressure and the outlet velocity are floating variables. At the
inlet the velocity is assumed to be linearly decreasing from the initial value to zero over a
period of few milliseconds, to replicate the fast valve closure. Reservoir pressure for the
experiment is the assigned fixed value of pressure at the right boundary. For the purpose of
computation, the one-dimensional domain is divided into equally sized control volumes of
size4xm.

6.7.2 The two-step computational algorithm

The solution of two-equation model given by Equation (6.6) is obtained in a two step pro-
cess. In the first step, the system of equations in the characteristic form excluding the
source terms given by Equation (6.14) is solved for an intermediate time step denoted by
‘?’, starting from the nth time step. The semi-discretised form of this equation for the ith

spatial grid is as follows:

W ?
i = W n

i −4t
[
∧∂W
∂x

]n
i

(6.16)
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The split coefficient matrix (SCM) method is used for solving the above system in
Equation (6.16).The SCM is a powerful solution technique for wave propagation related
fluid flow problems. This technique finds application in different works involving numer-
ical solution of two-phase flow equations such as [293–295]. Recently Zhang et al. [296]
used the SCM technique to study axially coupled vibration response of a fluid-conveying
pipeline excited by water hammer. The SCM method is used to split eigenvalue matrix
∧ into characteristic speed matrices with positive and negative eigenvalues separated into
respective matrices ∧+ and ∧− as follows:

∧+ =
∧+ | ∧ |

2
and ∧− =

∧ − | ∧ |
2

(6.17)

Using ∧+ and ∧− from Equation (6.17), the properties are updated to the intermediate time
step as follows:
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(6.18)

An explicit third-order upwind method is used for spatial discretisation of the convective
terms in Equation (6.18) as given below:
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i−1 +W n
i−2
)
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i − 2W n
i−1
) ] (6.19)

On completion of the first step of computation, the primitive variable vector is recovered
from characteristic variable vector as U?

i = ZW ?
i . In the second step, the effect of source

term is integrated into the solution by retaining only the transient and source terms in
Equation (6.6) as follows:

∂U

∂t
= A−1S (6.20)

and the semi-discretised form of Equation (6.20) is given below:

Un+1
i = U?

i +4t
[
A−1(Un

i )S(Un
i )
]

(6.21)

Since there is no source term in the mass balance equation for liquid, only the momentum
equation needs to be solved in the source term integration step. From the momentum
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equation, the velocity of flow is updated as:

un+1
i = u?i −4t

(
4τ

ρd

)
(6.22)

In Equation (6.22), u? is the component of primitive variable vector U?.

The single-phase two-equation model can be safely used to simulate hydraulic surges
in the two valve closure experiments selected as both of these do not report cavitation
effects. However, numerical results from the simulation using the proposed model are to
be validated against the corresponding experimental data.

6.8 Results of the Two-Equation Compressible Liquid Model

For the purpose of computation, the one-dimensional domain is divided into 747 uniformly
sized control volumes, each of size 4x = 0.2 m. From stability considerations, a CFL
value of 0.03 is found to be optimal and the corresponding time step size 4t is calculated
to be close to 5× 10−6 s.

The transient flow problem of sudden valve closure in a steel pipe and the associated
pressure surge are mathematically formulated using the proposed two-equation compress-
ible liquid model. This one-dimensional system of equations is solved numerically, and
the results are compared against the numerical results computed using the existing three-
equation model and with the transient pressure data measured experimentally. The experi-
ment data were those measured using the pressure transducer P03 for Experiment Nos 415
and 347 reported in [288]. In the case of Experiment No. 415, the transient data measured
for the first 3 s from the closure of the valve is used, while for Experiment No. 347, the
measured data for the first 5 s is considered. The unsteady friction formulation reported
in [288] is used with both computational models. An optimised value of 0.18 is used for
the constant friction coefficient k in the simulation of these experiments.

The results for Experiment Nos. 415 and 347 are respectively displayed in the Fig-
ures 6.9 and 6.10.

The experimentally measured transient pressure profile for both Experiments are plot-
ted using continuous black curves. The continuous blue coloured curve in Figure 6.9 rep-
resents the transient pressure profile computed using the three-equation incompressible
model [288]. Numerical results obtained from the proposed two-equation compressible
liquid model are displayed using magenta coloured curve in Figure 6.9. The numerically
computed transient pressure profiles using the three-equation and the two-equation models
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Figure 6.9: Comparison of measured and computed pressure at P03 for experiment 415.

for Experiment No. 347 are shown in Figure 6.10 using green coloured and red coloured
curves respectively.

As observed from Figures 6.9 and 6.10, the transient pressure profile predicted by the
two-equation model proposed is in good agreement to that obtained from the existing three
equation model. However, we should remember that the two-equation model reproduced
this numerical solution using a much simplified mathematical formulation with reduced
computational cost. On closer observation, one may find that the two-equation model pre-
dicts the peak pressures slightly higher than that of the three-equation model throughout
the transient. This is visible in both figures. This increase in pressure magnitude could
be attributed to the compressible treatment of liquid, which accounts for the increase in
density of the liquid at high pressures. The compressible treatment also leads to accurate
estimation of wave speeds within the fluid, which adds to the magnitude of calculated surge
pressure. We could observe that the crests and troughs in the solution profiles with the pro-
posed two-equation compressible model show a small shift to the left compared to that
from the three-equation model. This shift is a result of the higher wave speeds estimated
using the two-equation model due to the presence of compressible model in it. The increase
in pressure during the surge and the corresponding increase in fluid density are both con-
nected to wave speed through sound speed relation of the liquid EOS used. This increase
in wave speeds at higher pressures also increases the frequency of oscillations within the
pipe system, which finally appears as a slight leftward shift of the profile.
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Figure 6.10: Comparison of measured and computed pressure at P03 for experiment 347.

The computed frequency of wave propagation is observed to be in close agreement with
the experimental results. However, the amplitude of pressure peaks from the numerical
results is not in good agreement with the measured values. The structural interaction with
fluid flow, which is not accounted for in the present model, is a possible reason for this
disparity in the results. From the experimental and numerical pressure profiles displayed in
Figures 6.9 and 6.10, an important observation is made as follows. During the initial phase
of the transient, the magnitude of pressure peaks and anti-peaks are highly under-predicted,
and at the later phase, they are over-predicted in the numerical results. This observation
is due to the over-damping induced by the constant pressure wave damping coefficient
for the initial transient phase and vice-versa. This improper damping technique using a
constant pressure wave damping coefficient, adds to the variation of numerical results from
the measured values. It is thus important to introduce a technique by which the damping
could be controlled based on the varying flow conditions. In the following section a new
technique is presented for gaining control over the fluctuating flow conditions and to use it
to determine the pressure damping coefficient.

6.9 Adaptive Damping of Pressure Waves

It is a common observation that while using a steady shear stress model in modelling fluid
hammer problems such as those reported in the works [215,297–300], discrepancies arise in
the numerically computed data over experimental or field data measured. A review of some
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of the frequently used friction models for liquid transients are presented in Section 2.8.
Daily et al. [219] conducted laboratory experiments and found that these discrepancies are
positive for accelerating flows and are negative for decelerating flows. A detailed review
of the wall shear stress models used in the modelling of hydraulic transients is available in
the work of Ghidaoui et al. [301]. The relation of energy loss coefficient with transition
geometry of a pipe, flow Reynolds number, and the relative roughness of the wall are
outlined by Nosrati et al. in [302]. The friction model used with the three equation model
in Equation (6.1) given in [34] defines the shear stress with a quasi-steady friction part (τs)
and an unsteady friction part (τus). The unsteady shear stress part of the model takes the
following form for single-phase liquid flow case:

τus =

(
k
ρd

4
a

)
sign(u)

∣∣∣∣∂u∂x
∣∣∣∣ (6.23)

In Equation (6.23), k is the unsteady friction coefficient accounting for damping of pressure
waves.

Daily et al. [219] further showed that for an unsteady shear stress model as given in
Equation (6.23), the coefficient k is a measure of deviations due to unsteadiness of the
wall shear and momentum flux. The extended thermodynamics approach by Axworthy et
al. [303] supports this claim and reports the poor agreement between model and data while
using a constant value for k.

The disparities in the numerical data is an indication that the mathematical model is un-
able to adapt to the drastically changing flow conditions. This lack of adaptation means that
some important variations in the flow properties during the transient are left unaccounted
by the mathematical model. The fluid pressure is a property that undergoes heavy fluctua-
tions in its magnitude during a surge. The other important parameters such as fluid density,
signal propagation speed and flow velocity are all related to fluid pressure and hence get
altered by the fluctuations in this property. If we could use the captured variations in pres-
sure to make the entire mathematical model adapt to the varying flow conditions, it shall
certainly improve simulation accuracy. The pressure wave damping coefficient is a param-
eter in the unsteady friction model that is usually assigned a constant value throughout the
simulation of a flow transient. By redefining this parameter as a function of the calculated
fluctuations in the pressure, the mathematical model is expected to suitably adapt to the
drastic variations in the flow.

113



6.9.1 Variable pressure wave damping coefficient

Based on the limitations associated with a constant pressure wave damping coefficient k,
we propose to replace it with a variable pressure wave damping coefficient kv. Unlike
the constant coefficient k, the new coefficient kv is a function that uses the ratio of the
magnitude of local pressure fluctuations to maximum possible pressure fluctuation for the
cases considered. For the initial operating conditions of pressure P0, density ρ0, velocity
u0, and signal speed a0, the magnitude of maximum possible pressure fluctuation 4pmax
is computed using the well established Joukowsky equation as follows:

4Pmax = ρ0a04 u = ρ0a0|u0 − 0| = ρ0a0|u0| (6.24)

The importance of Joukowsky relation given by Equation (6.24) in the theory of water
hammer is outlined by Ghidaoui in [304] and the historical evolution of this equation is
studied by Tijsseling and Anderson [305]. A similar non-dimensional parameter is defined
by Wahba [306] using the Joukowsky pressure rise to study the wave attenuation in fluid
transients. Walters and Leishear [307] list down those scenarios where Joukowsky equation
should not be used to estimate the maximum water hammer pressures.

The magnitude of fluctuation in the pressure at any local point ‘i’ is calculated as the
absolute value of the difference between local pressure Pi and operating pressure P0. The
proposed variable pressure damping coefficient is defined as a function of a parameter
called the ‘relative local fluctuation of pressure’. The non-dimensional parameter, the ‘rel-
ative local fluctuation of pressure’ (4PRLF ) is the ratio of the ‘magnitude of the local
pressure fluctuations’ (|Pi− p0|) to the ‘maximum possible pressure fluctuation’ (4Pmax).
The relative local fluctuation of pressure is expressed as follows:

4PRLF =
|Pi − P0|
4Pmax

(6.25)

At this point it is very important to understand that the surge due to valve-closure at
upstream and downstream sides of a closing valve is different in many respects. Because
of the differences in the surge physics at these two locations, transient variation of pressure
for these locations also show differences. This also means that the damping requirements
for pressure waves also vary based on the location where the surge is studied. Therefore,
we have to define separate variable pressure damping coefficients for each location. Both
valve-closure experiments discussed in this chapter are those at the downstream side of the
closing valve. Therefore, we name the variable pressure damping coefficient applicable
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for the surge at the downstream of valve as kvd. The variable pressure wave damping
coefficient, kvd is defined as follows:

kvd = m1 [1− (4PRLF )m2 ] (6.26)

In Equation (6.26), m1 and m2 are tunable parameters. While parameter m1 controls
the overall dissipation of the system like the constant parameter k, parameter m2 could
provide the fine-tuning for dissipating trend of the pressure transient. The larger the values
of m1 and m2, the higher is the dissipation achieved. If the overall dissipation provided by
a particular value of m1 proves to be very high for certain parts of the transient, then by
lowering the value of m2 these unwanted extra dissipation could be avoided in the pressure
profiles. The square-bracketed term in Equation (6.26) performs in such a way that, it low-
ers the dissipation where there are large fluctuations in pressure that carry very important
information about the peak pressures reached. During the later phase of the transient where
fluctuations are very low, the dissipation offered by mathematical model is usually insuffi-
cient and leads to over predicted numerical results. The square bracketed term could offer
high dissipation over such conditions and predict numerical results close to the experimen-
tal data. With this definition of the variable pressure damping coefficient kvd, the equation
for the unsteady part of shear stress can be written as

τus =

(
kvd

ρd

4
a

)
sign(u)

∣∣∣∣∂u∂x
∣∣∣∣ (6.27)

The quasi-steady part of the shear stress in [34] is given as

τs =
f

4

ρ

2
u |u| (6.28)

where f is the steady Darcy-Weisbach friction coefficient. The value of f is computed
from the explicit relation called the Blasius correlation as follows:

f = 0.3164Re−0.25 (6.29)

where Re is the flow Reynolds number. The Blasius relation [308–310] is a simple ap-
proximation for the calculation of Darcy friction factor for the turbulent regime for smooth
pipes. It was proposed by Paul Richard Heinrich Blasius in terms of the Moody friction
factor, and is valid for Re ≤ 1× 105.

The final shear stress (τ ) is thus computed as the sum of quasi-steady part (τs) and
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unsteady part (τus) as follows:

τ =
f

4

ρ

2
u |u|+

(
kvd

ρd

4
a

)
sign(u)

∣∣∣∣∂u∂x
∣∣∣∣ (6.30)

The shear stress computed from Equation (6.30) is used to estimate the source term in
Equation (6.3b). The newly introduced variable pressure damping coefficient uses relative
local fluctuation of pressure, which is a transiently varying quantity. The inclusion of this
transient data into the damping coefficient is expected to take care of the deviations due to
unsteadiness of the wall shear and momentum flux to some extent.

6.10 Two-Equation Model with Variable Pressure Wave
Damping Coefficient

A variable pressure wave damping coefficient is proposed in this study to address deficien-
cies of the constant wave damping coefficient model. The constant value of wave damping
coefficient, which is applied throughout the computation, makes it inflexible to varying
flow situations. This fixed amount of damping may prove to be excessive for a particu-
lar part of the transient while it could be insufficient for the rest. The definition of the
varying pressure wave damping coefficient, kvd, as a function of the relative local pressure
fluctuation is outlined in Section 6.9.1.

Magenta curve in Figure 6.11 and red curve in Figure 6.12 display numerical results
obtained with the two-equation compressible-liquid model using the variable pressure wave
damping coefficient kvd respectively for Experiment Nos. 415 and 347.

In these figures, numerical results from the VPDC included two-equation compressible
liquid model are compared against those computed using the two-equation compressible
liquid model with a constant pressure wave damping coefficient k. The plots also display
the measured values from the field for the corresponding experiments. The comparison
shows that the proposed two-equation model with the variable pressure wave damping co-
efficient improves the result considerably from the model with a constant damping coeffi-
cient. This improvement is not only in terms of better estimation of peak pressures but also
in closely reproducing the transient trend observed with experimental pressure measure-
ments. The maximum pressure estimated by the proposed computational model using kvd
is 1.18 bar (or 4%) higher for Experiment No. 415 and by 1.2 bar(or 5.5%) higher for Ex-
periment No. 347 when compared to the results from two-equation model with the constant
k. This is a reasonable improvement in simulation accuracy in quantitative terms. Values
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Figure 6.11: Numerical results using the 2-equation compressible-liquid model with kvd
for Experiment No. 415.

of the parameters m1 and m2 in Equation (6.26) are observed to be optimal in the range
0.3-0.5 for the selected pair of experiments.

The proposed model also numerically reproduced the shape of the pressure profile
much closer to the shape of the experimental profile with sharper peaks and anti-peaks.
We could see that crests and troughs in the transient pressure profile generated from the
model with the constant k shows flat peaks and anti-peaks. This observation is due to the
non-adaptation of friction model based on fluctuation of pressure from the mean operating
conditions. This extreme flatness of the peaks are reduced to some extent with the inclu-
sion of the VPDC into the friction model. We could observe that towards the later phase of
the transients, the sharpness of oscillations from simulation with the VPDC incorporated
two-equation model is very close to those observed in the experimental profiles.

The dissipation provided by variable damping coefficient is adaptive to the magnitude
of pressure fluctuation at any local point. This capability is imparted through the unique
function definition for the parameter kvd. It is visible from numerical pressure profiles in
Figures 6.11 and 6.12 that the variable damping coefficient provides a lower damping at the
initial stage of the transient where larger pressure peaks are present. Similarly, towards the
later phase of the transient the variable damping coefficient adapts to the pressure’s dimin-
ishing magnitude. This adaptive damping capability improves the accuracy of the computed
transient surge data that is crucial to the pipe’s and structure’s safety. The flexibility added
to mathematical model by the inclusion of the VPDC into it, for the prediction of numerical
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Figure 6.12: Numerical results using the 2-equation compressible-liquid model with kvd
for Experiment No. 347.

results much closer to measured field data is notable. This is more prominently observed
towards the later part of the transient as visible from Figures 6.11 and 6.12.

The compressible model used for the liquid not only helps in accurate prediction of fluid
density but also provides an excellent estimate of wave speeds, both of which are crucial
flow parameters varying with pressure. The proposed two-equation model with variable
pressure wave damping coefficient is a highly simplified mathematical model capable of
accurately estimating transient pressure variations. This model’s ability to closely follow
transient variations in the experimental pressure profile, even without the inclusion of any
fluid-structure interaction (FSI) algorithm, is a substantial improvement over the three-
equation model. However, there are visible variations in numerical results during the initial
stage of the transients. The main reason for these is that the effects of pipe mountings
and support structures are neglected in the computational model. The lack of complete
information regarding the exact nature of valve closure is another cause for any mismatches
between the simulation results and the measured values.

As observed from the experimental results, the maximum surge in pressure due to the
sudden closure of the valve reaches much higher magnitudes than the operating pressure.
The compressible model presented in the study, to a particular extent could take this into ac-
count by relating these pressures to the corresponding liquid density and signal propagation
speed. The variable pressure wave damping coefficient also adds novelty to the model by
exhibiting its adaptive damping characteristics in modelling the decaying pressure waves.
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The two-equation compressible-liquid model with the adaptive damping capability is quan-
titatively and qualitatively superior to the existing model for computational applications for
high-pressure pipelines for non-cavitating hydraulic surges.

6.11 Summary

This chapter presents the development of an effective mathematical model for the simula-
tion of single-phase non-cavitating hydraulic surges. In the initial sections of the chapter
the importance of hydraulic surge studies is highlighted followed by details of two high-
pressure valve closure experiments selected from the literature. The simplification of a
three-equation model originally developed for the cavitational hammer predictions, to a
two-equation model for the simulation of non-cavitating hydraulic surges is outlined in
the chapter. Further, the compressible modelling of liquid during the surge phenomena is
achieved through the use of a suitable equation of state which relate the fluid properties.
The mathematical model is then presented in its corresponding matrix form which was later
used while explaining the computational strategy adopted for simulation. A two-level per-
formance analysis of the proposed two-equation model is presented in the chapter. In the
first level, the two-equation model with compressible formulation for the liquid is evaluated
against the experimentally measured data and the three-equation model of Neuhaus et al.,
which treats the liquid part as incompressible. The simulation results showed the capabil-
ity of compressible treatment to accurately compute the varying density and wave speed
in the liquid during fluctuating pressure conditions. We also proposed a uniquely defined
variable pressure wave damping coefficient that uses the information of local fluctuations
in pressure during transients. This new variable pressure wave damping coefficient is supe-
rior to the constant friction coefficient, that it adaptively damps the numerically computed
transient pressure fluctuations. In the second level of analysis, the variable pressure wave
damping coefficient is integrated into the two-equation compressible liquid model, which
is then compared for performance against the experimental results as well as the numerical
results from the two-equation model with a constant pressure damping coefficient. The
adaptive damping capability helps the model to numerically predict the transient pressure
with a trend similar to that observed with the experimental data. The flexibility offered by
the VPDC to the mathematical model in selectively treating transient pressure gradients is
a significant finding of the study. The analysis reveals that the proposed model is com-
putationally inexpensive and provides better accuracy in comparison to the three-equation
model. Based on the discussions we could conclude that the proposed model is an effec-
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tive computational tool for the modelling and prediction of pressure surges in flow systems
where cavitational effects are negligible.
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Chapter 7

Further Study on Valve-Induced Transients

7.1 Introduction

In the previous chapter we presented a mathematical model that included compressible
modelling of liquid and a variable pressure wave damping coefficient (VPDC) in the un-
steady friction model. In this chapter we use this mathematical model to numerically study
more valve-induced transients and associated surge characteristics. We will primarily ex-
plore the improvements brought into the numerical modelling through the adaptive damp-
ing capability incorporated in the VPDC formulation. Three different valve-closure experi-
ments are selected from the literature for numerical study. These experiments are carefully
selected such that they involve different pipe materials, wave speeds, geometrical sizes, and
operating pressure ranges. In order to perform a comparative performance analysis of this
mathematical model, numerical results from the model are also compared against more
numerical data sets published in the literature. Numerical results available in literature
for the same experiments using other models were also used in the comparative analysis.
These experiments were also simulated using a hydraulic surge analysis software package
called the ‘AFT Impulse’. This is a method of characteristics (MOC) based software plat-
form specifically designed for the simulation of hydraulic transients. The simulation data
obtained using the proposed mathematical model is compared against the experimentally
measured data. The simulation data is also compared with selected numerical data sets
from literature and those generated using the AFT Impulse software.

The chapter also discusses transient variations observed in the pressure jump developed
across a valve during its sudden closure with the help of respective numerical results. In
relation to this, the effect of duration of valve closure on surge pressure and pressure jump
across the closing valve are also explored using the simulation data.

This chapter is organised as follows. The subsequent Section 7.2 discusses the impor-

121



tance of studying and understanding valve-induced transients and associated surges. Sec-
tion 7.3 provides details about the valve-closure experiments selected for present numerical
study. The mathematical model used and the computational strategy adopted in numerical
simulations are explained in the Section 7.4. Some details about the AFT Impulse software
and the modelling of hydraulic surges using this platform are presented in Section 7.5. Sec-
tion 7.6 presents results from the numerical simulation of the selected experiments and dis-
cusses the major observations made. The importance of considering pressure jump across
a closing valve during a valve-induced transient is explained in Section 7.7. Section 7.8 de-
scribes the effect of valve closure duration on pressure jump across the closing valve using
the simulation results for cases with different speeds of valve closure.

7.2 Studies on the Valve-Induced Transients

The large variations observed in pressure values during the surges arising from sudden
valve closures pose many safety concerns to the systems in which they occur. For example,
hydraulic surges and associated flow-induced vibrations arising from the valve closures
are very frequently reported from the nuclear power industry. The transient variations
of pressure at different strategic locations in systems during valve closure operations are
crucial for the structural design and deciding of optimal valve operating conditions. Similar
to the impact of peak values of pressure during a valve-induced transient, the lowest values
of pressure reached in the system are also important. The lowest values of pressure reported
during a transient could provide a better understanding of the chances of cavitation to take
place within the system, which is another undesirable effect as far as the structural integrity
of the system is concerned. One should also understand that the magnitude of pressure
associated with valve-induced surges is not sufficient to completely understand the surge
phenomena. The instants at which highest and lowest pressure values are reached in the
system, the locations at which they occur, the time period and frequency of the oscillations
observed in pressure and the total time taken for pressure waves to completely damp down
back to operating conditions have to be accurately estimated for any such transient. For
these reasons, the field of valve-induced hydraulic surges is an area of extensive research
and has eventually led to a wide range of experimental and computational studies in this
field.

Some notable experimental studies on valve-induced surges were carried out by Covas
et al. [234], Neuhaus and Dudlik [34], Lee et al. [311], Warda and Elashry [312], Simao et
al. [313], Balacco et al. [314], Kodura [315], etc. Computational studies and contributions
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related to the impact of sudden closure of valves in the generation of hydraulic transients
were made by Ramos et al. [233], Covas et al. [235], Kaliatka and Vaisnoras [316], Barten
et al. [290], Nikpour et al. [317], Al-Taliby [318], Tran [319], and Lai et al. [320]. A recent
study by Li [321] relates the maximum transient pressures developed during hydraulic tran-
sients to the duration of slow valve closures. The study of valve induced pressure transients
are also extended to the field of heart health monitoring, where cardiac valve closures and
related pressure variations are studied and simulated using various mathematical models.
The works by Brockman [322], Bellhouse [323], Lee and Talbot [324], Van Steenhoven and
Van Dongen [325], Aluri and Chandran [326], House et al. [327], and Tang et al. [328], are
related to the application of valve induced surges for heart health monitoring. Controlled
fluid transients are also used as fault and leak detection techniques for pipelines as reported
in the works of Wang et al. [329], Vitkovsky et al. [330], Lee et al. [331], Diao et al. [332],
Bohorquez et al. [333], and Wang et al. [334]. A review of this technique is presented
by Colombo et al. [335]. Details of the various friction models used for computational
studies on liquid transients and on different unsteady friction models are presented in the
Section 2.8 of Chapter 2.

7.3 Valve-Closure Problems for Numerical Study

The characteristics of a hydraulic surge depends on many parameters such as, geometry
of the pipe, pipe material, fluid handled, type of the valve, speed of valve closure, flow
velocity inside the pipe, pressure and temperature of the flowing fluid, frictional losses
in the flow, and fluid-structure interactions. Here, we select three different experiments
from the literature which involve fast valve closures leading to hydraulic surges in the pip-
ing systems. The experiments chosen here are such that, some of the parameters listed
above vary over a small range, while some others vary over a wider range. Two valve clo-
sure experiments by Mitosek and Szymkiewicz [336], and a third experiment by Soares et
al. [337] are used in this study to validate numerical results from the proposed mathemati-
cal model. The first experiment of Mitosek, which will be hereafter referred to as Mitosek
Exp-1, was conducted on a straight steel pipeline of length 72.0 m, while the Mitosek’s
second experiment, which will be hereafter referred to as Mitosek Exp-2, uses a high den-
sity poly ethylene (HDPE) pipe which is arranged in an elliptical loop with a total length
of 240 m. Soares et al. conducted their valve closure experiment on a 15.22 m long cop-
per pipe. Other geometrical parameters like pipe inner diameter and pipe wall thickness,
and flow parameters like velocity, wave celerity and operating head vary for each of these
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experiments. The operating temperature for both the experiments of Mitosek is the same
at 287.15 K, whereas the experiment by Soares et al. is conducted at 300 K. The duration
of the transient experiments selected for the study varied from 0.5 to 32 s, while the valve
closure duration in these experiments ranged between 16.5 to 25 milliseconds. All the ex-
periments considered here are pure single-phase flow cases without cavitation effects. The
details of the experiments are provided in Table 7.1.

Table 7.1: Details of the parameters used in the experiments

Parameters
Experiment

Mitosek et al.-1 Mitosek et al.-2 Soares et al.

Pipe material Steel HDPE Copper
Pipe length [m] 72.0 240.0 15.22
Pipe diameter [m] 0.042 0.0352 0.020
Pipe thickness [m] 0.0033 0.0024 0.0010
Operating temperature [K] 287.15 287.15 300
Reservoir head [m of H2O] 51.0 23.1 46.0
Flow velocity [m/s] 0.41 0.86 0.423
Wave Speed [m/s] 1245 335 1255
Valve closure duration [s] 0.025 0.02 0.0165
Experiment duration [s] 8.0 32.0 0.5

We intend to numerically simulate each of these three experiments based on geomet-
rical and flow conditions as described above and analyse the surge data predicted for the
cases. The experimentally measured transient pressure data are available for each of these
experiments at the upstream position of the closing valve. The experimentally measured
transient pressure profiles for Mitosek Exp-1, Mitosek Exp-2, and Soares Exp, are respec-
tively displayed in Figures 7.1, 7.2, and 7.3.

As these figures display, the pressure measured at the location just upstream of the
closing valve shows heavy oscillations with many crests (peaks) and troughs (anti-peaks).
They also indicate dissipation process of the compression waves inside the system after
undergoing multiple reflections at the boundaries. As we discussed, based on geometrical
and material properties and for different flow conditions, the characteristics of these oscil-
lations in pressure exhibit variations. The frequency and amplitudes of the oscillations and
the time taken for dissipating back to steady operating conditions show differences for the
cases. For the experiment by Soares et al., an additional set of pressure data is available
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Figure 7.1: Experimental pressure profiles for Mitosek Exp-1 (Steel pipe)
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Figure 7.2: Experimental pressure profiles for Mitosek Exp-2 (HDPE pipe)
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Figure 7.3: Experimental pressure profiles for Soares Exp (Copper pipe)
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that is measured at mid-way of the pipe length. The numerical data generated from the
simulation for experimental cases will be validated against these respective field data.

7.4 Mathematical Model and Computational Strategy

For numerical simulation of the experiments and associated hydraulic surges, the physical
system needs to be converted into corresponding computational model. In this section,
firstly, a suitable mathematical model is selected for representing the physical laws that
govern flow transients. Further, changes required in the friction model for simulation of
the selected set of experiments are discussed. A suitable computational domain is then
selected, where we apply the relevant the initial and boundary conditions.

7.4.1 The two-equation compressible liquid model

The two-equation compressible-liquid model, presented in Section 6.5.2 of the previous
chapter, is used as the mathematical model for the study of transient flows. The two main
physical laws governing the flow, viz., fluid mass balance and momentum balance relations
are given as follows:

1

a2
∂p

∂t
+
u
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∂p
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+ ρ

∂u
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The energy equation need not be solved explicitly for the problem, as the system is consid-
ered to be at isothermal conditions.

The transiently varying celerity of pressure waves and the smoothing out of wave fronts
are two phenomena observed during flow transient experiments. These physical observa-
tions cannot be reproduced by the standard unsteady pipe flow models, even with the usage
of modified formulations for shear stresses. A possible method to address the time varying
celerity of pressure waves is to model the compressibility effects in the liquid in the pipe.
This is the reason why the compressible model used along with the two-equation model for
the simulation of hydraulic surges. The wave celerity or the signal propagation speed in
the system is finally calculated based on the speed of sound in the fluid, the geometric di-
mensions of the pipe system and the elastic properties of the pipe material. The procedure
to do this is explained in the Section 6.5.2.
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7.4.2 Variable pressure wave damping coefficient for adaptive damp-
ing

For modelling highly transient flow problems, the friction model used in the mathematical
formulation plays a very crucial role. This is mainly due to sudden surge in fluid prop-
erties for such transients, where abrupt variations in fluid pressure and flow velocity are
observed over a short duration of time. The rapid change in flow properties during the ini-
tiation phase of the transient is usually followed by a faster dissipation within the system,
which eventually reaches steady state. This necessitates appropriate friction models to ac-
curately simulate transient variation of various flow properties. The application of steady
friction models to such highly transient cases could lead to nonphysical results. This is
due to the incapability of such models to adapt to varying requirements of dissipation in
the system with respect to time and spatial location. There are numerous unsteady friction
models available in the literature that could resolve this issue to a good extent by modelling
the varying shear stresses during the transient with reasonable accuracy. One could also
develop or modify an existing unsteady friction model for higher simulation accuracy by
improving its capability to better adapt to the varying dissipation requirements for their
respective flow situations.

In the last chapter, we have discussed the shear stress model used by Neuhaus and
Dudlik [34] with a quasi-steady part and an unsteady part given as follows:
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We have also suggested that the constant pressure wave damping coefficient k in this
relation could be replaced by a variable pressure wave damping coefficient kvd. The pa-
rameter kvd was specifically defined to improve simulation accuracy of surge prediction
for locations downstream of the closing valve. However, while we observe the transient
pressure profiles at any location upstream of the closing valve during the surge, as visible
in Figures 7.1, 7.2, and 7.3, we could notice that they are different from those observed for
the downstream location as seen in Figures 6.4 and 6.5. Therefore, similar to the definition
of kvd presented in the previous chapter, we need to define a new variable pressure wave
damping coefficient kvu for application at the upstream side of the closing valve during the
surge modelling.

Similar to the procedure followed in the last chapter, we intend to replace this constant
parameter k, with a variable pressure wave damping coefficient kvu. This variable parame-
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ter kvu is also defined as a function of the parameter ‘relative local fluctuation of pressure’
that is defined in Equation (6.25). This new variable friction coefficient kvu is defined as
follows:

kvu = m1 [4pRLF ]m2 = m1

[
|pi − p0|
4pmax

]m2

(7.1)

Here the parameters m1 and m2 are tunable and perform the same function as seen with
the case of the definition of kvd. However, it could be noted that the definition of the new
variable pressure wave damping coefficient kvu in Equation (7.1) is slightly different from
that of kvd defined in Equation (6.26). The main difference here is in the square bracketed
term. The term ‘1 − 4pRLF ’ for the case of kvd changes to just ‘4pRLF ’ for kvu within
the square brackets. This change is attributed to the difference in pressure wave damping
trends observed for the upstream and downstream cases. Based on these different trends,
the damping requirements also vary. It is a usual observation that the numerical models are
able to correctly predict the first highest peak of such transients. However, as the transient
progresses, the numerical results show excess dissipation. The term ‘1−4pRLF ’ helps in
avoiding such excessive dissipation towards the later phase of the transient, because it low-
ers the value of kvu for lower value of pressure fluctuations from the operating conditions.

7.4.3 The computational strategy

To carry out the numerical simulation of the experiments, a generalised experimental layout
with a straight pipe assumption is used for all the cases. This corresponds to a simplified
one-dimensional computational domain. This one-dimensional approach is used because
the variations observed in flow variables for the transient cases to be modelled are more
or less unidirectional. Ghidaoui et al. [301] state on this that, “rapid flow disturbances,
planned or accidental, induce spatial and temporal changes in the velocity and pressure
fields in pipe systems and such transient flows are essentially unidirectional since the ax-
ial fluxes of mass, momentum and energy are far greater than their radial counterparts."
The studies by Mitra and Rouleau [229] on laminar water-hammer and those by Vardy and
Hwang [215] on turbulent water-hammer also support this unidirectional approach in the
problem formulation. The generalised one-dimensional layout common to all the experi-
ments is presented in Figure 7.4.

The setup consists of a straight pipeline carrying fluid (liquid water) which is connected
to a pressurised reservoir at its left end and to a fast closing valve at its right end. The com-
mon experimental procedure is as follows. A steady flow is initially setup in the system,
where flow velocities inside the pipe and the reservoir head are both maintained constant.
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Figure 7.4: The generalized layout for the valve closure experiments

During the steady state operation of the system, the valve at the right end of the pipe is
in fully open position. For generating hydraulic transient, this valve is fully closed over a
very short duration of time ranging over a few milliseconds. This leads to surge in flow
properties in the upstream region of the closing valve, mainly in pressure. Pressure trans-
ducers are mounted along the length of the pipe at different locations to measure and record
these variations in local fluid pressure. The surge in fluid pressure will be most severe in
the region just upstream of the closing valve, as the highest deceleration to the flow takes
place in this location. We intend to numerically compute transient pressure variation at this
location just upstream of the closing valve for all the experiments considered.

At the left boundary we assign a fixed pressure inlet condition representing the flow
from constant pressure reservoir. The closing valve at the right boundary is modelled by
assigning linearly decreasing velocity boundary condition over the few milliseconds of
valve closure. Beyond this duration, velocity at the right boundary is maintained as zero to
emulate situation of the completely closed valve. Velocity at the left boundary and pressure
at the right boundary are extrapolated from the computed values from within the domain.

The computational algorithm used here is the very same that is explained in the previous
chapter under Section 6.7.2. The governing equations are converted into their respective
matrix formulations as outlined in Section 6.6. The complete two-step algorithm, where
the split coefficient matrix (SCM) method is used for splitting the eigenvalue matrix into
respective characteristic speed matrices as explained below.

7.5 Hydraulic Surge Modelling Using AFT Impulse Soft-
ware

‘Impulse’ is hydraulic surge analysis software package developed by the Applied Flow
Technology (AFT) Pvt. Ltd. This is a method of characteristics (MOC) based software
platform specifically designed for the simulation of hydraulic transients. The selected ex-
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periments were also simulated using ‘AFT Impulse version 8’. There are steady and un-
steady friction models available in the software package. Different valve types could be
selected and transient closure functions could also be assigned using this software. The
experimental setup for valve closure problem using AFT Impulse software platform is rep-
resented in Figure 7.5.

Figure 7.5: The valve closure experiment setup in the AFT Impulse software

The pipe section can be defined by providing details like the pipe material, length,
diameter, thickness etc. The wave speed is calculated by the system based on the support
type provided. Under the optional tab, the stagnant region steady state pressure is always
kept to system pressure, and the initial volume flow rate based on the chosen experiment is
provided. Fluid properties are computed using the NIST REFPROP, using which water is
selected as the fluid by providing operating pressure and temperature conditions. The NIST
database computes corresponding fluid properties like density, dynamic viscosity, vapour
pressure, bulk modulus etc. The variable fluid properties option were checked for all the
simulations. A ball valve is chosen as the valve type. This valve is assigned a transient
boundary condition of closure over a preset duration. The letter ‘T’ in bold indicates the
transient condition assigned to the component. At the left boundary a reservoir is included
where we input the fixed liquid surface pressure, the level of water above the pipe centre
and the height of the system from the reference line.

For specifying the friction model, the explicit friction factor option under the user spec-
ified tab is selected. Based on the initial flow properties, the flow Reynolds number is
computed and the corresponding Darcy friction factor is calculated and assigned using rel-
evant correlations. The variable pipe resistance facility was also utilised for the simulations
performed. Impulse offers steady, unsteady and advanced unsteady friction models. The
advanced unsteady friction model uses the friction model of Bruonne. The valve transient
is assigned as a liner decrease of KV value of the valve from the full open value to zero
over the valve closure duration. In the sectioning of pipes, the suggestions provided by the
MOC based solver were used. The variation in results and computation time were checked
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for different resolution of the pipe sectioning to understand the dependency of the results
on spatial resolution. The results were obtained for the pipes at its inlet, outlet and at all
intermediate stations.

7.6 Results and Discussions of the Numerical Simulation

The three different experimental situations considered were numerically simulated using
the proposed mathematical model. The numerical pressure profiles at the upstream loca-
tion of the valve for Mitosek’s experiment on steel pipe are displayed in Figure 7.6. This
figure shows numerical profiles generated using the two-equation compressible model with
a constant, k, as well as with the variable pressure wave damping coefficient, kvu. In addi-
tion, more numerical data are included in the figure, which include the numerical profiles
generated using AFT Impulse platform, with normal unsteady friction model and advanced
unsteady friction model of Bruonne. Also, in the figure, the measured data from the exper-
iment is used to compare relative performance of these numerical profiles.
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Figure 7.6: Transient pressure profiles for Mitosek’s experiment on steel pipe predicted by
different models
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Numerical results predict initial peaks of the transient with reasonable accuracy. How-
ever, as the transient progresses the dissipation of the transient pressure data is found to be
insufficient compared to the measured values. The friction factors computed from standard
relations are unable to produce the expected damping in pressure. In the case of the Mi-
tosek et al. experiment on steel pipe, the AFT unsteady and the AFT advanced unsteady
(Bruonne) friction models show difference in the numerical pressure profiles. In this case,
the Bruonne model is observed to offer higher dissipation and better results which are com-
paratively closer to the measured data. The results from AFT also show a higher pressure
oscillation frequency than that of the measured data, that results in sharper oscillations.
The two-equation model provides numerical pressure profiles that are very close to the
measured values. They are distinctively superior to the results from the AFT Impulse.
However, the two-equation model with the VPDC, kvu, produces the closest results to the
experimental data, while the same model with a constant k show deviations from the ex-
perimental data. To understand the improvements brought by the two-equation model with
the inclusion of the VPDC, results from this model with constant k and variable kvu are
compared to the measured values in Figure 7.7.
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Figure 7.7: Comparison of the transient pressure profiles for Mitosek’s experiment on steel
pipe using VPDC and constant k
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The numerical profile corresponding to the constant k value in Figure 7.7 clearly shows
the extra dissipation in the results that is persistent throughout the transient. The replace-
ment of k with kvu in the two-equation model has helped in removing the extra dissipation,
and the amplitudes from improved model show a close match with experimental measure-
ments. This close agreement is maintained throughout the transient process. It should
also be noted that the results from the two-equation model closely predicts frequency of
pressure oscillations in the field data.

The numerical results for Mitosek’s experiment on HDPE pipe are presented in Fig-
ure 7.8. Solution profiles from the two-equation model are compared against the exper-
imental data and the numerical data sets generated using AFT Impulse. The numerical
solution to this problem using the unsteady friction model by Ramos et al. [233] is also
included in the comparison.
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Figure 7.8: Transient pressure profiles for Mitosek’s experiment on HDPE pipe predicted
by different models

During the simulation of Mitosek’s experiment on HDPE pipe using AFT Impulse,
we observed that there were no differences in the results generated with the unsteady and
the advanced unsteady friction models of this software platform. Though the results from
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AFT show a decaying wave pattern, they are considerably over predicted from the exper-
imental values. The unsteady model by Ramos et al. appears to be slightly superior to
AFT unsteady model by exhibiting better dissipation in the solution profile. However, this
model also shows notable deviations from the measured pressure values. The two-equation
model is again the most accurate method and the profiles from this method are separately
displayed in Figure 7.9. All models predict oscillation frequency with reasonable accuracy.
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Figure 7.9: Comparison of the transient pressure profiles for Mitosek’s experiment on
HDPE pipe using VPDC and constant k

The fixed amount of damping provided by the constant coefficient k proves to be ex-
cessive for a particular part of the transient while it becomes insufficient for the other.
This is why the deviations of numerical data from the measured data, with k are varying
for the whole transient. However, the variable coefficient kvu addresses these deficiencies
to a good extent and we could see that the profiles generated using it closely follows the
measured profile.

Figure 7.10 presents numerically computed transient pressure profiles for the Soares’
valve-closure experiment performed on copper pipe. The numerical data from the two-
equation model is compared against the experimental data and the simulation data from
AFT Impulse.
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Figure 7.10: Transient pressure profiles for Soares’ experiment on copper pipe predicted
by different models

As we could see, the results are displayed over two figures. Figure 7.10 (a) displays
the transient pressure variation at mid-length location of the 15.22 m long pipe and Fig-
ure 7.10 (b) displays the corresponding results at a location just upstream of the closing
valve. A zoomed in view of these plots from the two-equation model and the measured
values at the two different locations are presented separately in Figure 7.11 for a detailed
comparison. The observations are similar to those discussed for the last two experimental
cases.

The Impulse software simulates oscillation frequency of pressure surge data close to the
measured values. However, the decay of these oscillations are not satisfactorily reproduced
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by this software platform. The plots suggest insufficient damping of pressure oscillations
by unsteady friction models of this computational tool. The two-equation model is visibly
superior with numerical results closely following experimental results.

The adaptive damping capability incorporated to the two-equation model through the
inclusion of VPDC is clearly demonstrated in the plots in Figure 7.11. The extra dissipation
observed with the constant k is rectified by replacing it with kvu. These numerical profiles
generated using kvu are in very close agreement with the experimental profiles at both
locations of the system considered. However, the detailed view of the profiles in Figure 7.11
shows that a small phase shift is introduced between numerical and experimental profiles
as the transient progresses.
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Figure 7.11: Comparison of the transient pressure profiles for Soares’ experiment on cop-
per pipe using VPDC and constant k

The fixed value of pressure damping coefficient that is applied throughout the com-

136



putation makes it inflexible to the varying flow situations. The flexibility added to the
mathematical model by VPDC to predict numerical results close to the measured data is
notable specifically towards the end of the transients. The value of constant pressure wave
damping coefficient k in the unsteady friction model used with the two-equation model for
different cases are as follows. For Mitosek’s experiment on steel and HDPE pipes, the k
values are respectively 0.07 and 0.17, while for Soares’ experiment the optimal value of
this parameter is found to be 0.025. The following observations were made related to the
value of parameters m1 and m2 in the variable pressure wave damping coefficient kvu for
the experimental cases. It was found that the value of parameter m1 gave best results when
maintained at the same value as that of k for the corresponding experiment. This is because,
for all cases considered we could observe a general trend that the two-equation model with
k closely predicts the initial peak of the transient and later exhibits high dissipation as the
transient progresses. Because of this, the parameter m1 that is responsible for the over-
all damping could be assigned the same value as that of k. However, to remove the extra
dissipation existing towards the later phase of the transient, the parameter m2 should be
optimised. The optimal values of m2 for these experiments vary over the range of 0.1 - 0.3.

The modelling of elliptically looped pipe in Soares et al. experiment as a straight pipe
for one-dimensional modelling is a limitation of the study and this could also be a pos-
sible reason for the mismatches in numerical data and experimentally measured values.
The model’s ability to follow transient variations in the experimentally measured pressure
profile even without an FSI algorithm is a good improvement over the original model. How-
ever, the structural interactions and associated vibrations during on-field measurements can
cause small variations in the experimental data which may not be accurately captured in nu-
merical simulations.

The step by step procedure for the implementation of Adaptive friction model with
variable pressure wave damping coefficient (VPDC) for hydraulic surge simulations is as
described below:

From the initial system conditions, compute the ‘maximum possible fluctuation in
pressure’ during surge using the Joukowsky relation.

⇓
Compute the parameter, the ‘local pressure fluctuation’ at each computational volume as

the absolute difference between the local pressure and the operating pressure.
⇓

Calculate the non-dimensional parameter the ‘relative local fluctuation of pressure’
(PRLF )as the ratio of ‘local pressure fluctuation’ to the ‘maximum possible fluctuation in
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pressure’.
⇓

Based on the selected location for modelling surge with respect to the closing valve
(upstream or downstream), choose the respective function to calculate the variable

pressure wave damping coefficient (VPDC) at each computational volume.
⇓

Calculate the VPDC value at each computational cell and then substitute this value in the
unsteady shear stress model to compute the Unsteady shear force at that location.

⇓
Compute the Total shear force at that location by adding the Steady shear force to this

Unsteady shear force.
⇓

Use this Total shear force to calculate and update the Source term in the momentum
equation, which is then used to update the flow variables in the second step of time

marching.

In contrast to the above procedure, the constant damping coefficient, k, is substituted
directly to the unsteady stress model during computation to calculate the unsteady shear
force. Further, the last two steps in the above procedure are followed.

7.7 Pressure Difference Across a Valve During Valve-Induced
Transients

Numerical studies on hydraulic surges at the upstream and the downstream locations of
a closing valve generated interest in exploring the varying pressure difference developed
across a closing valve during the transient. This is because we could see some variations
in the transient pressure during the surge between these two locations. This transient trend
in pressure difference across the closing valve is usually neglected during surge analysis.
However, this information can yield further insights into understanding the transient and its
consequences. For a selected flow setup, the transient pressure at a location upstream and a
location downstream of the closing valves were studied simultaneously. The corresponding
pressure differences existing across these two locations at each instant of time during the
transients were also calculated. The surge data at these two locations were compared to
understand the behaviour of the transients based on their location. A 298.8 m long pipe with
a valve located at its exact centre, for an initial system pressure of 20 bar was considered
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for the study. This is a modification to the case for Experiment No. 415 by Neuhaus and
Dudlik. The schematic of this initial flow setup is shown in Figure 7.12.

Figure 7.12: Schematic of the theoretical flow setup

Though the flow setup is shown as a straight section, it is assumed to be a closed loop
where fluid from a high pressure reservoir flows back to it through a pipeline fitted with a
fast closing valve. The valve at the centre of the pipeline changes from a completely open
position to completely closed position over a duration of 40 milliseconds. The velocity
is linearly reduced from an initial value of 1.0 m/s down to zero over this time period at
the valve location. The same mathematical model and computational strategy used in the
previous sections are used here for numerical study. Both the compressible model for liquid
and the VPDC in the unsteady friction are considered in the model for this study.

7.7.1 Transient pressure across the fast closing valve

Simulation results for transient pressure profiles at the upstream and downstream locations
of the closing valve are displayed in Figure 7.13. The results presented were checked for
grid-independence. The 298.8 m long one-dimensional domain was divided into 1,494
uniform control volumes with a grid size of4x = 0.2 m. A CFL value of 0.03 was found
to be optimal with the corresponding time step size,4t close to 5× 10−6 s.

We have already seen that there are noticeable differences between transient pressure
data measured at the upstream and the downstream locations of the valve during hydraulic
surge. Numerical pressure profiles from the simulations for these two locations exhibit
similar characteristics. The analysis of the structure of pressure profiles at the downstream
side of valve results in the following observations. At the downstream location, the pres-
sure profile shows an initial dip from the operating conditions. This initial reduction in
pressure is because of the inertia of the flow that carries the fluid forward during valve
closure, leading to a low-pressure region close to the valve’s downstream side. This lowest
value of pressure reached is maintained for a particular duration and is further followed by
a sharp rise that takes this property to its peak value. During this dwell period, the compres-
sion wave formed reflects from the opposite boundary and reaches back to the valve. The
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Figure 7.13: Transient pressure at the upstream and the downstream locations of the valve

arrival of compression wave at the valve downstream marks the beginning of abrupt rise in
pressure. The oscillation of compression wave inside the system continues while undergo-
ing multiple reflections at the boundary and valve. During the process, energy of the wave
is dissipated in overcoming the frictional losses in the system and finally the steady state
operating conditions are attained. The frequency of these oscillations are determined by
geometrical parameters of the pipe and material parameters of both the pipe and the fluid
in it.

Numerical pressure data for transients at the valve upstream, however, show an initial
rise in pressure. This is because, during the valve closure, the fluid inertia leads to its
accumulation and further to its compression close to the valve upstream. The sudden de-
celeration of fluid converts the kinetic energy to pressure energy and leads to the creation
of a compression front. This compression wave reflects at the closed valve and propagates
further upstream of the system. Once this compression wave completely recedes, the valve
upstream shows a drastic reduction in pressure. Thus, an oscillating wave motion is set
up also in the upstream side of the system similar to the downstream side. The dissipation
of the fluctuating pressure back to steady state operating conditions is visible also on the
upstream side. The major loss in the circuit, the frictional losses, and the minor losses such
as those due to area changes, bends in pipe, etc., can contribute to faster damping down of
the pressure oscillations.

The most important observation made is that the surge data on either side of the valve
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exhibit a phase shift with each other. The magnitude and frequency of the pressure oscil-
lations are in close range at both these locations. However, the importance of this phase
shift and its severity on the safety of the system could be better understood by analysing
pressure difference across the valve during the transient. The pressure difference calculated
across the closing valve during the transient process is displayed in Figure 7.14.
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Figure 7.14: Transient variation of pressure difference across the valve

It could be clearly observed from Figure 7.14 that the pressure difference developed
across the closing valve could reach very high magnitudes. For example, while the max-
imum fluctuation of pressure from operating conditions during the surge was computed
to be around 12 bar, the maximum pressure difference reported across the valve is close
to 23 bar. This is because of the phase shift in pressure oscillations. This is most severe
towards the initial part of the transient where highest pressure is developed at the valve
upstream and simultaneously lowest pressure is reached at its downstream side. This leads
to large pressure differences across the valve.

Actual magnitude of the severity will be understood only when we analyse the scale of
pressure difference. Figure 7.14 shows that this pressure difference developed across the
valve reverses its direction at the same frequency as that of the oscillations. The high values
of pressure differences developed across the valve coupled with these frequent direction
changes could become a very serious factor in determining the safety of the valve. It is
important to consider this especially for sudden valve closures. The effect of valve closure
duration on this pressure difference developed across the valve needs to be explored and is
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discussed in the next section.

7.8 Effect of valve closure time on the pressure difference
across the valve

The severity of the effects caused by the closure of different valves in pipelines are usually
associated with the speed of its closure. Various works and studies related to the impact
of valve closure duration on surge characteristics are presented in the Section 2.9 of Chap-
ter 2. As far as the safety and life of valves are concerned, magnitude of the maximum
surge pressures during valve transients is important. Another crucial information is the
fluctuating magnitude of pressure difference developed across the valve during the tran-
sient and the frequency of its oscillation. These oscillations can cause severe damage as
they have a similar method of causing damage as observed with the compression wave of
a blast wave. We need a reference parameter to understand whether a given valve closure
is a slow closure or a fast closure. There is this parameter called the ‘pipeline period’ or
the ‘characteristic time period’ which is usually denoted as TC . This is a very important
parameter related to the safety of pipelines or fluid transfer lines. For a pipeline system, this
is the time taken for a signal to complete one set of to and fro propagation in the system.
For a pipeline of length L with signal propagation speed a inside it, the characteristic time
period is defined as follows:

TC =
2L

a
(7.2)

If the duration of a valve closure is equal to or shorter than TC , then that valve closure is
considered to be fast or sudden closure. For closure durations of a valve longer than TC , the
closures are considered as slow or gradual closures. For all experimental systems consid-
ered previously in this research work, the valve closures were fast. This could be verified
from the data furnished in Table 7.2. Here the parameter TV in the table corresponds to the
actual duration of valve closure. We could see that for all the experiments modelled, the
value of TV is lower than the TC value for the corresponding case.

For valve closing time longer than the characteristic time period, the transient in a
system becomes more complicated. This is because of the involvement of several dynamic
components in the flow line such as pumps, check valves, control valves etc. For such cases
the simulations require a very detailed model to consider all these effects so that the actual
behaviour of the transient is closely predicted.
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Table 7.2: Details of valve closure durations for different experiments

Experiment
L a TC TV

[m] [m/s] [s] [s]

Neuhaus et al. No. 415 149.4 1282 0.233 0.040
Neuhaus et al. No. 347 149.4 1279 0.234 0.050
Mitosek et al. Steel 72.0 1245 0.116 0.025
Mitosek et al. HDPE 240.0 333 1.441 0.020
Soares et al. Copper 15.22 1285 0.024 0.016

The Experiment No. 415 of Neuhaus et al., which is the same experiment considered
in the previous section, is used to study the effect of valve closure duration on the pressure
difference across the closing valve during the transient. The characteristic time period for
the selected setup is calculated to be 0.233 seconds. After computing the characteristic time
period for the system considered, different valve closure durations were selected such as
0.04 s, 0.15 s, 0.25 s, and 0.50 s. Some of these closures are sudden closures while others
are gradual closures. The velocity at the valve location is assumed to be decreasing linearly
from the initial value to zero during the period of valve closure. For each of these cases,
the pressure at locations just upstream of the valve and just downstream of the valve and
the pressure difference across the valve were obtained for the progressing transient.

7.8.1 Numerical results

The simulations are performed for the valve closure experiments with different valve clo-
sure durations. Numerical results for the transient variation of pressure at the upstream and
downstream locations of the valve were obtained. The transient pressure variation at the
upstream side of the valve is displayed in Figure 7.15 and that at the downstream side of the
valve is shown in Figure 7.16. Each of these figures show four different pressure profiles
corresponding to the four different closure durations of the valve.

The results for different valve closure speeds show the following major observations.
The sudden valve closures generate maximum peaks in pressure compared to gradual clo-
sures. This is an obvious observation and can be attributed to the faster momentum conver-
sion to pressure head during the sudden deceleration of the flow. The peaks are observed
to be more flattened for fast closures compared to the sharp conical peaks observed for
gradual valve closures. This is because, with the increase in closure time of the valve,
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Figure 7.15: Transient variation of pressure at upstream location of valve for different
valve closure durations

the rate of declaration reduces and this in turn slows down the rate of rise in the pressure
head. A very important observation is that, with increase in the duration of the closure the
magnitude of peak pressure shows a substantial decrease only once the duration becomes
greater than the characteristic time period. For valve closures faster than this, the variations
in peak pressure is observed to be marginal with change in the closure duration.

For sufficiently slower closures, peak pressures are observed to be much below the max-
imum pressure observed with sudden valve closures. For such slower closures, the dissipa-
tion of the pressure waves are also fast and the steady state conditions are reached quickly.
There is a small phase shift observed in the oscillations for different closure speeds. The
transient pressure profile shows a rightward shift with the increase of valve closure time.
This is because, as the valve closure becomes slower, it takes longer time duration for
the velocity close to the valve to reach zero. Since magnitude of pressure is dependent
on the velocity, this leads to a longer duration for pressure to reach the peak value. This
phenomenon is visible in the form of a rightward shift of the transient pressure profiles in
Figures 7.15 and 7.16 for slower valve closures .

The transient variations of pressure difference developed across the closing valve during
the transient for different closure durations of the valve are displayed in Figure 7.17.

On analysing the effects of valve closure duration on pressure difference across the
closing valve, the following observations were made. Increase in the closure time of the
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Figure 7.16: Transient variation of pressure at downstream location of valve for different
valve closure durations
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Figure 7.17: Transient variation of pressure difference across the valve for different valve
closure durations

valve results in considerable reduction of pressure difference developed across it. This is
obvious and as we already explained, could be attributed to the slower deceleration of the
flow. Similar to the observation with the case of pressure magnitudes, pressure difference
across the valve also shows a substantial fall only once the valve closures become slower
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than the characteristic time period of the system. The frequent reversal in the direction
of pressure difference is also notable. For the fastest closure considered, the maximum
pressure difference developed across the valve is reported to be around 23.2 bar, while for
the slowest closure in 0.5 s the maximum pressure difference reduced to 10.5 bar. But it
should be noted that for a closure duration of 0.25 s for the valve, which is just higher than
the characteristic time period of the system, the maximum pressure difference reported was
a high value of 21.1 bar. These large magnitudes of pressure differences and their frequent
direction changes are a clear indication of the dangerous pressure conditions to which a
valve is subjected during a transient or a surge. Such information should be given due
importance while selecting the valve material, fixing a valve closure duration, locating the
pipe supports etc.

7.9 Summary

In this chapter, the two-equation compressible-liquid model with adaptive damping capa-
bility, proposed and validated in the previous chapter, was used in numerically studying
valve-induced hydraulic transients. Three different valve closure experiments were se-
lected from the literature to perform numerical study, based on the varied pipe materials,
pipe geometry and the operating conditions involved. A simplified one-dimensional com-
putational domain was selected for numerical simulation. The multi-step computational
strategy explained in the previous chapter that used the split-matrix method was adopted
here as well. Additionally, an MOC based surge modelling and analysis software platform
called AFT Impulse was employed to numerically simulate valve closure problems. Based
on the observed difference in the transient trends in surge data on either side of the closing
valve, a new definition of the VPDC was presented in this chapter for surge prediction at
the upstream locations of a closing valve. Results from the proposed mathematical model
were compared against the experimental data. The chapter also used additional numerical
data sets in the comparative study such as those from the AFT Impulse platform and some
of those that are available in the literature. The improvements brought out to the simula-
tion accuracy through the inclusion of VPDC definition in the mathematical model were
highlighted in the discussions. The identified variation in the transient surge data on either
side of the closing valve led to the study of pressure difference developed across the valve
during the transient valve-induced surge. This study was further extended to understand
the effect of valve closure duration on pressure difference across the closing valve.
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Chapter 8

Conclusions

The major results and original contributions of this research work are summarised and the
important conclusions drawn from the work are presented.

This research work began by addressing the need for accurate compressible models for
liquids. In the initial stage of this research, the shortcomings of some of the frequently used
equations of state for water were identified. This led to the development of an equation of
state for liquid water, called modified NASG EOS, that can be applied over a wide range of
pressures and temperatures. This equation of state was thoroughly tested against the NIST
database for its accuracy and reliability in modelling compressibility effects in liquid water.
It was found during this phase of research that developing a single compressible model for
a liquid for application over wide property ranges with reasonable accuracy is a challenging
task. Moreover, the necessity that such a model should be able to handle isothermal and
non-isothermal cases equally well, makes the process even more challenging.

The research work proceeded by applying the compressible liquid model that we have
developed to flow cases to understand the ease of incorporation of the model into existing
mathematical models. The modified NASG EOS was thus applied to develop an analytical
solution for the water shock tube problem. The shock tube problem was found to have
multiple advantages such as the simplicity of problem setup, rich flow physics and features
that could make it a good test case. The solution procedure for a gas shock tube was adopted
and modified to suit the requirements for water shock tube problem. The equation of state
for the liquid has been reformulated to smoothly fit into the procedure. The analytical
solution was obtained for a variety of physical configurations of the problem to demonstrate
that the solution exists and could be reliably applied for a wide range of pressures and
temperatures. Following this, the same theoretical problem of water shock tube was solved
numerically by considering the Euler equations as the mathematical flow model.

The numerical results obtained for the problem were then validated using the previously
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developed analytical solution. Different varieties of configurations for the water shock tube
problem spanning a wide range of pressures and temperatures, were solved numerically
and the results were validated using respective analytical solutions. This validation process
demonstrated the utility of the analytical solution as a reliable benchmark solution and wa-
ter shock tube problem as a simple yet powerful test case for various numerical algorithms.
Moreover, the close agreement observed between the analytical solution based on thermo-
dynamic relations and the numerical results based on a system of PDE as mathematical
model, indicated the dependability of the test case and the solution data itself.

This research further aimed at extending the compressible model to more practical flow
situations where liquid compressibility effects are significant. The compressible liquid
model was thus applied for the modelling of transient flow problem of hydraulic surge in
pipes due to sudden closure of valves. After the selection of an appropriate mathematical
model and modifying it suitably for the problems handled, the compressible liquid model
was incorporated into it. This mathematical model was then employed to simulate selected
valve-induced hydraulic surge cases from the literature. The results showed that the com-
pressible liquid model could bring only small improvements in the simulation results for
hydraulic transients. However, the studies indicated that the effectiveness of this compress-
ible model in improving the simulation accuracy is more, with the increase of operating
pressure range. It has been identified that the damping of pressure waves during fast tran-
sients, by the existing steady and unsteady friction models, is not adequate. This motivated
us to the need of developing a new friction model that could improve pressure dissipation
mechanism in numerical simulations, by addressing the abrupt changes in flow conditions.
It led to the development of a variable pressure wave damping coefficient (VPDC) that
could impart adaptive damping capability to unsteady friction models. This VPDC based
friction formulation replaced the constant pressure wave damping coefficient based friction
formulation in the mathematical model, and was then used to simulate flow transients. The
numerical results obtained using the VPDC based friction model when validated with the
experimental data demonstrated its capability to adapt to the dissipation requirements of
the flow. The results with the new friction formulation produced qualitatively and quanti-
tatively superior results over the older model.

We identified that there are some important differences between the surge characteris-
tics at the upstream and the downstream locations of a fast closing valve. This necessitated
the requirement of separate VPDC models for surge estimation at upstream and down-
stream locations of the valve. The simulation studies on surge at the upstream location of
a closing valve, using the proposed mathematical model, and with a commercial software
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called the AFT Impulse, produced many important findings. The model with constant pres-
sure wave damping coefficient produced superior results over those from the AFT Impulse
and those selected from the literature. However, the results with these constant damping
coefficient showed high dissipation as the transient progressed. This suggested the need
of a variable pressure wave damping coefficient for the accurate simulation of surge at the
upstream location of valve. A variable friction coefficient was thus defined for surge pre-
diction at the upstream location of the valve and was used along with the mathematical
model to simulate flow cases. The surge data predicted using the variable damping coeffi-
cient showed close match with the experimentally measured values. The VPDC incorpo-
rated friction model also removed the extra dissipation that was observed in the numerical
solution with the constant damping coefficient. The simulation results showed that the pro-
posed mathematical model for compressible liquid together with adaptive friction model
produced superior results over the other models used for the purpose of comparison. The
variable damping coefficient addressed the deficiencies of constant damping coefficient to
a reasonable extent. The research work also suggested the easy incorporation of the new
compressible model and the new friction model into any conventional mathematical model
that governs the transient flows of compressible liquids.

The differences found between the surge characteristics at either side of the closing
valve motivated to further explore the transient pressure characteristics close to the valve
location. We have thus studied the trend of pressure difference developed across a closing
valve during a transient and the effect of valve closure duration on this parameter. These
were carried out using the full mathematical model that we have developed. The tran-
sient variation of pressure difference across the valve showed fluctuations of a larger scale
accompanied by frequent flow direction change. This combination can prove to be very
crucial in determining the system safety and valve closure characteristics. Variation of the
pressure difference existing across a valve for different durations of valve closure is also an
important information for determining the optimal operating conditions. The importance
of the parameter called the ‘characteristic time period’, in determining the closure speed of
valves and variation of peak pressures with closure speed were studied.

8.1 Limitations of the Research

One of the major limitations of the study is the lack of accurate information regarding
the exact nature of valve closures for the experimental cases selected, and the effects of
fluid-structure interactions in the systems during actual experimental conditions. These are
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possible reasons for any mismatches between the experimental data and simulation results.
The research was also limited to the case of single-phase flow.

8.2 Scope for Future Work

The compressible model for liquid water developed in this research work could be ap-
plied for multi-phase flows, which would improve the simulation accuracy through ac-
curate mixture-density and signal propagation speed predictions. The analytical solution
presented for the water shock tube problem can be modified to develop similar exact solu-
tions for different configurations of shock tube problems. The prescribed procedure could
also be used for developing analytical solutions for liquids other than water by modifying
equations of states appropriately.

Definitions of the variable pressure wave damping coefficients proposed in this research
work suggests that the tunable parameters are customisable based on the different cases
modelled using them. These definitions of the VPDC could be further refined by per-
forming more experimental studies. This may either provide us with exact values of the
tunable parameters that are applicable for wide range of cases, or expressions could be de-
veloped for defining the tunable parameters in terms of other relevant flow variables. New
compressible-liquid and adaptive-friction models could be incorporated into more existing
mathematical models for improving their simulation accuracy and numerical stability.

The research performed only hydraulic surge modelling using the mathematical model
we have developed. However, the surges associated with industrial fluids such as crude oil
that are frequently subjected to flow transients in transfer pipelines, could also simulated
using this model by bringing in suitable modifications.
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Appendix A

The HLLC and AUSM+-up algorithms

The details of the algorithms of HLLC and AUSM+-upare briefly described here. The
interested reader may refer to [128] and [186] for a more detailed description of the HLLC
and the AUSM+-up schemes respectively.

A.1 HLLC Scheme

The HLLC scheme can be written in the following generic way:

Un+1
i = Un

i +
∆t

∆x

(
F hllc
i+ 1

2
− F hllc

i− 1
2

)
(A.1)

where

F hllc
i+ 1

2
=



FLi+ 1
2
, if 0 ≤ SLi+ 1

2

F∗Li+ 1
2
, if SLi+ 1

2
≤ 0 ≤ S∗i+ 1

2

F∗Ri+ 1
2
, if S∗i+ 1

2
≤ 0 ≤ SRi+ 1

2

FRi+ 1
2
, if SRi+ 1

2
≤ 0

(A.2)

To start with, the averaged value of the speed of sound and density at the cell interfaces is
computed:

ai+ 1
2

=
ai + ai+1

2
and ρi+ 1

2
=
ρi + ρi+1

2
(A.3)

The pressure from Primitive Variable Riemann Solver (PVRS) is obtained at each cell in-
terface as follows

Ppvrsi+ 1
2

=
1

2
(pi + pi+1)−

1

2
(ui+1 − ui)ρi+ 1

2
ai+ 1

2
(A.4)
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from which the pressure in the starred region is computed:

P∗i+ 1
2

= max(Ppvrsi+ 1
2
, 0). (A.5)

Based on the comparison of the pressure at each point, with the starred pressure defined
there, the quantities qL and qR are defined as follows:

qLi+ 1
2

=


1, if P∗i+ 1

2
≤ pi[

1 +
γ + 1

2γ

(
P∗i+ 1

2

pi
− 1

)] 1
2

, if P∗i+ 1
2
> pi

(A.6)

qRi+ 1
2

=


1, if P∗i+ 1

2
≤ pi+1[

1 +
γ + 1

2γ

(
P∗i+ 1

2

pi+1

− 1

)] 1
2

, if P∗i+ 1
2
> pi+1

(A.7)

The wave speed estimates for the two signal waves i.e., the left and right traveling waves
respectively are obtained through the relations

SLi+ 1
2

= ui − aiqLi+ 1
2

(A.8)

SRi+ 1
2

= ui+1 − ai+1qRi+ 1
2

(A.9)

The intermediate wave speed S∗ is then computed in terms of SL and SR using the following
expression

S∗i+ 1
2

=
pi+1 − pi + ρiui(SLi+ 1

2
− ui)− ρi+1ui+1(SRi+ 1

2
− ui+1)

ρi(SLi+ 1
2
− ui)− ρi+1(SRi+ 1

2
− ui+1)

(A.10)

Next, we compute the following vectors at each cell interface:

ULi+ 1
2

=

 ρi

ρiui

ρei

 (A.11)
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U∗Li+ 1
2

= ρi

(
SLi+ 1

2
− ui

SLi+ 1
2
− S∗i+ 1

2

)
1

S∗i+ 1
2

ei + (S∗i+ 1
2
− ui)

[
S∗i+ 1

2
+

pi
ρi(SLi+ 1

2
− ui)

]


(A.12)

U∗Ri+ 1
2

= ρi+1

(
SRi+ 1

2
− ui+1

SRi+ 1
2
− S∗i+ 1

2

) 
1

S∗i+ 1
2

ei+1 + (S∗i+ 1
2
− ui+1)

[
S∗i+ 1

2
+

pi+1

ρi+1(SRi+ 1
2
− ui+1)

]


(A.13)

URi+ 1
2

=

 ρi+1

ρi+1ui+1

ρi+1ei+1

 (A.14)

Finally, various fluxes are computed as follows:

FLi+ 1
2

=

 ρiui

ρiu
2
i + pi

ui(ρiei + pi)

 (A.15)

F∗Li+ 1
2

= FLi+ 1
2

+ SLi+ 1
2
(U∗Li+ 1

2
− ULi+ 1

2
) (A.16)

F∗Ri+ 1
2

= FRi+ 1
2

+ SRi+ 1
2
(U∗Ri+ 1

2
− URi+ 1

2
) (A.17)

FRi+ 1
2

=

 ρi+1ui+1

ρi+1u
2
i+1 + pi+1

ui+1(ρi+1ei+1 + pi+1)

 (A.18)

Based on the signal speeds the corresponding fluxes are chosen as shown in Equation(A.2).
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A.2 AUSM+-up Scheme

As in the case of basic AUSM scheme, the generic form of AUSM+-up algorithm may be
written as

Un+1
i = Un

i −
∆t

∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
(A.19)

where
Fi+ 1

2
= F

(c)

i+ 1
2

+ F
(p)

i+ 1
2

(A.20)

The inviscid flux vector F is split into two physically distinct parts; the convective part,
F (c) and the pressure part, F (p). The equations for F (c) and F (p) are given by

F
(c)

i+ 1
2

= ui+ 1
2

 ρ

ρu

ρe+ p


L/R

= Mi+ 1
2
ai+ 1

2

 ρ

ρu

ρe+ p


L/R

(A.21)

F
(p)

i+ 1
2

=

 0

pi+ 1
2

0

 (A.22)

Speed of sound and Mach number at each node are given by the relations

ai =

√
γ
pi
ρi

and Mi =
ui
ai
. (A.23)

The speed of sound at each cell interfaces is calculated as either simple average,

ai+ 1
2

=
ai + ai+1

2
(A.24)

or from the critical speed of sound using the isoenergetic equation

a∗i =

√
2γ

γ + 1

pi
ρi

+
γ − 1

γ + 1
u2i (A.25)

âi =
(a∗i )

2

max(a∗i , |ui|)
(A.26)

ai+ 1
2

= min(âi, âi+1) (A.27)
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and the following quantities are defined and computed at each cell interface:

MLi+ 1
2

=
ui
ai+ 1

2

, MRi+ 1
2

=
ui+1

ai+ 1
2

(A.28)

M i+ 1
2

=
1

2

(
M2

Li+ 1
2

+M2
Ri+ 1

2

)
(A.29)

The values of M0 at cell-interface can now be computed as

M2
0 i+ 1

2
= min

(
1,max(M

2

i+ 1
2
,M2
∞)
)

(A.30)

where M∞ = 1.0 for the given pressure ratio across the diaphragm. The factor fa at each
cell interface is then computed from relation

fai+ 1
2

= M0i+ 1
2
(2−M0i+ 1

2
) (A.31)

The interface Mach number and interface pressure terms are both computed using a com-
paratively lengthy procedure through the following set of relations. First we define the
interface Mach number:

Mi+ 1
2

= µ+
(4)

(
MLi+ 1

2

)
+ µ−(4)

(
MRi+ 1

2

)
+MP i+ 1

2
(A.32)

where, the split Mach numbers are fourth degree µ±(4) polynomial functions ofML/R . They
are defined as follows:

µ±(4)(M) =


1

2
(M ± |M |), if |M | ≥ 1.0,

±1

4
(M ± 1)2 [1 + 4β(M ∓ 1)2] , otherwise

(A.33)

MP i+ 1
2

= −KP max
(

1− σM2

i+ 1
2
, 0
) pi+1 − pi
ρi+ 1

2
a2
i+ 1

2

(A.34)

where
0 ≤ KP ≤ 1, σ ≤ 1, β =

1

8
, ρi+ 1

2
=
ρi + ρi+1

2
. (A.35)

The pressure diffusion term MP in the computation is introduced with the motive to
improve the calculations at low Mach numbers and for multiphase flows.
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The interface pressure term is then defined as

Pi+ 1
2

= P+
(5)

(
MLi+ 1

2

)
pi + P−(5)

(
MRi+ 1

2

)
pi+1 + PU i+ 1

2
(A.36)

where the fifth degree polynomial P±(5) function of ML/R are used as given below:

P±(5)(M) =


1

2

(
1± M

|M |

)
, if |M | ≥ 1.0,

±1

4
(M ± 1)2 [(±2−M) + 4αM(M ∓ 1)2] , otherwise

(A.37)

PU i+ 1
2

= −KUP
+
(5)

(
MLi+ 1

2

)
P−(5)

(
MRi+ 1

2

)
(ρi + ρi+1)(fai+ 1

2
ai+ 1

2
)(ui+1 − ui) (A.38)

where
0 ≤ KU ≤ 1, αi+ 1

2
=

3

16

(
−4 + 5fa

2
i+ 1

2

)
(A.39)

A diffusion term PU is included in the calculation of interface pressure.
The final inter cell flux is given by

Fi+ 1
2

= F
(c)

i+ 1
2

+ F
(p)

i+ 1
2

(A.40)

where

F
(c)

i+ 1
2

=



Mi+ 1
2
ai+ 1

2


ρ

ρu

ρe+ p


i

, if Mi+ 1
2
≥ 0,

Mi+ 1
2
ai+ 1

2


ρ

ρu

ρe+ p


i+1

, otherwise

(A.41)

F
(p)

i+ 1
2

=

 0

Pi+ 1
2

0

 (A.42)
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Appendix B

Analytical Solution to One-Dimensional
Shock Tube (SOD’s) Problem

The complete steps involved in the analytical solution procedure for a one-dimensional gas
shock tube is provided here. The exact solution to the one-dimensional shock tube problem
includes determining the extent of each of the five zones in space at any given point of time
from the rupture of the diaphragm. The zones once identified in space, the corresponding
set of relations is applied at each region. Determination of the zone interfaces, however,
requires the shock and flow velocity in zone ‘1’, both of which is computed from the shock
pressure ratio (p1/pR). The calculation of shock pressure ratio requires the solution of the
implicit equation

pL
pR

=
p1
pR

1−
(γ − 1)

(
aR
aL

)(
p1
pR
− 1

)
√

2γ

√
2γ + (γ + 1)

(
p1
pR
− 1

)

−2γ/(γ−1)

(B.1)

where (pL/pR) is the initial pressure ratio and (aR/aL) is the initial ratio of sound speed
across the diaphragm before rupture. Equation (B.1) cannot be rewritten explicitly for the
shock pressure ratio (p1/pR) and is hence solved iteratively using the Regula-Falsi method.

Shock speed (S) is obtained from the shock pressure ratio using the relation

S = aR

√(
γ + 1

2γ

)
p1
pR

+

(
γ − 1

2γ

)
. (B.2)

The symbols p, V, ρ, a, and ε represents the fluid pressure, velocity, density, sound speed,
and the specific internal energy respectively. The zone notation is used as subscripts with

191



each of these properties to denote the zone over which it is defined. The fluid properties
over zone ‘1’ is computed as follows.
The pressure,

p1 =

(
p1
pR

)
pR (B.3a)

where, the shock pressure ratio is from the solution of equation (B.1).
Fluid velocity

V1 =
aR
γ

(
p1
pR
− 1

)√√√√√√√
(

2γ

γ + 1

)
p1
pR

(
γ − 1

γ + 1

) , (B.3b)

the density ρ1 is computed from the following form of the Rankine-Hugoniot relation

ρ1
ρR

=

(γ + 1)

(γ − 1)

p1
pR

+ 1

(γ + 1)

(γ − 1)
+
p1
pR

, (B.3c)

the speed of sound

a1 =

√
γp1
ρ1

, (B.3d)

and the specific internal energy

ε1 =

(
1

γ − 1

)
p1
ρ1
. (B.3e)

The fluid pressure and velocity are equalized over the zones 1 and 2 and hence for zone 2
only the density and internal energy values need to be computed. The set of relations for
zone 2 are

p2 = p1 (B.4a)

V2 = V1 (B.4b)

ρ2 = ρL

(
p2
pL

) 1
γ

(B.4c)

a2 =

√
γp2
ρ2

(B.4d)

ε2 =

(
1

γ − 1

)
p2
ρ2

(B.4e)
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The properties inside the expansion wave i.e., zone ‘E’ are computed using another set
of relations. Unlike the other zones, the property values in zone ‘E’ are not constant
throughout, instead, they vary linearly in space. The set of relations applicable across
the expansion wave is

VE(x, t) =
2

γ + 1

(
aL +

x− x0
t

)
(B.5a)

aE(x, t) = aL − (γ − 1)
VE
2

(B.5b)

pE(x, t) = pL

(
aE
aL

) 2γ
γ−1

(B.5c)

ρE(x, t) = γ
pE
aE2

(B.5d)

εE(x) =
1

γ − 1

pE
ρE

(B.5e)

where t is the time elapsed since the diaphragm rupture. The unaffected zones on the ex-
treme left and right are marked as ‘L’ and ‘R’ respectively. The computation of properties
for these two zones are not required as the expansion wave and shock are yet to reach zone
‘L’ and ‘R’ respectively and thus the initial conditions in these regions continue uninter-
rupted. Therefore, for zone ‘L’ the property values are pL, ρL, VL, aL, and εL and that for
zone ‘R’ are pR, ρR, VR, aR, and εR.

It may be noted that the property values at the different zones do not complete the
analytical solution. The extent of each zone in space also needs to be determined. This is
achieved by computing the values of x1, x2, x3, and x4 with respect to the initial position
of diaphragm x0. The relations used for the same are:

x1 = x0 − aLt (B.6a)

x2 = x0 + (V2 − a2)t (B.6b)

x3 = x0 + V2t (B.6c)

x4 = x0 + St (B.6d)

where S is the shock speed computed using equation (B.2). The structure of solution for
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the entire domain is thus,

W (x) =



WL if x < x1

WE if x1 ≤ x < x2

W2 if x2 ≤ x < x3

W1 if x3 ≤ x < x4

WR if x4 ≤ x

(B.7a)

where W is the vector of flow property variable defined as

Wk =


pk

ρk

Vk

ak

εk

 , k = R, 1, 2, E, L (B.7b)
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