
MULTIPLE CLASSIFIERS AND

DIMENSIONALITY REDUCTION

METHODS FOR HYPERSPECTRAL

IMAGE CLASSIFICATION

A thesis submitted
in partial fulfillment for the degree of

Doctor of Philosophy

by

BHARATH BHUSHAN D

DEPARTMENT OF EARTH AND SPACE SCIENCES

INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY
THIRUVANANTHAPURAM - 695547

JANUARY 2015



CERTIFICATE

This is to certify that the thesis titled Multiple Classifiers and Dimensionality Reduc-

tion Methods for Hyperspectral Image Classification, submitted by Mr. Bharath

Bhushan D, to the Indian Institute of Space Science and Technology, Thiruvanantha-

puram, for the award of the degree of Doctor of Philosophy, is a bona fide record of

the research work done by him under my supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Dr. Rama Rao Nidamanuri

Supervisor

Department of Earth and Space Sciences

Thiruvananthapuram

January 2015

Counter signature of HOD with seal

v



DECLARATION

I declare that this thesis titled Multiple Classifiers and Dimensionality Reduction

Methods for Hyperspectral Image Classification submitted in fulfillment of the De-

gree of Doctor of Philosophy is a record of original work carried out by me under the

supervision of Dr. Rama Rao Nidamanuri, and has not formed the basis for the award

of any degree, diploma, associateship, fellowship or other titles in this or any other Insti-

tution or University of higher learning. In keeping with the ethical practice in reporting

scientific information, due acknowledgements have been made wherever the findings of

others have been cited.

Bharath Bhushan D

SC11D007

Place: Thiruvananthapuram

January 2015

vii



ACKNOWLEDGEMENTS

First and foremost, I express my sincere thanks and profound gratitude to my supervisor

Dr. Rama Rao Nidamanuri for his continuous support throughout my Ph.D studies and

research; for his patience, motivation, enthusiasm, immense knowledge and insightful

discussions. His guidance helped me throughout my research and also in writing of this

thesis.

I thank my Doctoral committee members: Prof. A Chandrasekar, Dr. B S Daga

Sagar, Dr. S K Sasamal, Dr. L Gnanappazham, and Dr. Deepak Mishra for their

encouragement and insightful comments. I extend my thanks to Dr. R Krishnan, former

Dean Academics, IIST for his valuable suggestions during the course of work. I would

like to thank Director, IIST, Dr. K. S. Dasgupta and Dean R & D, IIST for providing

me this opportunity and support throughout my Ph.D. I like to express my appreciation

to the entire staff and lab members of the department, library and administrative staff at

IIST for their timely help.

I am grateful to Dr. K. P. Soman and Dr. M. Sabarimalai Manikandan, my master

supervisors, for their inspiration and motivation to pursue doctoral research. I also take

this opportunity to thank Dr. Yuliya Tarabalka for her scientific discussions in the last

stage of my research work.

I thank all my friends for their never ending love, support and excitement. Last but

not the least, I would like to thank my parents, brother and sisters for their continuous

support they had given throughout my educational career and life.

Bharath Bhushan D

ix



ABSTRACT

The aim of this thesis is to develop efficient classification methodologies based
on a multiple classifier system which minimize the classifier and data dependence and
offer acceptable classification accuracy across various hyperspectral images and appli-
cation domains. Hyperspectral remote sensing has been emerging as a reliable data
source for the mapping and monitoring of various land surface features and processes.
Hyperspectral data are interesting and challenging. Traditional supervised image clas-
sification techniques that use all available spectral bands often fail on hyperspectral data
due to the curse of dimensionality that comes along. Dimensionality reduction methods
coupled with appropriate classifiers could mitigate the dimensionality problem. But,
identification of an appropriate dimensionality reduction method and classifier is sub-
jective, based on analysts’ prior knowledge and the performance is method and data
specific.

A multiple classifier system provides a conceptual framework to combine the
relative advantages of several classifiers to enhance reliability and accuracy of classi-
fication. Having diversity in the performance of classifiers is a pre-condition for the
success of multiple classifier system. In principle, multiple transformations of the same
hyperspectral image by different dimensionality reduction methods lead to differential
classification performances. The potential of dimensionality reduction methods to cre-
ate diversity in the multiple classifier system is not well understood. As the multiple
classifier system involves parallel application of a diverse group of classifiers, under-
standing the impact of dimensionality reduction methods on the overall classification
performance is important for developing optimal classification methodologies for land
cover mapping.

The aim of this thesis is twofold. In the first part, there are two objectives.
The first objective is to study the impact of different dimensionality reduction methods
on the classification performance of a multiple classifier system. A multiple classifier
system designed with five dimensionality reduction methods and seven classifiers has
been used for a series of classification experiments on five different hyperspectral im-
ages (acquired at different sites) for land cover mapping. The change in classification
accuracy for various combinations of dimensionality reduction methods and classifiers
has been tracked across various information classes and land cover settings. Results
indicate substantial change in the performance of the multiple classifier system with
different dimensionality reduction methods (peer reviewed journal manuscript on this
aspect: Impact of dimensionality reduction methods on the classification performance
of the multiple classifier system for hyperspectral image classification, International
Journal of Remote Sensing). The second objective is to assess the relationship between
information class, classifier and dimensionality reduction method within the multiple
classifier system framework. The multiple classifier system’s architecture has been ma-
noeuvred to compute magnitudes and patterns in the per-class classification accuracy of
each information class for all the possible combinations of classifiers and dimensional-
ity reduction methods within and across the different hyperspectral images. The results
indicate the existence of empirical relationships across different hyperspectral images,
wherein different information classes prefer different combinations of classifiers and
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dimensionality reduction methods (peer-reviewed journal manuscript on this aspect:
Assessment of the impact of dimensionality reduction methods on information classes
and classifiers for hyperspectral image classification by multiple classifier system, Ad-
vances in Space Research).

The first part of the aim of thesis highlights the necessity of introducing dy-
namism in the multiple classifier system for the selection of classifiers and dimensional-
ity reduction methods for effective hyperspectral image classification. Consequently, in
the second part, the objective is to develop a novel classification technique which selects
classifiers and dimensionality reduction methods according to input data dynamics. In
particular, we propose two novel modifications to the functional architecture of the mul-
tiple classifier system. The first contribution is an algorithmic extension of the multiple
classifier system, we name it as dynamic classifier system. The proposed dynamic clas-
sifier system pairs up optimal combinations of classifiers and dimensionality reduction
methods, specific to the hyperspectral image, and performs image classification based
only on the identified combinations (peer-reviewed journal manuscript on this aspect:
Dynamic linear classifier system for hyperspectral image classification, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing). The second
contribution is the development of a new dynamic classifier selection approach based
on extreme learning machine regression which selects a subset of optimal classifiers
relative to each input pixel by exploiting the local information content of the pixel. Fur-
ther, the spatial contextual information is incorporated in the proposed dynamic classi-
fier selection approach to develop a new spectral-spatial classification model to exploit
high spatial resolution of modern airborne hyperspectral images (peer-reviewed journal
manuscript on this aspect: Dynamic ensemble selection approach for hyperspectral im-
age classification with joint spectral and spatial information, IEEE Journal of Selected
Topics in Applied Earth Observation and Remote Sensing).

The objectives of this thesis make a significant contribution to the current
knowledge about the application of multiple classifier system for hyperspectral image
classification and present a novel multiple classifier system based dynamic classification
framework, which offers optimal classification performance across different hyperspec-
tral images, land cover settings, and information classes.
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CHAPTER 1

INTRODUCTION

1.1 Hyperspectral Imaging

For the last decade hyperspectral remote sensing has been an active area of research

and development in remote sensing. Recent advances in detecting technologies made it

possible to extend the collection of hyperspectral images to the thermal infrared region

of electromagnetic spectrum (Johnson et al., 2011; Schlerf et al., 2012; Johnson et al.,

2014; Santini et al., 2014; Jie-lin et al., 2014). Hyperspectral remote sensing is related

to multispectral remote sensing. The multispectral remote sensing acquires image data

in several discrete spectral bands. Hyperspectral remote sensing collects image data si-

multaneously in hundreds of narrow (typically in 10 nm) and continuous spectral bands

in the entire optical wavelength region of the electromagnetic spectrum (0.4− 2.5µm).

These measurements make it possible to derive a continuous spectrum for each image

pixel as shown in the Figure 1.1. After adjustments for sensor, atmospheric, and ter-

rain effects are applied, these image spectra can be compared with field or laboratory

reflectance spectra in order to recognize and map surface materials such as particular

types of vegetation or diagnostic minerals associated with ore deposits. Originally de-

veloped for mining and geology, hyperspectral remote sensing is now used in a wide

array of applications and the technology is continually becoming more available to the

public and remote sensing community.

1.1.1 Applications

Thanks to the abundant spectral information inherent in hyperspectral images, hyper-

spectral images become important data sources for a wide range of applications, as

widespread as ecology and surveillance, as well as historical manuscript research, such

as the imaging of the Archimedes Palimpsest (Liang, 2011; Rapantzikos and Balas,

2005; Salerno et al., 2006).



Figure 1.1: The concept of hyperspectral imaging and respective spectral sig-
natures of the different materials (soil, water and vegetation), Image
courtesy: www.markelowitz.com/Hyperspectral.html.

The following are some of the application areas where hyperspectral remote sensing

is being applied actively.

• Monitoring and management of environment: Hyperspectral images can be used

to study the nature of the environment and track the changes over the time. In

particular, it is useful to monitor water bodies, harmful algal blooms, human

settlement in urban areas, forest management, air pollution, CO2 emissions and

in detection of oil spills (Andrew and Ustin, 2008; Ghiyamat and Shafri, 2010;

Borengasser et al., 2007; Sanchez et al., 2003).

• Vegetation mapping and biophysical characterization: Hyperspectral images can

be used in vegetation mapping applications at the community and species level,

and in characterizing the biophysical properties of the vegetation cover such as

bio-mass, leaf area index, chlorophyll content, etc. These properties are important

in understanding the dynamics of ecosystems (Darvishzadeh et al., 2008; Wu

et al., 2010a; Thenkabail et al., 2011, 2013).

• Precision agriculture: Hyperspectral remote sensing can be effectively used in

precision agriculture to monitor the health of the crop, characterize the physical
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and chemical properties of the soil, detection of nutrient deficiencies, identifi-

cation of insect and weed infestation, and early detection of crop stress (Boggs

et al., 2003; Cetin et al., 2005; Thenkabail et al., 2011).

• Mineralogy: Hyperspectral images can be used to identify many valuable min-

erals that are exposed or weathered in the residual soil and to retrieve the sur-

face compositional information for mineral exploration purposes (Sabins, 1999;

Cloutis, 1996; Van Der Meer et al., 2012).

• Military and defence: Hyperspectral imaging can used in military surveillance to

detect and track the military objects that are invisible to the naked eye (Briottet

et al., 2006; Manolakis et al., 2003).

• Detection of hazardous materials: Hyperspectral technology detects and localize

the presence of the chemical plumes and other hazardous compounds in the atmo-

sphere and helps in deciding the timely pre-caution measures (Hirsch and Agassi,

2007; Gurram and Kwon, 2010; Dao et al., 2012; Manolakis et al., 2014).

Further, the technological evolution of optical sensors has led to development of nu-

merous airborne hyperspectral sensors with different spectral, spatial and operational

range specifications, thus enabling to explore new applications. Table 1.1 lists the

available hyperspectral sensors, future planned missions and their spectral properties

(Dalponte et al., 2009; Staenz and Held, 2012).

1.1.2 Challenges

Hyperspectral images contain a wealth of spectral data, but effective interpretation and

processing methods are crucial in translating the rich spectral data into more useful

information. The very nature of a hyperspectral image poses many challenges to exploit

hyperspectral images effectively. Some of the most common limiting factors are given

below.

• High dimensionality: extremely large size of data causes storage and memory

problems; demands fast computing solutions that can accelerate the information

exploitation of hyperspectral images for many real time applications such as tar-

get detection, change detection, and food quality inspection, etc.
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Table 1.1: List of recent and future planned hyperspectral sensors and their
spectral properties.

Sensor name Manufacturer Platform Number Spectral Spectral range
of Spectral Resolution µm
Bands nm

Hyperion on EO-1 NASA Goddard Space satellite 220 10 0.4-2.5
Flight Center

CHRIS Proba ESA satellite 63 1.25 0.415-1.05

HySI ISRO satellite 64 10 0.4-0.950

HJ-1A Chine CAST satellite 110-128 5 0.45-0.950

HICO NASA/ONR satellite 128 5.7 0.353-1.08

AVIRIS NASA Jet Propulsion Lab aerial 224 10 0.4-2.5

HYDICE Naval Research Lab aerial 210 7.6 0.4-2.5

PROBE-1 Earth Search Sciences Inc. aerial 128 12 0.4-2.45

CASI 550 ITRES Research Limited aerial 288 1.9 0.4-1

CASI 1500 ITRES Research Limited aerial 288 2.5 0.4-1.05

SASI 600 ITRES Research Limited aerial 100 15 0.95-2.45

TASI 600 ITRES Research Limited aerial 64 250 8- 11.5

HyMap Integrated Spectronics aerial 125 17 0.4-2.5

ROSIS DLR aerial 84 7.6 0.4-0.85

EPS-H GER Corporation aerial 133 0.67 0.43-12.5

EPS-A GER Corporation aerial 31 23 0.43-12.5

DAIS 7915 GER Corporation aerial 79 15 0.43-12.3

AISA Eagle Spectral Imaging aerial 244 2.3 0.4-0.97

AISA Eaglet Spectral Imaging aerial 200 - 0.4-1.0

AISA Hawk Spectral Imaging aerial 320 8.5 0.97-2.45

AISA Dual Spectral Imaging aerial 500 2.9 0.4-2.45

MIVIS Daedalus aerial 102 20 0.43-12.7

AVNIR OKSI aerial 60 10 0.43-1.03

EnMAP DLR future 218 5/10 0.42-2.45

PRISMA ASI future 237 12 0.4-2.5
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• Redundant information: hyperspectral images being spectrally oversampled, cor-

relation among neighbouring spectral bands is high and this correction often leads

to sampling problems in the analyses of hyperspectral images.

• Noisy bands: hyperspectral images are often affected by various types of noise

such as sensor noise, photon noise, calibration errors which reduce the precision

of the subsequent processing (Kerekes and Baum, 2005; Guo et al., 2013).

• Limited labelled samples: small ratio between the dimensionality of hyperspec-

tral image and available reference samples, popularly known as Hughes phenom-

ena or curse of dimensionality.

These factors make the information exploitation of hyperspectral image a very challeng-

ing task. The methods developed for analysing multispectral images can be naturally

extended to interpret the hyperspectral data. However, the afore mentioned limiting

factors, especially the case of a limited number of labelled samples impede the effec-

tiveness of data exploration methods. Thus development of new hyperspectral data

processing methods is necessary to take full advantage of hyperspectral data.

1.2 Motivation, Objectives, and Contribution of the

thesis

Supervised classification is an analysts’ method of choice to translate remote sensing

image data into meaningful labelled pixel information. The supervised classification is

the process of assigning class labels to each of the pixels in image by learning a hypoth-

esis function from the training samples. The effectiveness of supervised classification

depends upon its ability to trade upon the available training samples, data dimension-

ality and information classes. In the last decade, significant research efforts have been

made in improving hyperspectral image classification performance by developing 1)

dimensionality reduction methods for overcoming the curse of dimensionality (Lennon

et al., 2001; Kumar et al., 2001; Kaewpijit et al., 2003; Manolakis and Marden, 2004;

Hsu, 2007; Amato et al., 2009; Bor-Chen Kuo et al., 2009; Dalla Mura et al., 2011;

Yin et al., 2012; Imani and Ghassemian, 2014); and 2) non-parametric and knowledge
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based classifiers which are not sensitive to some of limiting factors of hyperspectral im-

ages (Camps-Valls and Bruzzone, 2005; Plaza et al., 2009; Chen et al., 2013; Li et al.,

2013; Camps-Valls et al., 2014; Kuo et al., 2014). These studies tackle some of the

limiting factors of hyperspectral image analysis and also report good classification ac-

curacy. The general conclusions of these studies highlight that the available techniques

are inadequate to derive substantial benefits of the spectrally rich hyperspectral image.

Nevertheless, with plethora of classifiers and dimensionality reduction methods

available, the selection of a classifier and/or a dimensionality reduction method which

offers optimal performance for a given hyperspectral image and/or application domain

is a subjective task and is still an active area of research (Wolpert, 1996; Fabio et al.,

1997; Chen and Qian, 2008). In general, the most appropriate classifier, and dimension-

ality reduction method are identified before hand by analyst’s prior knowledge or on a

heuristic basis. This makes the obtained results subjective and the procedure expert-

dependent.

A multiple classifier system (MCS), an advanced pattern recognition technique is

a flexible way to merge complimentary advantages of several algorithms into a single

framework. MCS consists of several classifiers called as base classifiers. Each of the

classifiers in the MCS produces decision function values for a given input and these

decision function values are combined in a suitable manner to obtain the final decision.

Benediktsson and Kanellopoulos (1999) explored the potential of MCS for hyperspec-

tral image classification and have shown that it alleviates the small sample size prob-

lem. Since then, several studies have appeared in the literature on the classification

of hyperspectral data using MCS framework and show improved classification accu-

racy (Petrakos et al., 2001; Ham et al., 2005; Doan and Foody, 2007; Kuo et al., 2011;

Kwon and Rauss, 2011; Du et al., 2012b; Xia et al., 2014). The appropriate design

of MCS which maintains diversity among the base classifiers is necessary to improve

the classification accuracy. The design of MCS for hyperspectral image classification

in the literature can be categorized into different categories: 1) the divide and conquer

approach 2) the multi-source and multi-temporal approach 3) the training samples ma-

nipulation approach 4) the spectral and spatial features approach, and 5) the supervised

and unsupervised approach. These approaches consider different ways of introducing

complimentary information in the design of MCS to obtain higher classification accu-

racies.
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In the divide and conquer approach, the diversity in the MCS is created by parti-

tioning a hyperspectral image into several smaller subsets and each of these subsets

are given as the input data source to the MCS (Benediktsson and Kanellopoulos, 1999;

Gidudu et al., 2009; Kalluri et al., 2010; Kwon and Rauss, 2011; Prasad et al., 2012).

On the other hand, the multi-source and multi-temporal approach introduces diversity

in the MCS by considering the hyperspectral images acquired on different dates and

different sensors (Landgrebe, 1999; Prasad et al., 2008; Udelhoven et al., 2009; Du

et al., 2012b; Dos Santos et al., 2012). Apart from these approaches, the diversity in

the MCS can also be created by using training samples manipulation methods such as

bagging, boosting, random forest and their variants (Fernandez-Redondo et al., 2004;

Chan et al., 2012). This approach selects a different subset of training samples to train

the base classifiers in the MCS. Kumar et al. (2002) introduced hierarchical based ap-

proach for creating diversity in the MCS, in that multiple binary classifiers are used in

the design of the MCS (Kumar et al., 2002; Ham et al., 2005; Jun and Ghosh, 2009;

Rajan et al., 2006). Apart from the spectral information, the high spatial content of

the hyperspectral image has also been exploited to create complimentary information in

the design of MCS by deriving spatial information features and spectral feature (Dalla

Mura et al., 2011; Benediktsson et al., 2004; Huang and Zhang, 2013; Wang et al.,

2009). Recently, other than the supervised classifiers, different segmentation techniques

and unsupervised classification techniques are used in the MCS design and to create di-

versity among the base classifiers (Yang et al., 2010a; Tarabalka et al., 2010; Alajlan

et al., 2012, 2013). These studies prove that MCS is a competitive learning method to

offer substantial improvement in classification accuracy. Nonetheless, these available

techniques are again data, application specific and are limited by generalization. In par-

ticular, the choice of classifiers in the MCS has significant impact on the classification

performance.

Dimensionality reduction methods enable the creation of multiple transformations

of same hyperspectral image with different mathematical and statistical properties, thus

leading to have complimentary information among different dimensionality reduction

methods. The potential of creating diversity by deploying multiple dimensionality re-

duction methods in the MCS is not understood. In particular, creating differential per-

formances among the classifiers in the MCS against different dimensionality reduction

methods is not studied yet. Further as mentioned earlier, the performance of the MCS
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is subjective to the classifier set which constitutes the MCS. The proper selection of

the classifiers and dimensionality reduction methods for the data at hand is necessary

to achieve generalization performance across different hyperspectral images. Our ex-

tensive literature survey reveals that the current methods lack the capability to select

classifiers dynamically based on the input data dynamics.

In addition to classifiers combination methods, the final decision of MCS can also

be obtained by classifiers selection methods. In the classifiers combination methods,

the decision function values of all the classifiers are used; where as in the classifiers

selection methods, the decision function values of certain classifiers are only used to

obtain final classification results. Most of the studies in MCS for hyperspectral image

classification are mainly focused on the classifiers combination, while little or no at-

tention has paid to the classifiers selection methods. In particular, dynamic selection of

subset of classifiers relative to each image pixel has not been studied. This approach

has the potential to relax the rigid diversity and accuracy constraints of the MCS and to

account for local variations within the image.

Moreover, in recent years several studies addressed the incorporation of spatial in-

formation in the classification system (Fauvel et al., 2008; Chen et al., 2011; Zhang

et al., 2012; Fauvel et al., 2013; Gurram and Kwon, 2013; Chen et al., 2014). In partic-

ular Markov random field (MRF) regularization has gained enormous attention. How-

ever, these studies are performed with a single classifier; and the potential of MRF

model in the MCS framework is least understood. Hence the general aim of this the-

sis is to address the aforementioned limitations in the MCS framework and develop a

dynamic MCS classification framework for effective hyperspectral image classification.

Objectives

The overall aim of this thesis is to study the impact of dimensionality reduction meth-

ods on the classifiers and information class relationships in the MCS framework, and

develop a novel MCS based dynamic classification technique which adaptively selects

optimal pairs of classifiers and dimensionality reduction methods and relative to the

information content in hyperspectral images. Enhancing the MCS classification frame-

work to a functionally dynamic classification framework, adaptive to the hyperspectral
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image at hand, would be a valuable methodological tool for objective and quantifi-

able decisions, choices, and optimal performance in hyperspectral image classification

across different images. The main contributions and hence objectives of this thesis can

be summarized as:

1. an empirical analysis on the impact of dimensionality reduction methods on the

classification performance of multiple classifier system for hyperspectral image

classification

2. an assessment of classifier and dimensionality reduction method relationship, and

information class, classifier and dimensionality reduction method relationship in

the framework of multiple classifier system for hyperspectral image classification

3. a novel system for automatically selecting the classifiers relative to each dimen-

sionality reduction method based on the input data dynamics for hyperspectral

image classification

4. to propose a new dynamic classifier selection approach for hyperspectral image

classification which selects best subset of classifiers relative to each pixel based

local distribution of the pixel, and

5. a novel spectral-spatial classification model to exploit the spectral and spatial

information of the hyperspectral image

In the next subsections, the main objectives and novelties are briefly discussed.

1. Impact of dimensionality reduction methods on the classification performance

of MCS

The information exploitation of the hyperspectral image is complex from the theoret-

ical and computational point of view. Dimensionality reduction is an effective pre-

processing technique to overcome the Hughes phenomena and to reduce the computa-

tional load for further analysis. Whilst several dimensionality reduction methods are

available in the literature, the choice of dimensionality reduction method and its com-

patibility with the classifier selected is crucial for achieving acceptable classification
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results. Despite many studies available on suitability of dimensionality reduction meth-

ods for the classical supervised classification methods which uses only a single clas-

sifier, the application and hence its compatibility with base classifiers and impact on

the overall performance within the MCS framework is not reported. In this thesis, we

present an empirical study aimed at understanding the impact of dimensionality reduc-

tion methods on the performance of MCS for hyperspectral image classification. In

particular, we analyse the behaviour of the classification accuracy of the MCS on dif-

ferent dimensionality reduction methods and different combination functions. Further,

the sensitivity of the individual base classifiers is also analysed with different dimen-

sionality reduction methods. The outcome of the study has important implications on

the current understanding of the MCS on selection of different variants of input data

sources and their combined classification performance.

2. An assessment of the existence of relationship between classifier and dimension-

ality reduction method and information class, classifier and dimensionality reduc-

tion methods

The availability of a plethora of classifiers and dimensionality reduction methods makes

the identification of optimal choice of classifier and dimensionality reduction method a

challenging task. Limited studies are available in comparing the performance of several

dimensionality reductions and several classifiers across different hyperspectral datasets.

Therefore in this thesis, we assess the relationship between classifiers and dimension-

ality reduction methods as well as class, classifier and dimensionality reduction meth-

ods for hyperspectral image classification. In particular, we conducted experiments to

analyse whether i) there exists a optimal pair of classifier and dimensionality reduc-

tion method across multiple hyperspectral images; ii) there exists an information class

dependent classifiers and dimensionality reduction methods; iii) the observed the rela-

tionships are scale dependent; iv) the deployment of multiple dimensionality reduction

can increase the classification accuracy of the MCS. Further, the classifiers which are

above the threshold are combined and compared with the state-of-the-art-methods.
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3. Dynamic classifier system for hyperspectral image classification

Having differential performance among the classifiers is a necessity in image classifi-

cation by multiple classifier system. The major limitation is that without addressing

the input data dynamics, merely inclusion of classifiers from divergent groups may not

necessarily yield the results expected from the MCS. In this thesis, we present a novel

system named the dynamic classifier system to acquire the capability to dynamically

identify optimal pairs of classifiers and dimensionality reduction methods from the pool

of classifiers to simplify, and reduce both data and application dependence of MCS. The

diversity and performance measures are used as the criteria in pairing the optimal clas-

sifiers and dimensionality reduction methods. Apart from this, the impact of different

non-trainable and trainable combination functions on the performance of the MCS and

on the proposed dynamic classification system is also analysed. The experimental re-

sults of the proposed system are compared with the state-of-the-art approaches.

4. Dynamic classifier selection approaches for hyperspectral image classification

To increase the performance of MCS, the optimal subset of classifiers are selected from

the pool of the classifiers, as implemented in the dynamic classifier system. However,

the selection of classifiers in this method is independent of the location of image pixel

in the feature space; hence all the classifiers take part in classifying each image pixel.

On the other hand, the optimal subset of classifiers varies for different spatial locations

in the image. Therefore, the performance of MCS can be improved by selecting the

best subset of classifiers dynamically relative to each image pixel, known as dynamic

classifier/ensemble selection (DCS/DES). In this thesis, we explore the potential of the

dynamic classifier selection approaches available in the non-imaging signal processing

arena and propose a new dynamic classifier selection approach for hyperspectral image

classification.

5. Spectral-spatial classification model for hyperspectral image classification

In addition to high spectral information content of the hyperspectral image, recent hy-

perspectral sensors also provide rich spatial information. Most of the studies in the

literature deal with incorporation of the spatial contextual information for a single clas-
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sifier. However, limited studies are available in incorporating the spatial contextual

information in the MCS. In this thesis, we develop a new spectral-spatial classification

model for hyperspectral image classification. The spectral information is extracted from

the dynamic classifier selection approach and the spatial information is derived from the

Markov Random Field framework. The proposed novel model can be considered as a

unified framework to take the full advantages of hyperspectral image.

1.3 Structure of Thesis

The remainder of this thesis has been organized in such a way that the specific objectives

listed above are presented in different chapters. Each chapter is made self-contained

and includes introduction, materials and methods, results and analysis, discussion and

conclusions.

• Chapter 2 presents an overall view of multiple classifier system and theoretical

foundations of classifiers and dimensionality reduction methods which are used

in designing the MCS in the later chapters.

• Chapter 3 addresses the impact of different dimensionality reduction methods on

the classification performance of MCS. The analysis is carried out to understand

the sensitiveness of the classifiers in the MCS with changing dimensionality re-

duction method.

• Chapter 4 assesses the existence of empirical relationship between classifier and

dimensionality reduction method, and class, classifier and dimensionality reduc-

tion methods for hyperspectral image classification. Further, in order to under-

stand whether the observed relationship is sensitive to the change in spectral and

spatial resolution of the image, the experiments were also performed on the spec-

trally and spatially downscaled synthetic hyperspectral images generated in this

thesis.

• Chapter 5 proposes an extended version of the multiple classifier system we

named as dynamic classifier system to select the optimal classifiers relative to

each input dimensionality reductions to form an effective MCS. The diversity

and classifier’s performance measure are considered as the criteria in selecting

12



the classifier in the MCS. Further, the impact of different non-trainable and train-

able combination functions is also studied in the framework of dynamic classifier

system.

• Chapter 6 explores the potential of dynamic classifier selection approaches for

hyperspectral image classification. We propose a new dynamic classifier selec-

tion approach based on extreme learning machine regression to offer better re-

sults in terms accuracy and computational complexity. Another contribution of

this chapter is introducing a new spectral-spatial classification model to incorpo-

rate the spatial contextual information in the hyperspectral image classification

system.

• Chapter 7 presents the summary and future directions of this thesis.
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CHAPTER 2

THEORETICAL BACKGROUND

Prelude: In this chapter, the background of multiple classifier system, reasons for its

increasing relevance within the context of pattern recognition and image classification,

and the combination functions used in it are presented. Further, mathematical foun-

dations of the dimensionality reduction methods, and classifiers which are used within

the framework of multiple classifier system in the later chapters of this thesis are briefly

described.

2.1 Multiple Classifier System

2.1.1 An overview of multiple classifier system

Multiple classifier system (MCS) is a classification framework that enables the combi-

nation of the decision function values of several individual classifiers to obtain higher

classification accuracies. The classifiers forming the MCS are called base classifiers.

Figure 2.1 shows general schematic diagram of a MCS. The MCS has been pursued

as an important topic of research in machine learning although with different names in

literature such as combination of multiple classifiers, classifier ensemble, mixtures of

experts, divide and conquer classifiers, and composite classifier system (Dasarathy and

Sheela, 1979; Jacobs et al., 1991; Xu et al., 1992; Hull and Srihari, 1994; Kuncheva

et al., 2001; Prasad and Bruce, 2011).

Kanal (1974) gave strong motivation in the late 70’s in his review work that there

is no single model which works well for all the pattern recognition problems, rather

it is better to use a bag of tools to solve problems more effectively. The idea of

multiple classifiers originated in 70’s and the significant developments in this field

were achieved during 90’s. Hansen and Salamon (1990) demonstrated the potential

of combing similarly configured neural networks to improve predictive performance.

Since then, the MCS has been studied extensively in theoretical and empirical studies



Figure 2.1: Flow chart of multiple classifier system.

(Schapire, 1990; Jacobs et al., 1991; Xu et al., 1992; Hull and Srihari, 1994; Lam and

Suen, 1995). Schapire (1990) introduced the ‘boosting’ algorithm and showed that a

stronger classifier can be generated by combining several weak classifiers. Breiman

(1996) introduced the ‘bagging algorithm’. These two algorithms have laid the foun-

dations for the famous Adaboost, and Random forest classifier and their variants which

have shown great performance in many pattern recognition applications (Freund and

Schapire, 1996; Breiman, 2001; García-Pedrajas et al., 2007; Galar et al., 2012). The

benefits of several individual classifiers are merged by aggregating the individual clas-

sifiers decision function values using combination functions. Designing a combination

function is the main component in the MCS. Kittler (1998) developed a common the-

oretical framework for combining classifiers and showed that performance can be im-

proved by using simple combination functions (Lam and Suen, 1995, 1997; Alexandre

et al., 2001; Fumera and Roli, 2005; Mi and Huo, 2011). However, the development

of an effective combination function alone is not sufficient to increase the classification

accuracy. In addition there should be difference in the opinions among the classifiers

forming the MCS, generally called as diversity. In other words, classifiers should com-

mit different types of errors. Diversity is one of the crucial factors that determines the

success of MCS. It is argued that diversity among the weak classifiers could be the main

reason for the outstanding performance of bagging and boosting algorithms (Kuncheva

et al., 2002; García-Pedrajas et al., 2007). Several studies have attempted to study the

relationship between the level of diversity and accuracy from the MCS (Brown et al.,

2005; Kuncheva et al., 2002; Shipp and Kuncheva, 2002; Windeatt, 2005). Kuncheva

and Whitaker (2003) show that the pair of classifiers should have negative dependence

and an empirical relationship is evident between MCS accuracy and some of the di-
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versity measures (but not always). Thus, diversity among the classifiers is an essential

component in the MCS. The methods of introducing and creating diversity among the

base classifiers are indeed an active area of research in recent years.

2.1.2 Reasons for MCS

Dietterich (2000) states three reasons why MCS is better than a single classifier. These

three reasons are: statistical, computational and representational.

• Statistical: In classification problems, the choice of classifier for the problem at

hand is decided based on the training performance of the classifiers. However,

there is a possibility that the chosen classifier may not yield good generalization

performance on the test dataset. For instance, two different classifiers with the

same training accuracy may have different testing accuracies. This problem par-

ticularly arises when the available labelled samples are limited, which is often

the case with hyperspectral images. The data complexity of hyperspectral image

and inadequate training samples makes it difficult to characterize land cover class

information, thus ending up with poor generalization performance. In such a sce-

nario, a combination of several classifiers reduces the risk of selecting a poorly

performing classifier and may also lead to good generalization performance.

• Computational: In general, classifiers’ training process starts from a random ini-

tialization point and ends closer to the optimal point in the classifier space. The

different initialization points of same algorithm leads to different optimal points

in the classifier space. Further, the local search of some algorithms may get stuck

in the local optima. These problems can be dealt with by running the local search

with different initializations and combining all of them will yield a better approx-

imation than the individual classifiers. The computational arguments particularly

important if the classifiers’ performances are very sensitive to change of their

parameters and input datasets.

• Representational: In most of the cases, the classifier space does not contain an

optimal classifier for a given problem at hand. In such cases, combining several

classifiers may lead to a classifier with an optimal decision boundary. For exam-

ple, the combination of several linear classifiers can approximate the non-linear
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decision boundary of the optimal classifier. In case of hyperspectral images, the

spectral signatures vary across different parts of the image. This introduces the

complexity in finding the optimal decision boundary, and hence the combination

of classifiers is a suitable approach for such problems.

2.1.3 Combination functions

The combination function is a mathematical function/scheme which combines the in-

termediate decision function values of different classifiers in the MCS to produce a final

classified image. There are two types of combination functions: non-trainable combi-

nation function, and trainable combination function.

The non-trainable combination function does not require training once the classi-

fier’s produce decision function values. On the other hand, the trainable combination

function requires training for estimating weight of the combination function (Kuncheva,

2004). The non-trainable combination functions used are: majority voting, average rule,

maximum rule, minimum rule, median rule and product rule. The trainable combina-

tion function can be formulated as the stack generalization problem, where one more

learner is used on the classifiers’ decision function value in order to get final classified

results.

Let x ∈ Rn be the sample and Ω = {ω1,ω2, . . . ,ωc} be the set of class labels, and

let Ψ = {ψ1, . . . ,ψL} be the set of classifiers in the ensemble or MCS and each of the

classifier ψl produces the c decision function vectors [dl,1(x), . . . , dl,c(x)]. Then, the L

classifiers’ outputs for a given x can be organized as a decision profile (DP) matrix as

shown in Figure 2.2.

The combination function can be formulated as a mapping a function F : RLC →
RC that maps the decision profile matrix to set of class labels, such that µ = F (DP ),

where µ = {µ1, . . . , µc}. The class label of x is assigned as the maximum index value

of µ.
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Figure 2.2: Decision profile matrix of x from the L classifiers.

2.1.3.1 Non-trainable combination function

• Majority voting (MV)

MV is a simple and robust combination function used in MCS. The number of

classifiers that agree on each class label is counted. Then the test pixel is as-

signed to the class which has the highest number of votes. Let us assume that the

classifiers produce c binary decision function vectors [yl,1, yl,2, . . . , yl,c] ∈ {0, 1},

where yl,j = 1 if classifier ψl labels x in the class ωj , 0 otherwise. Then the MV

is given as

µj(x) =
L�

i=1

yi,j(x), j = 1, 2, . . . , c (2.1)

• Average rule

µj(x) =
1

L

L�

i=1

di,j(x), j = 1, 2, . . . , c (2.2)

• Maximum rule

µj(x) = max
i

{di,j(x)} , j = 1, 2, . . . , c (2.3)

• Minimum rule

µj(x) = min
i

{di,j(x)} , j = 1, 2, . . . , c (2.4)

• Median rule

µj(x) = median
i

{di,j(x)} , j = 1, 2, . . . , c (2.5)
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• Product rule

µj(x) =
L�

i=1

di,j(x), j = 1, 2, . . . , c (2.6)

2.1.3.2 Trainable combination function

The trainable combination function can be modelled as the stack generalization ap-

proach. The idea is to apply the learner after stacking the output of the base classifiers

(Wolpert, 1992; Duin, 2002; Jin Chen et al., 2009). The assumption is that the clas-

sifiers’ intermediate output could also provide the discriminant information and the

learner (or combiner) catches these information. The trainable combination function

can be formulated as

F (s) = Ws+ b (2.7)

where F is the combination function (learner), s is the stacked output of all the

classifiers. The aim is to find the weight matrix W ∈ RN×MN and b ∈ RN using

the {(si,ωi)}Ii=1. In other words, the base classifiers’ outputs are linearly weighted and

combined to get enhanced classification results.

2.2 Dimensionality reduction methods

Advances in imaging technologies have led to data overload in remote sensing. While

the high dimensional remote sensing dataset provides abundant information to explore

and critically examine the physical and chemical properties of materials, it poses chal-

lenges in processing and analyzing the data. Previous studies have demonstrated that

high dimensional data spaces are mostly empty, and the data tends to lie in lower dimen-

sional subspace (Jimenez and Landgrebe, 1998). Hence representing hyperspectral im-

age in a lower dimensional space is essential for the betterment of hyperspectral image

classification. The application of dimensionality reduction methods on hyperspectral

images can

• cure the high dimensionality problem,

• reduce computational load in storage and processing time,
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• translate redundant features into a non-redundant features (for instance, indepen-

dent, orthogonal) depending on the nature of the dimensionality reduction meth-

ods,

• reduce the effect of noise in the data.

Dimensionality reduction methods transform the high dimensional dataset into a

lower dimensional representation with some degree of loss of information, however

small it may be. Let A ∈ RM×N be the dataset, where M is number of pixels in each

band, and N is the number of dimensions (bands). Dimensionality reduction methods

transform the N dimensional dataset A ∈ RM×N into K dimensional dataset Y ∈
RM×K where K << N by suitable transformation matrix W ∈ RN×K as

Y = AW. (2.8)

In general K is called as intrinsic dimension of the dataset, however in practice

the intrinsic dimension is not known. The general aim of dimensionality reduction

method is to find the transformation matrix W by optimizing criteria function. A brief

description of the most commonly used dimensionality reduction methods which are

used in this thesis is provided below.

2.2.1 Principal component analysis

Principal component analysis (PCA) translates the correlated features into a set of or-

thogonal features by seeking a new set of directions which maximize the variance of

data. The basis of the transformation function is obtained by solving the following

eigenvalue problem

cov(A)W = ΛW (2.9)

where cov(A) is the covariance matrix of the data, W is the eigenvectors and Λ

is the eigenvalues of the covariance matrix. Since the covariance matrix is real and

symmetric, the resulting eigenvectors are orthogonal. The eigenvalues represent the

variance of the data and eigenvectors represent direction of spread of the data. The

eigenvectors matrix W is used as the basis for PCA transformation and the lower di-
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mensional representations (Y) of the dataset A is obtained as Y = AW. The eigen-

vector corresponding to the highest eigenvalue is known as the first principal direction

and the data projected on this axis represent the maximum variance of the original data,

called as first principal component. The number of lower dimensions required is de-

cided based on the eigenvalue threshold.

2.2.2 Minimum noise fraction

Minimum noise fraction (MNF) reduces the dimension of hyperspectral image by seg-

regating noise in the data. The image pixel vector in MNF is modelled as

xi = si + ni

where xi is the ith hyperspectral image pixel having N bands, si and ni are the signal

and noise components respectively. The MNF transformation is essentially a two cas-

caded principal component analysis. The basis of MNF transformation is obtained by

maximizing the noise fraction var(ni)
var(xi)

in the projected components.

Y = WTA (2.10)

Y = UTVTA (2.11)

The first transformation is based on the estimated noise co-variance matrix (CN)1,

which decorrelates and rescales noise in the data such that the noise has unit variance

and no band to band correlation.

VTCNV = I

and the transformation matrix V can be obtained by V = BΛ−1/2 with B being the

matrix that diagonalizes CN and Λ being diagonal matrix

BTCNB = Λ

1The covariance of the noise is in general not known for hyperspectral image. However, a reasonable

estimate of noise can be obtained through maximum autocorrelation factor by exploiting the correlation

in the spatial neighbourhood of the image pixels.
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The second transformation is the standard PCA of the noise whitened data. The co-

variance matrix of noise whitened image (C̃A) can be obtained by

C̃Z = DTCAD

and from the diagonalization or eigenvalue decomposition of matrix C̃Z, we have

UT C̃AU = Δ (2.12)

where U,Δ are the corresponding eigenvectors and eigenvalues of the matrix C̃A. Thus

the final MNF transformed image (Y) can be obtained as

Y = WTA. (2.13)

This projection results in high signal to noise ratio bands which are ordered accord-

ing to noise fraction in the transformed domain. The inherent dimensionality of the

image is determined by examining the eigenvalues as similar to PCA. Further, MNF

transform can also be used to remove the noise from the original bands by performing

inverse transform using a spectral subset of the data, which includes only the high SNR

bands.

2.2.3 Independent component analysis

Independent component analysis (ICA) was originally developed for unmixing a lin-

ear combination of signals in the signal processing community. However, the same

formulation can also be used for reducing the dimension of high dimensional hyper-

spectral data. The key of idea of ICA is to find a maximum statistically independent

basis by minimizing the statistical dependency using higher order statistics. The cen-

tral limit theorem states that if the Gaussian like observations are broken into a set of

non-Gaussian mixtures, then the individual signals will be independent. Let x be the

observed signal

x = As (2.14)

where A is the scalar mixing matrix and s is the vector of source signals. The
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ICA assumes that the components of s are statistically independent and they have non-

Gaussian distribution. Thus the maximization of non-Gaussianity leads to independent

components. The kurtosis (fourth order moment) can be used as the measure for non-

Gaussianity. Hence, the objective of ICA is to find a matrix W = A−1 that maximizes

the non-Gaussianity in the projected components y. The Fast ICA algorithm was em-

ployed to obtain the transformation matrix W (Hyvärinen, 1999; Hyvärinen and Oja,

2000).

y = Wx ⇒ y = WAs (2.15)

2.2.4 Discrete wavelet transform based dimensionality reduction

method

Discrete wavelet transform is a powerful tool used in many image processing appli-

cations such as image compression, feature extraction, registration, fusion and image

segmentation. The inherent multi-resolution property makes wavelet transform an ex-

cellent tool for feature extraction from hyperspectral images. The basis of wavelet

transform is fixed unlike PCA, MNF, and ICA transformations. The wavelet transform

decomposes a signal into different levels of decomposition using scaling (φ(t)) and

wavelet (ψ(t)) basis functions.

φ(j,k)(t) = 2j/2
�

k

h(k)φ(2jt− k) (2.16)

ψ(j,k)(t) = 2j/2
�

k

g(k)φ(2jt− k) (2.17)

where h(k), g(k) are the low pass, high pass filter coefficients respectively, and j is

the level of decomposition. The filter coefficients are derived using the properties of

scaling and wavelet functions. The forward wavelet transform projects the signal into

the scaling and wavelet basis functions, thus resulting in an approximation, and detailed

wavelet coefficients. The forward wavelet transform consists of filtering and down-

sampling. The inverse wavelet transform is performed to reconstruct the decomposed

signal back into the original signal and it consists of up-sampling and filtering.

The discrete wavelet transform (DWT) can be used to reduce the dimensionality of

hyperspectral image in two stages (Kaewpijit et al., 2003). The first stage determines
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the level of decomposition and the second stage reduces dimensionality of hyperspectral

image. Let {xi, yi}mi=1 be a set of training samples and its corresponding c class labels

and let M = [m1,m2, . . . ,mc] be the mean of training samples belonging to each class.

The steps followed can be summarized as

• step 1: Each of the class mean vectors is decomposed into the approximation and

detailed coefficients using a forward wavelet transform.

• step 2: The inverse wavelet transform is computed only with approximation co-

efficients by discarding the detailed coefficients to reconstruct the original signal.

• step 3: The level (j) of decomposition for a given class mean pixel is decided

based on the acceptable correlation threshold with the original class mean pixel.

• step 4: The required level of decomposition (L) for reducing the dimension of

hyperspectral image is determined by the lowest level of decomposition in step 3

for all the class mean vectors.

• step 5: Using the computed level of decomposition in step 4, all the hyperspectral

image pixels are decomposed into level L with low-pass filter coefficients. If

the original image contains N bands, the number of bands in the dimensionality

reduced image is N/2L

2.2.5 Kernel principal component analysis

Kernel principal component analysis (KPCA) is the non-linear version of PCA and is

capable of capturing the higher-order statistics to better represent information in origi-

nal data (Scholkopf and Smola, 2001). The input data points are mapped into a higher

dimensional feature space by kernel mapping function, and the normal PCA is per-

formed in the higher dimensional feature space. Let xi be the set of input data points,

and φ(xi) be the kernel mapping function. The computation of PCA in the high di-

mensional feature space has a high computationally cost. Using the kernel trick, it is

possible to performs all the calculations in the input data space itself (Scholkopf and

Smola, 2001). The kernel function reduces the dot product in the feature space to a

25



function in the input space as

φ(xi)
Tφ(xj) = K(xi,xj) (2.18)

The kernel PCA is performed by solving the following eigenvalue problem

λα = Kα, subject to �α�2 =
1

λ
(2.19)

where K is the kernel matrix, the polynomial and Gaussian function are most used as

the kernel functions. After solving the eigenvalue problem, the projection is performed

as

Y = αK (2.20)

2.2.6 Optimal band selection

The optimal band selection reduces dimensionality of hyperspectral image by selecting

the best subset of bands based on physical properties of the objects as described in the

literature. This method enables incorporating the experts’ domain knowledge on the

available land cover information classes in the classification system. The selection of

bands (wavelengths) depends upon number of classes, nature of classes and underlying

image itself.

2.3 Classifiers

Let {xi, yi}Ni=1 be the pair of training samples and corresponding class labels. The

classification problem can be defined as estimating a function f : χ → Ω that maps

the input space χ ∈ Rn to the set of class labels Ω = {ω1, . . . ,ωc}. The function f

is called as classifier or learner. If x is the unknown pixel (test pixel), then labelling is

performed as x ∈ ωj, such that j = argmax f(x)

Image classifiers can be categorized into two groups: parametric classifiers and

non-parametric classifiers. The former assumes that the data follows the statistical dis-

tribution, where as the later doesn’t need to have the data following any statistical distri-

bution. This section describes the classifiers used in this thesis. Based on the nature of
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classifiers, the classifiers can be further categorized into three groups: spectral matching

methods, covariance based methods and subspace based methods.

2.3.1 Spectral matching methods

The spectral matching methods consist of normalized Euclidean distance classifier (NED),

spectral angle mapper (SAM), spectral similarity measure (SSM).

2.3.1.1 Normalized Euclidean distance

NED is the common geometric distance matching algorithm, which computes Eu-

clidean distance between reference pixel and unknown pixel (Robila and Gershman,

2005). The unknown pixel is classified to a class which is at a minimum distance to the

mean spectra of the classes. The Euclidean distance is given by

TNEDi
(x) =

1

N

�
(mi − x)T (mi − x)

�
, i = 1, 2, . . . , c (2.21)

where N is the number of elements in the image pixel vector, mi is the desired ith

class vector (mean class vector) and x is the unknown pixel vector. The unknown pixel

is assigned to the class, which has minimum distance measure.

2.3.1.2 Spectral angle mapper

Spectral angle mapper (SAM) is one of the leading image classification and spectral

library search methods used in hyperspectral image due to its simplicity and insensitive

to illumination changes. SAM measures cosine angle between the reference pixel and

unknown pixel (Kruse et al., 1993). Unknown pixels are assigned to the class, which

has minimum angle measure. It is defined mathematically as

TSAMi
(x) = cos−1

�
mT

i x

�mi��x�

�
, i = 1, 2, . . . , c (2.22)
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2.3.1.3 Spectral similarity measure

The spectral similarity measure (SSM) is a hybrid approach which combines the relative

merits of both the spectral angle mapper and normalized Euclidean distance classifier

(Granahan and Sweet, 2001). The SSM constitutes two parts: in the first part Euclidean

distance is computed between reference pixel and unknown pixel; the second part mea-

sures similarity in shape between the reference and unknown pixel using correlation

measure.

TSSMi
(x) =

�
1

N

N�

j=1

(mi(j)− x(j))2 +


1−

�
1

N−1

�N
j=1 (mi(j)− µmi

) (x(j)− µx)

σmi
σx

�2



2


1/2

(2.23)

where N is the number of the spectral bands; µmi
and µx the mean of the reference

pixel mi and the unknown image pixel x respectively; σmi
, σx the standard deviation of

mi,x respectively.

2.3.2 Covariance based methods

The covariance based methods consist of matched filter (MF), and adaptive coherence

estimator (ACE).

2.3.2.1 Matched filter

Pixel labelling in supervised classification can be considered as a target detection prob-

lem (Harsanyi and Chang, 1994; Du et al., 2003) formulated as a binary hypothesis with

two competing hypotheses: target absent (background) or target present. Matched Filter

(MF) can be derived from the Likelihood ratio detectors, which assumes that the tar-

get and background classes follow the multivariate normal distributions with different

mean and covariance (Manolakis et al., 2003). This formulation thus leads to quadratic

detector by Neyman-Pearson detector and becomes linear detector if both hypotheses
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have same covariance (Σ = Σt = Σb).

TMF (x) = (µt − µb)
T Σ−1x (2.24)

However, in practice it is quite difficult to satisfy this assumption and these quantities

are estimated from the available data using maximum likelihood estimates. Finally, the

MF can be described as

TMFi
(x) =

(mi − µ)TΣ−1(x− µ)

(mi − µ)TΣ−1(mi − µ)
, i = 1, 2, . . . , c (2.25)

where mi is the desired class mean vector, x is the input pixel vector, µ is the back-

ground mean vector and Σ is the background covariance matrix.

2.3.2.2 Adaptive coherence estimation

In hyperspectral data, the background statistics are unknown and the variability of back-

ground can be described either by subspace model (structured background) or a statis-

tical distribution (unstructured background). The unstructured background models the

target pixel as a subspace model and includes additive noise in the background. The

Generalized Likelihood Ratio (GLR) is the unstructured background model which has

same covariance for both hypotheses. If we model the covariance structure of both

hypotheses with different variance, GLR approach leads to the ACE (Manolakis et al.,

2003).

TACEi
(x) =

�
mT

i Σ
−1x

�2

(mT
i Σ

−1mi) (xTΣ−1x)
, i = 1, 2, . . . , c (2.26)

where mi is the desired class mean vector, Σ is the back ground covariance matrix,

x is the input pixel vector. When the whitening transform is applied to the data, then

the ACE is equal to the cosine angle between the test pixel and the target subspace into

whitened space.

2.3.3 Subspace based methods

The subspace based methods consist of orthogonal subspace projection (OSP), and tar-

get constrained minimized interference filter (TCIMF).
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2.3.3.1 Orthogonal subspace projection

The orthogonal subspace projection (OSP) approach has received considerable interest

in hyperspectral target detection applications. The OSP models hyperspectral pixel

vector as a linear combination of a set of finite class signatures present in the image

(Harsanyi and Chang, 1994). Let x be the pixel vector of size N × 1, then

x = Mα+ n (2.27)

where M = [m1,m2, . . . ,mc] is a N×c signature matrix with c classes, α = [α1,α2, . . . ,αc]

is a c × 1 coefficient vector. The OSP model divides the signature matrix M into

two parts, desired signature of interest d = mc and the undesired signature matrix

U = [m1,m2, . . . ,mc−1] as

x = dαd +Uαu + n (2.28)

where αc is the coefficient of the desired target signature. The goal of OSP is to

find an orthogonal complement projector that eliminates the undesired signature matrix

(background matrix) by projecting the data onto a subspace orthogonal to the unde-

sired signatures in U. The orthogonal subspace projector can be derived as PU⊥ =

I−U(UTU)−1UT . The OSP classifier projector which maximizes the SNR is derived

as

Tospi(x) = dTPU⊥x, i = 1, 2, . . . , c (2.29)

2.3.3.2 Target constraint interference minimized filter

Target constrained interference minimized filter (TCIMF) is the extension of the con-

strained energy minimization (CEM) algorithm. TCIMF assumes that the image pixel

vector is made up of three separate sources such as desired class signatures D =

[d1,d2, . . . ,dnd], undesired class signatures U = [u1,u2, . . . ,unu] and interference

(Ren and Chang, 2000). TCIMF detects multiple target (desired) signal sources, anni-

hilates undesired signal source while suppressing the interference caused by the other

signal sources in single operation (Chang, 2005). It is designed by the FIR filter that

passes the desired class signatures D using a nd × 1 unity constraint vector, while
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annihilating the undesired class signatures in U using nu × 1 zero constraint vector.

The filter coefficients of TCIMF are derived by solving the constrained optimization

problem (Chang, 2005).

TTCIMFi
(x) = (wTCIMFi

)T x, i = 1, 2, . . . , c (2.30)

where wTCIMFi
= R−1 [DU]

�
[DU]TR−1[DU]

�−1


 1nd×1

0nu×1


, R is the background

correlation or covariance matrix, x is the pixel vector, U is the undesired class signature

matrix and D is the desired class signature matrix.

2.3.4 Support vector machine

Support vector machine is a non-parametric binary classification method which has

been successfully applied to numerous pattern recognition applications. Let {xi, yi}
be the training samples (xi) and the corresponding class labels (yi ∈ {+1,−1}). The

objective of the SVM is to find an optimal hyperplane which separates the two classes

while maximizing the margin between the two classes. The hyperplane is determined

by using few training samples and these samples are called as support vectors. In noisy

cases, the two classes may not be linearly separable and in such scenarios the slack

variables ξi are introduced to allow for the overlapping training samples. The optimal

hyperplane is obtained by solving the following optimization problem

min
w,b,ξ

L(w, b) =
1

2
�w�2 + C

�

i

ξi

subject to yi
�
wTxi + b

�
≥ 1− ξi, ∀i = 1, . . . , n

ξi ≥ 0 (2.31)

where w is the normal vector of the separating hyperplane, b is the bias of the separating

hyperplane from the origin, and C > 0 is a constant that determines the tradeoff be-

tween minimizing the training error and maximizing the margin. The optimal C value

has to be determined for the good generalization performance and it is data dependent.

The above optimization problem 2.31 can be reformulated through a Lagrangian mul-

tipliers {αi, i = 1, . . . , n} as a dual optimization leading to a Quadratic Programming

(QP) solution (Scholkopf and Smola, 2001). Then the decision on the test sample x is
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evaluated as

f(x) = sign

��

i

yiαix
Txi + b

�
(2.32)

When the data samples are not linearly separable, the samples are mapped into a

higher dimensional feature space using a mapping function, in this case it is called as

non-linear SVM. In general, the classes are linearly separable in the higher dimensional

feature space, hence the equation 2.31 can be formulated in this space. The kernel trick

is used to implicit represent the transformation using the kernel function as

K(x,xi) = Φ(x)TΦ(xi) = exp

�
−1

2

�x− xi�2
σ2

�
(2.33)

where Φ is the function that transforms the input data to a higher dimensional feature

space. The equation 2.33 is the popularly used kernel called as Gaussian radial basis

function (RBF) kernel (Scholkopf and Smola, 2001; Gustavo Camps-Valls, 2009). In

this case, the decision on the test sample x is evaluated as

f(x) = sign

��

i

yiαiK
�
xTxi

�
+ b

�
(2.34)

The Lagrange multipliers αi weights each training sample according to its importance

in determining the hyperplane. The training samples associated with nonzero weights

are termed support vectors.
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2.4 Chapter Conclusions

The multiple classifier system (MCS) is an emerging methodological framework for

combining the relative performances of several independent classifiers to produce a

single classified output which is better compared to any of the classifiers forming the

MCS. This chapter presented a background of the MCS and the reasons for the evolu-

tion of multiple classifier system as an important framework in pattern recognition with

promising scope for hyperspectral image classification. A brief mathematical descrip-

tion of the combination functions, classifiers, and dimensionality reduction methods

which are used to design the multiple classifier system in this thesis are presented in

this chapter.
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CHAPTER 3

IMPACT OF DIMENSIONALITY REDUCTION

METHODS ON THE PERFORMANCE OF

MULTIPLE CLASSIFIER SYSTEM FOR

HYPERSPECTRAL IMAGE CLASSIFICATION

Prelude: This chapter presents our empirical study on understanding the impact of di-

mensionality reduction methods on the classification performance of multiple classifier

system (MCS). Transformed image components from the five widely used dimensionality

reduction methods are considered as input data sources and seven linear classifiers are

considered as the base classifiers in the MCS design. Two statistical dispersion mea-

sures are used to analyze the sensitivity of the base classifiers individually and also as

combined in the MCS framework relative to different dimensionality reduction methods.

Classification experiments are performed on five multi-sensor airborne hyperspectral

images covering diverse land cover categories.

3.1 Introduction

Hyperspectral imagery provides rich spectral information to discriminate large number

of materials as different materials respond differently in different spectral channels of

the electromagnetic spectrum. Supervised image classification has been the method of

choice for the discrimination and mapping of a range of land cover categories using

multispectral and hyperspectral remote sensing data. The accuracy of image classifica-

tion depends upon the chosen classifier’s ability to trade upon the relationships between

available training samples and information classes. While providing sufficient number

This chapter will be published in International Journal of Remote Sensing, with the title: “ Impact

of Dimensionality Reduction Methods on the Performance of the Multiple Classifier System for Hyper-

spectral Image Classification". Authors: Bharath Bhushan Damaodaran, Rama Rao Nidamanuri



of training samples is not a major problem with multispectral image, it is a major chal-

lenge with hyperspectral image because of its huge dimensionality and this is known as

Hughes phenomena (Jimenez and Landgrebe, 1998; Landgrebe, 2002). This phenom-

ena arises when the ratio between the number of features to the number of training

samples is very small, resulting in inaccurate estimation of parameters of the classifiers

and thus leads to the poor generalization capability of the classifier.

To circumvent this problem, a number of dimensionality reduction methods and

non-parametric classification schemes are available in the literature (Bruce et al., 2002;

Wang and Chang, 2006; Camps-Valls et al., 2004; Camps-Valls and Bruzzone, 2005;

Mendenhall and Merenyi, 2008; Zhong and Zhang, 2012). These classifiers are widely

differentiable by their performance, application specifications and level of vulnerability

to high dimensionality. Dimensionality reduction methods enables the creation of mul-

tiple transformations of the same imagery with different mathematical and statistical

properties, thus leading to have complimentary information among different dimen-

sionality reduction methods. The performance of the classifiers is also variable based

on the information content of the dimensionality reduction methods. It has further been

established that there is no ideal classifier that can offer optimal performance across

applications, sites and data-specific conditions of image classifications (Kanal, 1974;

Fabio et al., 1997; Wolpert and Macready, 1997). Hence, the identification of classifiers

and dimensionality reduction methods optimal to the specific application at hand has

become a key step in image classification. In spite of image classification goals being

precise and objective, there is always a high risk of the selected method being subop-

timal. To minimise this enormous subjectivity, the ensemble classification approach,

popularly known as multiple classifier system (MCS) has been proposed as a general

image classification paradigm that offers acceptable classification results under various

application domains (Kittler, 1998; Dietterich, 2000; Kuncheva, 2004; Rokach, 2010;

Ceamanos et al., 2010).

The MCS consists of a set of image classification algorithms, called as base classi-

fiers within the MCS terminology; each base classifier produces its own decision func-

tion value for labelling an unknown pixel. Then, the decision values of all the base

classifiers are combined in an intelligent way to produce a final classified output, whose

accuracy and precision is better than any of the classifiers used. The MCS, in principle,

seems to be the preferred approach over the typical supervised classification approach
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for handling hyperspectral images because of the condition that different spectral sig-

natures lead to different levels of image property generalization. The different general-

ization levels of classifiers diminish the risk of picking up a bad classifier (Dietterich,

2000). Employing an effective combination scheme and creation of diversity among

the chosen base classifiers are the major factors that contribute to successful application

of MCS for hyperspectral image classification. A large body of literature is available

reporting on the development of theoretical and implementation strategies for creat-

ing and capturing diversity, and sophisticated combination schemes (Benediktsson and

Kanellopoulos, 1999; Gabrys and Ruta, 2006; Fauvel et al., 2006; Prasad and Bruce,

2008b; H et al., 2010; Ceamanos et al., 2010; Yang et al., 2010b).

Incorporating the dimensionality reduction method as an integral part in the de-

sign of the MCS architecture assumes significance especially when the classifiers are

parametric, and complex. Akin to the classifier selection, dimensionality reduction is

data and application specific. The inclusion of dimensionality reduction methods in

the design of the MCS has been studied in literature (Benediktsson and Kanellopoulos,

1999; Prasad et al., 2008; Kalluri et al., 2010) and the performance is validated under

only one particular dimensionality reduction method. The different dimensionality re-

duction methods has the capability to provide different levels of data transformation

and generalization, and influence classifier’s performance significantly. Therefore un-

derstanding these important properties of various dimensionality reduction methods on

the classification performance of the MCS is necessary for practical applications. Our

extensive literature survey reveals that there is limited or no literature available address-

ing the potential impact of the differential data generalization by various dimensionality

reduction methods on the performance of MCS for hyperspectral image classification.

The objective of this chapter is to assess the impact of various dimensionality re-

duction methods on the performance of a MCS designed for classifying airborne hy-

perspectral images for discriminating various land cover categories. In particular, we

provide an empirical analysis with different dimensionality reduction methods on the

fixed design of MCS to study the performance sensitivity of the MCS to the different

input data sources to the MCS.

This chapter is organized into five sections. The next section describes the datasets

used in our analysis while the section 3.3 presents the dimensionality reduction meth-
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ods, classifiers, and methodological framework used to investigate the goals of this

chapter. Section 3.4 describes and discusses the experimental results obtained. Finally,

the last section presents conclusions of this chapter.

3.2 Datasets

We used five different sources of airborne hyperspectral images (one image each from

HyMAP, ProSpecTIR, HYDICE and two images from ROSIS airborne hyperspectral

imaging system) covering several land cover categories and sites. As there are two

images acquired by the ROSIS sensor for two different sites, we appended name of the

location to the ROSIS image for its readily identification. False colour composites of

the image are shown in Figures 3.1, 3.2.

HyMAP image: The HyMAP hyperspectral image was acquired over the Dedelow

research station of the Leibnitz-Centre for Agricultural Landscape Research (ZALF),

Germany on 9 May, 1999 (Nidamanuri and Zbell, 2011). The predominant land use

categories in the study site were agricultural crops namely winter barley, winter rape,

winter wheat and winter rye, built up, and grass. The image has a spatial resolution of 5

m and 128 spectral bands in the spectral range 0.40 to 2.48 µm. A subset of the image

acquired was used in this study.

ROSIS-University image: The next hyperspectral image used in our experiment was

acquired on 8 July, 2002 over the University of Pavia, Italy, by ROSIS airborne hy-

perspectral sensor in the framework of the HySens Project managed by DLR (German

Aerospace Agency) (Fauvel et al., 2009). The image has 103 spectral bands in the

spectral range 0.43 to 0.86 µm with spatial resolution of 1.3 m. This image consists

of ten land cover classes namely, trees, asphalt, meadow, gravel, metal sheet, bare soil,

bitumen, bricks, shadows and built up.

ProSpecTIR image: The ProSpecTIR airborne hyperspectral image was acquired

over the City of Reno, USA on 13 September, 2006. This image consists of 356 spec-

tral bands in the spectral range 0.39 to 2.45 µm with spatial resolution of 1 m. The

dominant land use categories in the image are trees, water, bare soil, asphalt, built up,

shadows, and vehicles.
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(a) (b)

(c)

Figure 3.1: False color composites of the hyperspectral images used (a) ROSIS-
University (b) ProSpecTIR (c) ROSIS-City of Pavia.
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(a) (b)

Figure 3.2: False color composites of the hyperspectral images used (a)
HyMAP (b) HYDICE.

ROSIS-City of Pavia image: ROSIS airborne hyperspectral sensor was acquired on 8

July, 2002 over the City of Pavia, Italy in the framework of the HySens Project managed

by DLR (German Aerospace Agency) (Fauvel et al., 2009). The image has 102 spectral

bands in the spectral range 0.43 to 0.86 µm with spatial resolution of 1.3 m. This image

consists of ten land cover classes namely, water, trees, asphalt, meadow, self building

blocks, tiles, bare soil, bitumen, shadows and built up.

HYDICE image: This airborne hyperspectral image was acquired over a mall in

Washington DC by the HYDICE hyperspectral image sensor on 23 August, 1995. A

total of 191 bands were collected in the spectral range 0.4 to 2.4 µm. The spatial

resolution of the image is 2 m. This image consists of seven land cover classes namely,

water, road, grass, trees, roof, path, and shadow.

The water absorption bands were removed in all the hyperspectral images and the

number of bands mentioned above are the total number of bands available after removal

of water the absorption bands.
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3.3 Methodology

In order to evaluate the impact of various dimensionality reduction methods on the

performance of MCS, we applied a diverse group of dimensionality reduction meth-

ods namely, PCA, MNF, ICA, DWT-DR and OBS. These methods are different from

one another in their capability to retain spectral integrity, noise segregation, and rescal-

ing of transformed data relative to original data representation. These dimensionality

reduction methods are given as the input data source to the MCS. An MCS was cre-

ated using seven linear classifiers as the base classifiers. Diversity among the clas-

sifiers was maintained by selecting the classifiers which belong to various groups of

classifiers. These classifiers can be categorized broadly into three categories namely,

spectral matching based methods, covariance modelling and subspace modelling based

methods. The spectral matching based methods consist of Normalized Euclidean dis-

tance (NED) (Robila and Gershman, 2005), Spectral angle mapper (SAM) (Kruse et al.,

1993), and Spectral similarity measure (SSM) (Granahan and Sweet, 2001). The co-

variance modelling methods consist of Matched filter (MF), and Adaptive coherence

estimation (ACE) (Manolakis et al., 2003). The subspace modelling methods consist

of Orthogonal subspace projection (OSP) (Harsanyi and Chang, 1994), and Target con-

straint interference minimized filter (TCIMF) (Ren and Chang, 2000).

In the following we briefly recall about the dimensionality reduction methods and

classifiers used in this chapter. Detailed description of the below methods are presented

in chapter 2.

3.3.1 Dimensionality reduction methods

PCA is an efficient linear transformation method extensively used for dimensionality

reduction of multispectral and hyperspectral imagery. Eigenvectors of covariance ma-

trix are the basis for PCA transformation. The required number of components of PCA

transformation is decided based on the resulting eigenvalues. MNF has been especially

used for dimensionality reduction of hyperspectral image because of its ability to in-

crease the signal to noise ratio in the extracted components. It is essentially a two

cascaded principal component analysis. The first transformation is based on the esti-

mated noise covariance of image which results in unit noise variance and no band to
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band correlation (Green et al., 1988; Amato et al., 2009). Then PCA is applied on the

whitened data. When a target is characterized by relatively smaller land cover extend,

it may not able to be captured by second-order statistics (variance) and may be buried

and discarded in lower order components as noise (Cheriyadat and Bruce, 2003; Wang

and Chang, 2006). ICA captures both the second and higher-order statistics. The hyper-

spectral image is projected on the basis that is maximally statistically independent and

retains the signal components of targets relatively with lesser area extent (Villa et al.,

2009). ICA was applied on the hyperspectral images and the numbers of components

were decided based on the eigenvalues. As it is established that class separable infor-

mation could be buried in the lower order components, we considered lower order com-

ponents up to a certain number of components for both PCA and ICA (10 components

for all the hyperspectral images) in this experiment. However for the MNF, eigenvalue

threshold differs from image to image and it was decided based on the number of com-

ponents which produce optimal classification accuracy1. Thus for the MNF, we selected

10 components for the ROSIS images and 15 components each for the ProSpecTIR and

HYDICE images.

The statistical dimensionality reduction methods PCA, MNF, and ICA project data

on to a new coordinate system by maximizing statistical measures. In contrast to that,

the information content in hyperspectral image may not always coincide with such pro-

jections (Bruce et al., 2002). It has been shown that the DWT-DR produce better or

comparable classification accuracy with PCA (Kaewpijit et al., 2003). Each pixel in the

hyperspectral image was decomposed by the wavelet transform using the Daubechies

filter (Bruce et al., 2002). The high frequency information (outliers) were discarded

and the approximation coefficients were reconstructed using inverse discrete wavelet

transform. The required level (L) of decomposition was achieved based on the accept-

able correlation between the decomposed signal and the original signal. A correlation

coefficient of 0.98 was chosen as the threshold thus resulting in a 3 level (L) decompo-

sition. Then all the pixels in hyperspectral image were decomposed into level L and the

approximation coefficients were used for further analysis.

Optimal band section is another dimensionality reduction method in which the di-

mensionality of the image is reduced manually by selecting a subset of bands based on

1training samples classification accuracy.
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expert prior knowledge on the land cover classes. Based on literature and the nature of

land cover categories found in the images, we identified 10 spectral bands (560 nm, 630

nm, 671 nm, 681 nm, 763 nm, 824 nm, 844 nm, 1410 nm 1800 nm, and 2200 nm) for

the HyMAP image (Herold et al., 2003; Thenkabail et al., 2004; Rao et al., 2007), 15

bands for the ROSIS-University and ROSIS-City of Pavia images, (430 nm, 446 nm,

474 nm, 538 nm, 560 nm, 580 nm, 630 nm, 671 nm, 686 nm, 726 nm, 763 nm, 782 nm,

806 nm, 824 nm, 838 nm) and 15 bands for the ProSpecTIR and HYDICE images (400

nm, 560 nm, 630 nm, 671 nm, 681 nm, 763 nm, 844 nm, 1106 nm, 1410 nm, 1560 nm,

1800 nm, 2180 nm, 2330 nm) (Herold et al., 2003; Thenkabail et al., 2004; Rao et al.,

2007; Marpu et al., 2009) for classification by the MCS.

3.3.2 Base classifiers

The performance of MCS depends on the base classifiers’ ability to commit the com-

plimentary errors. Diversity among the base classifiers was maintained by selecting

the classifiers which belong to various groups of classifiers namely, spectral matching,

covariance modelling and subspace modelling methods.

The spectral matching based methods consist of normalized Euclidean distance clas-

sifier (NED), spectral angle mapper (SAM), and spectral similarity measure (SSM).

These classifiers differ in their ability to exploit spectral information in the hyperspec-

tral image. For instance, the NED classifier captures spectral brightness, whereas the

SAM is insensitive the illumination changes. On the other hand, the SSM captures both

spectral brightness and spectral angle differences.

The covariance modelling methods consist of matched filter (MF) and adaptive co-

herence estimator (ACE). The covariance based methods are modelled as the binary

classification problem with the hypothesis, whether the desired class is present or not.

The MF is modelled as the noise free model, whereas ACE models accounts for the

background information in the desired class target with different variance (Manolakis

and Shaw, 2002). When the whitening transformation is applied then the MF uses the

distance threshold and the ACE uses the angle threshold. The covariance matrix of the

MF and ACE are computed from the training samples of all the classes.

The subspace modelling methods consist of orthogonal subspace projection (OSP)
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and target constraint minimized interference minimized filter (TCIMF). The subspace

based model methods assume that the image pixel is a linear combination of finite set of

class signatures present in the image. The OSP projects image pixel into a subspace or-

thogonal to undesired class signatures and then performs the matching with the desired

class signature. TCIMF models both the desired and undesired class signatures as the

subspace model, and the finds the linear filter to suppress the undesired class signatures

and interferences.

3.3.3 MCS formultation

The schematic diagram of the methodology adopted is shown in Figure 3.3. In order to

assess the influence of dimensionality reduction methods on the MCS from a classifi-

cation performance perspective, the hyperspectral image were transformed to the lower

dimensional subspaces by five dimensionality reduction methods and each transformed

image was given as the input data source to the MCS. This resulted in five different

Figure 3.3: Flow chart of the experimental design to study the impact of di-
mensionality reduction methods on the MCS.

MCS or five ensembles. Each we name on the basis of the dimensionality reduc-
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tion methods used in their creation: ICA-ensemble, PCA-ensemble, MNF-ensemble,

DWTDR-ensemble, and OBS-ensemble. The classifiers in each ensemble produce de-

cision function values independently. These intermediate decision function values were

combined by various combination schemes to produce the final classified image. The

combination schemes consist of six non-trainable combination functions such as ma-

jority voting rule, maximum rule, minimum rule, sum rule, product rule and median

rule (Kittler, 1998; Fumera and Roli, 2005). In addition, the MCS was allowed to pro-

duce classified image for each pair of the classifier-dimensionality reduction method in

the MCS. These independent classified images were considered for benchmarking the

performance of the combined MCS output classified images. Statistical dispersion mea-

sures, namely Correlation of variation (CV), Relative mean difference (RMD), Quartile

coefficient of dispersion (QCD) are used to assess the variability of the MCS with dif-

ferent dimensionality reduction methods.

The classification performance of the MCS and base classifiers was assessed using

independent testing samples created from the ground truth reference map. Since the

considered classifiers in the MCS are linear, the classifiers training involves in comput-

ing mean class signature for each class and common covariance matrix. The overall ac-

curacy (OA), kappa coefficient (KC), producer accuracy (PA), and user accuracy (UA)

were used as the evaluation measures in the experiment.

3.4 Experimental Results and Analysis

In order to achieve the goals of this chapter, we have conducted two set of experiments.

In the first experiment, we analyzed (1) the sensitivity of individual classifiers to dif-

ferent dimensionality reduction methods, and (2) the effect of dimensionality reduction

methods on the base classifiers’ overall performance. In the second experiment, we

assessed the impact of different dimensionality reduction methods on the classification

performance of the MCS.
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3.4.1 Analysis of base classifiers relative to different dimensionality

reduction methods

Figure 3.4 shows the behaviour of the classification accuracies with different dimen-

sionality reduction methods for each of the classifiers considered in the MCS. From

the Figure 3.4, we can derive some inference on the effect of different dimensional-

ity reduction methods on different classifiers. First of all, the classification accuracies

are variable across different classifiers and different dimensionality reduction meth-

ods. This phenomenon highlights the sensitivity of the classifiers to different input data

sources. The level of variability of the classification accuracies is a function of the di-

mensionality reduction method, classifier and hyperspectral images. For example, with

PCA dimensionality reduction method there exists 35%, 61%, 29%, 63% and 23% dif-

ferences between maximum and minimum classification accuracy for five hyperspectral

images. Similar differences are also evident with other dimensionality reduction meth-

ods. Further it is interesting to see that for each of the hyperspectral images the highest

classification accuracies are obtained with different pairs of classifiers and dimension-

ality reduction methods. However among the classifiers, NED (HyMAP, ROSIS-City

of Pavia), SSM (ROSIS-University, ProSpecTIR) has repeated twice as the best clas-

sifier and SAM (HYDICE) occurred once as the best classifier. Similarly, among the

dimensionality reduction methods, MNF has resulted as the best dimensionality reduc-

tion method with three images. This observation shows the domination of a particular

category of classifiers and dimensionality reduction methods.

When the classification results are analyzed within each image, different dimen-

sionality reduction methods prefers different classifiers to obtain the best classification

results. For example, with HyMAP image, NED is resulted as the best classifier for

ICA and MNF; MF for PCA; ACE for DWTDR and SSM for OBS dimensionality re-

duction methods. Moreover, there exist significant accuracy differences among the best

classifiers relative to each dimensionality reduction method for a given hyperspectral

image. This indicates the relative importance of the input data source and classifier

relationship for better classification performance. Further, this also highlights that the

maximum achievable classification accuracy for each of the hyperspectral image is lim-

ited due to its overall information content characteristics.
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Figure 3.4: Overall accuracy of classifiers relative to different dimensional-
ity reduction methods of (a) HyMAP (b) ROSIS-University (c)
ProSpecTIR (d) ROSIS-City of Pavia and (e) HYDICE hyperspec-
tral images.
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3.4.1.1 Assessing the effect of dimensionality reduction methods on the overall

base classifiers performance and individual classifiers performance

In order to do this, we conducted statistical dispersion analysis based on the overall ac-

curacy of the classifiers. In particular, we analyzed (a) which dimensionality reduction

are most and least sensitive to the base classifiers of the MCS and (b) which individ-

ual classifier is most and least sensitive to change in dimensionality reduction methods.

The statistical dispersion measures correlation of variation (CV), relative mean differ-

ence (RMD), quartile coefficient of dispersion (QCD) are used to measure the spread

and variability of the data. The statistical dispersion is zero when all the values are same

and increases as the data becomes diverse. Hence it is an effective measure to analy-

sis the impact of the dimensionality reductions on the classifiers performance. In this

experiment, we have computed CV, RMD, and QCD to analysis the impact of dimen-

sionality reduction methods. Apart from this, the average accuracy was also calculated

relative to each dimensionality reduction method and relative to each classifier to char-

acterize the overall average performance of the dimensionality reduction methods and

classifiers. The average accuracy relative to each dimensionality reduction methods

was computed by averaging the overall accuracy of all the classifiers (base classifiers)

in the MCS. Similarly, the average accuracy relative to each classifier was computed

by averaging each classifier’s accuracy resulting from all the dimensionality reduction

methods.

Sensitivity analysis of dimensionality reduction methods:

Different dimensionality reduction methods were given as input to the base classifiers

of the MCS and the statistical dispersion measure were computed based on performance

of the base classifiers. If all the classifiers perform in a similar manner with respect to

a particular dimensionality reduction method, then statistical dispersion measures will

be minimum.
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Figure 3.5: Statistical dispersion measures (CV, RMD, and QCD) calculated
from the base classifiers performance relative to each dimension-
ality reduction methods in the MCS for (a) HyMAP (b) ROSIS-
University (c) ProSpecTIR (d) ROSIS-City of Pavia and (e) HY-
DICE hyperspectral images.

Figure 3.5 shows behaviour of the three statistical dispersion measures relative to

each dimensionality reduction methods for different sets of classifiers. From the Figure

3.5, we can infer that different dimensionality reduction methods have different levels

of impact on the classifiers performance; and the variability of dimensionality reduction

method differs from image to image. For the HyMAP, and HYDICE images, the base

classifiers are most sensitive with OBS dimensionaltiy reduction method; for the ROSIS

University, ROSIS City of Pavia images the classifiers are most sensitive with ICA

dimensionality reduction method and MNF for the ProSpecTIR image. It is noticeable
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that the impact of the PCA dimensionality reduction method is moderate for all the

hyperspectral images; and the similar type of dimensionality reduction methods are

resulted as the most and least sensitive dimensionality reduction methods for the similar

type of hyperspectral images2. For certain hyperspectral images, the high statistical

dispersion values were observed compared to other images; this is because of the worst

performance of certain classifiers. The average accuracy of the base classifier shown in

Figure 3.6 better characterizes the dimensionality reduction method to be used on the

hyperspectral images irrespective of the classifiers.
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Figure 3.6: (a) Average accuracy of dimensionality reduction methods: The
overall accuracies of all the classifiers are averaged relative to each
dimensionality reduction methods. (b) Average accuracy of classi-
fiers: overall accuracies of a particular classifier was averaged over
all the dimensionality reduction methods.

As observed with statistical dispersion measures, the best average accuracies are ob-

tained with different dimensionality reduction methods for different images. For exam-

ple, higher average accuracies are obtained with OBS dimensionality reduction method

for ROSIS sensor datasets, and ICA, DWTDR, MNF for the HyMAP, ProSpecTIR and

HYDICE hyperspectral images respectively. From the Figure 3.5 and 3.6 we can infer

2Images containing similar types of land cover classes.
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that similar type of dimensionality reduction methods are resulted as the best choice for

the ROSIS University and City of Pavia images. This indicates that the information ex-

traction capability of the dimensionality reduction methods is a function of underlying

land cover information and sensors’ specifications.

Sensitivity analysis of Classifiers:

Figure 3.7 shows the statistical dispersion measures relative to each classifier across

different dimensionality reduction methods for the five hyperspectral images. The av-

erage accuracy of the classifiers is shown in Figure 3.6 (b). Figure 3.7 reveals that a

high statistical dispersion measure is obtained with the subspace modelling classifiers

for most of the images. This is due to the poor performance of subspace modelling

classifiers for certain dimensionality reduction methods (see Figure 3.4).

Apart from the subspace modelling classifiers SAM, SSM, and NED are more sen-

sitive to different dimensionality reduction methods for HyMAP, ROSIS University,

and ROSIS City of Pavia hyperspectral images respectively. For the remaining two im-

ages MF is resulted as the most sensitive classifier to different dimensionality reduction

methods. There are a few classifiers which are least sensitive to the different dimension-

ality reduction methods for the four hyperspectral images (NED, SSM with HyMAP,

ProSpecTIR, and HYDICE images and NED, MF with ROSIS-University image). For

the ROSIS-City of Pavia image, ACE is resulted as the least sensitive classifier. From

the Figure 3.6 (b), it is interesting to observe that the classifiers which are least sensitive

to different dimensionality reduction methods have offered higher average accuracies.

For example, higher average accuracy is obtained with NED classifier for the HyMAP,

ROSIS-University image and the similar conclusion holds for the remaining hyperspec-

tral images as well.

3.4.2 Impact of dimensionality reduction methods on the perfor-

mance of the MCS

The base classifiers in the MCS were combined relative to each dimensionality reduc-

tion method, thus resulting with the five ensembles for each image and it is named as

ICA ensemble, PCA ensemble, MNF ensemble, DWTDR ensemble and OBS ensemble.
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Figure 3.7: Statistical dispersion measures (CV, RMD, and QCD) of the indi-
vidual classifiers over all the dimensionality reduction methods (a)
HyMAP (b) ROSIS-University (c) ProSpecTIR (d) ROSIS-City of
Pavia and (e) HYDICE.

52



Figure 3.8 shows the classification accuracies resulted from the combination functions

of the MCS. It can be observed that there is a significant to marginal increase in the

classification accuracy over the single best classifier with respect to each dimensional-

ity reduction method ensemble. The magnitudes of the accuracy improvement achieved

by the MCS are variable across different dimensionality reduction method ensembles

within each hyperspectral image. At this point it is worth to note that our aim is to an-

alyze the impact of dimensionality reduction method on the performance (magnitude)

improvement of the MCS over the single best classifier (relative to each dimensional-

ity reduction method). So we focus our analysis on the magnitude of the improvement

of MCS over the single best classifier and not on the overall classification accuracy3.

There are upto 4-6% differences in accuracy improvement among the dimensionality re-

duction method ensembles for the HyMAP, ROSIS-University, HYDICE, ProSpecTIR

hyperspectral images. These accuracy differences highlight the impact of the different

dimensionality reduction methods (different input data sources to the MCS). As men-

tioned earlier, the different dimensionality reduction methods characterize the informa-

tion content of original hyperspectral image based on different principle. Therefore

understanding the proper choice of the input data sources is necessary for the hyper-

spectral image classification in the MCS framework. It is also important to note that the

performance of the MCS is not improved with all the dimensionality reduction meth-

ods. There are one or two dimensionality reduction method ensembles for each of the

hyperspectral image which decrease the classification accuracy compared to the single

best classifier. This might be due to the classifiers forming the MCS not committing

different types of errors with certain dimensionality reduction method.

The MCS has offered about 3-5%, 1-4%, 2%, 1-2.5%, and 1-3% magnitude im-

provement when compared to the single best classifier for the HyMAP, University,

ProSpecTIR, City of Pavia, and HYDICE hyperspectral images respectively. Further,

different dimensionality reduction methods offered best accuracy improvement for the

different hyperspectral images. For example, the highest improvement is obtained with

OBS for the HyMAP image, MNF for the ROSIS University and City of Pavia image,

and DWTDR for the ProSpecTIR and HYDICE hyperspectral images. Thus, the mag-

3For example with the HyMAP image, the overall accuracy of 91.5% is obtained with OBS ensemble

and 93.4% is obtained with DWTDR ensemble, but OBS ensemble has offered 5.3% improvement and

DWTDR has offered 3.3% improvement compared to the single best classifier.
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Figure 3.8: Overall accuracy of the different combination functions relative to
each dimensionality reduction methods (a) HyMAP (b) ROSIS-
University (c) ProSpecTIR (d) ROSIS-City of Pavia (e) HYDICE.
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nitude of improvement and the performance of the dimensionality reduction methods

are variable across different images. This indicates that the performance of the MCS is

dynamic in nature, and the information exploitation capability of different dimension-

ality reduction methods is also dynamic in nature. The MCS adapting to this dynamic

relationship of classifiers and dimensionality reduction methods with respect to each

image may offer stable and improved performance.

3.4.2.1 Impact of combination function on the performance of the MCS

The classifiers’ decision function values were combined using six non-trainable combi-

nation functions. From the Figure 3.8, it is evident that the type of combination func-

tion used has a significant bearing on the performance of the MCS. The majority voting

rule improved accuracy across the hyperspectral images. However, for certain dimen-

sionality reduction methods, the median rule improved accuracy, which is marginally

higher than the improvement observed with the majority voting. For instance, in the

HyMAP, ProSpecTIR image median rule has offered high accuracy improvement for

one dimensionality reduction method ensemble and in the HYDICE image it is better

with three dimensionality reduction method ensembles. The remaining combination

functions (average, maximum, minimum, and product) provided insignificant improve-

ment or decrement in terms of classification accuracy when compared with the single

best classifier. This might be because of the presence of worse performing classifiers

in the MCS. In other words, the performance of the maximum, minimum, average and

product rule is sensitive to one or more worst performing classifiers’ decision values

whereas the majority voting and median rule are insensitive to the outliers or inaccurate

classifiers’ decision values. The statistical dispersion measures of the dimensionality

reduction methods shown in Figure 3.5 also support this inference. The combination

functions which decreased classification accuracy substantially relative to each dimen-

sionality reduction method ensemble exhibit higher values of dispersion measures.

3.4.3 Discussion

The plethora of image classifiers available in the literature are widely varying by their

performance being data and task specific. There is no single classifier which offers op-
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timal performance over a range of classification tasks. Moreover, there has been great

diversity observed in the type and distribution of errors made by classifiers. Recent

developments in pattern recognition techniques as envisaged by MCS try to use diver-

sity in classifiers’ performance by combining the better aspects of various classifiers

for classification results which are ought to be convincing and reliable. Dimensionality

reduction is a common pre-requisite for any type of hyperspectral image classification

task including the ensemble of classifiers popularly called as MCS. A great body of

research is directed at developing of better classifier ensembles and combination func-

tion schemes (Petrakos et al., 2001; Fernandez-Redondo et al., 2004; Doan and Foody,

2007; Du et al., 2012b). The overall aim of this study was to examine the change in the

classification performance of the MCS while applying various dimensionality reduction

methods independently and simultaneously. Whether the diversity in the data variance

captured by various dimensionality reduction methods are complimentary to each other

and, if it is so, can the same be used for enhancing classification performance by MCS

is an important aspect of image classification. The knowledge gained from this study

can be used to determine which dimensionality reduction method has the most and least

impact on the performance of the set of classifiers being considered and which classi-

fier is affected most and least by the changing the dimensionality reduction method for

different hyperspectral images.

First we analysed the impact of dimensionality reduction methods on the variability

of the base classifiers’ performance. The analysis of statistical dispersion measures

indicates that the base classifiers’ performance is sensitive to changing dimensionality

reduction methods or different input data sources within each image. For different

hyperspectral images, different dimensionality reduction methods are resulted as the

most and least sensitive dimensionality reduction methods, indicating the advantage of

dimensionality reduction methods to create the variability among the classifiers in the

MCS. Similar observation also holds when the average accuracy is used to interpret the

combined performance of the base classifiers relative to each dimensionality reduction

method.

Analyses of the impact of the dimensionality reduction methods relative to each

classifier’s performance indicate that different classifiers have different levels of vari-

ability in the performance within and across the images. This observation indicates the

need of using image specific methods for betterment of the hyperspectral image classi-
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fication. When the performance of the single best classifier is analysed, it interesting to

see that the optimal classifier for each dimensionality reduction method is different and

their classification accuracies are also variable. With this dynamic nature of the perfor-

mance of the dimensionality reduction methods and classifiers, it is necessary to have a

prior knowledge on the relation between the input data sources and classifier to obtain

the optimal classification accuracy. However obtaining this data specific knowledge is

tedious task and this obtained knowledge may not be reliable.

From the above analysis, it can be concluded that the different dimensionality re-

duction methods have the capability to characterize the image information in different

perspectives and create variability in the performance among different classifiers. With

this differential information of dimensionality reduction methods, it necessary to un-

derstand the impact of the dimensionality reduction methods on the performance of the

MCS for the hyperspectral image classification. The classification results obtained by

combining the classifiers’ decision function values point out significant differences in

the magnitude of accuracy increase with changing dimensionality reduction method.

There are 3-5% accuracy differences over the single best classifier when the percent-

age of accuracy improvement is considered and it is about 2-4% accuracy differences

when the best overall classification accuracy is considered among the dimensionality

reduction methods. The observed significant increase in the classification accuracy of

hyperspectral images supports the theoretical advantages of using MCS for hyperspec-

tral image classification. However, the accuracy differences are highly subjective to the

dimensionality reduction methods and hyperspectral images. Contrary to the improve-

ment in accuracy for some images, there is a decrease in accuracy for some other images

and again the magnitude of decrease in accuracy depends upon the dimensionality re-

duction method and the hyperspectral image. This observation indicates that selecting a

single dimensionality reduction method arbitrarily for the MCS is not an optimal choice

as it is uncertain whether the performance of the MCS will be improved or not. This

work also presented an objective way of determining the optimal dimensionality reduc-

tion method which can be used with the MCS to get accurate results for the specific

hyperspectral image. The dimensionality reduction with moderate statistical dispersion

value can be considered as the optimal dimensionality reduction for the MCS.

While different classifiers and different dimensionality reduction methods are con-

sidered in this experiment, it is necessary to analysis the dynamics of pairs of classifiers
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and dimensionality reduction methods with reference to the information classes in the

hyperspectral image. Further the potential of applying multiple dimensionality reduc-

tion methods within a single MCS for achieving consistent performance of the MCS

needs to be explored. In next chapter we address the aforementioned limitations of this

study for effective hyperspectral image classification using MCS.

3.5 Chapter Conclusions

In this chapter the experimental analysis on the impact of dimensionality reduction

methods on the performance of MCS is presented for hyperspectral image classifica-

tion. The results indicate that efficient classification of hyperspectral images by MCS

requires an understanding of the suitability of various dimensionality reduction meth-

ods on the ability of the classifiers to create diversity in the results. In particular, our

analysis points out significant variability in the performance of the base classifiers with

different dimensionality reduction methods leading to substantial changes in the accu-

racy improvement of the MCS. This study also suggests that dimensionality reduction

methods can be used to create diversity among the base classifiers. Not all the classifiers

and dimensionality reduction methods are able to exploit the information available with

the hyperspectral imagery. In summary we can conclude that

1. choice of dimensionality reduction methods for creating variability in the base

classifiers (MCS) performance has to be done according to the underlying nature

of hyperspectral images

2. selection of the optimal classifier for different dimensionality reduction methods

requires understanding of the classifiers’ performance according to the underlying

hyperspectral image

3. the performance improvement of the MCS is adaptive to the dimensionality re-

duction method and the hyperspectral images.

Finally we provided an intuitive way of determining the optimal dimensionality reduc-

tion method for the MCS classification based on the statistical dispersion measures.

Examination of the overall accuracy of image classifications relative to the apparent

classifier-dimensionality reduction method relationships suggests the need for adaptive

classifiers and dimensionality reduction methods in the MCS for efficient hyperspectral

image classification.
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CHAPTER 4

ASSESMENT OF THE RELATIONSHIP BEWTEEN

INFORMATION CLASS, CLASSIFIER AND

DIMENSIONALITY REDUCTION METHOD FOR

HYPERSPECTRAL IMAGE CLASSIFICATION BY

MULTIPLE CLASSIFIER SYSTEM

Prelude: This chapter presents the experimental analysis of the relationship between

classifiers and dimensionality reduction methods at overall image level as well as at

land cover category level for hyperspectral image classification in the framework of

multiple classifier system. In order to understand whether the observed relationship

is variable with respect to resolution of the image, the classification experiments were

also carried out on the synthetic hyperspectral images generated from the original high

resolution hyperspectral images used in this study. The potential of deploying multi-

ple dimensionality reduction methods in a single MCS architecture was analysed by

combining the better performing classifiers in the MCS. Further the MCS results were

compared with the support vector machine based classification.

4.1 Introduction

Dimensionality reduction is a common pre-processing step in the supervised classi-

fication of hyperspectral images for various applications such as land cover mapping

(Melesse et al., 2007; Ghiyamat and Shafri, 2010). Data generalization schema of vari-

ous dimensionality reduction methods differs by their ability to retain spectral integrity

This chapter is published in Advances in Space Research,Vol. 53, pp. 1720-1734, June 2014, with the

title: “ Assessment of the impact of dimensionality reduction methods on information classes and clas-

sifiers for hyperspectral image classification by multiple classifier system”, . Authors: Bharath Bhushan

Damaodaran, Rama Rao Nidamanuri



and residual spectral information required for discrimination of materials. Often, crit-

ical information needed for class separation in a hyperspectral image is lost as noise

by the application of dimensionality reduction methods (Cheriyadat and Bruce, 2003;

Farrell and Mersereau, 2005; Prasad and Bruce, 2007, 2008a). Thus, the use of dimen-

sionality reduction methods without knowledge on the types of land covers available in

image may lead to poor results. The performance of the classifiers is variable across

the different images and applications, and there is no single best classifier which can be

applied across different images and land cover categories (Fabio et al., 1997). Hence

the identification of the classifier which is optimal to the application and data at hand

is thus a recurring task in every image classification task and it is a very important

problem. Numerous studies are available in the literature dealing with selection and

comparison of classifiers for various applications of multispectral and hyperspectral

image (Smits et al., 1999; Rogan et al., 2002; Erbek et al., 2004; Joshi et al., 2006;

Zalazar, 2006; Lu et al., 2008; Al-Ahmadi and Hames, 2009; Brenning, 2010; Moran,

2010; Lu et al., 2011; Szuster et al., 2011; Srivastava et al., 2012; Lu et al., 2012; Xu

et al., 2014). Similarly, a number of studies have reported on the selection of dimension

reduction methods for various land cover classification scenario (Barker, 1997; Deo-

gun et al., 1998; Dutra, 1999; Linders, 2000; Bruzzone and Serpico, 2000; Colás et al.,

2001; Miao et al., 2007; Lu et al., 2007; Lu and Weng, 2007; Chen and Qian, 2008;

Clemmensen et al., 2010; Duro et al., 2012). For suggesting optimal classifiers and

dimensionality reduction methods for land cover classification, however, most of the

studies have used a single classifier for comparing the performance of various dimen-

sionality reduction methods or a single dimensionality reduction method for comparing

the performance of various classifiers. Having the theoretical framework to combine

the differential performances of various dimensionality reduction methods and classi-

fiers enhances the robustness and reliability of hyperspectral image classification.

Multiple classifier system (MCS) provides the conceptual framework to incorpo-

rate various input data sources and classifiers in the classification process (Fernandez-

Redondo et al., 2004; Doan and Foody, 2007; Pal, 2008; Ceamanos et al., 2010; Yang

et al., 2010b). The apparent one-to-one relationship between classifier and dimension-

ality reduction method found in multispectral image classification is seldom evident

in hyperspectral image classification. Our extensive literature survey reveals the lack

of understanding on the suitability of classifiers and dimension reduction methods for
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hyperspectral image classification by MCS for a range of land cover categories. The

objective of this research is to assess the impact of the relationship between classifiers

and dimensionality reduction methods as well as among the information class, classi-

fier, and dimensionality reduction method on the hyperspectral image classification for

land cover classification by MCS. The understanding gained from this research is valu-

able for (a) identification of adaptable classifiers for a given dimensionality reduction

method, and (b) identification of the information class dependent sets of classifiers and

dimensionality reduction methods for hyperspectral image classification by MCS.

Apart from that, the spectral and spatial resolutions have a vital role in remote sens-

ing applications. The advancement in the sensor technology enables to capture the im-

ages in different spectral and spatial resolutions. Several studies have been conducted to

understand the optimal spectral and spatial requirements for hyperspectral remote sens-

ing applications like leaf area index (LAI), forest fire analysis, classification etc (Lee,

2001; Yanchen Bo et al., 2005; Sprintsin et al., 2007; Dalponte et al., 2009; Matheson

and Dennison, 2012; Thorp et al., 2013). These studies conclude that the image’s spa-

tial and spectral resolution has to be selected based on underlying applications, and for

certain applications the medium resolution image is sufficient. Therefore, it is neces-

sary to understand whether the observations made with the high resolution image can

be directly transferred to the medium or low resolution images. In particular, whether

the empirical relationship observed between classifiers and dimensionality reduction

methods, and between class, classifier and dimensionality reduction methods is simi-

lar for both high resolution (original) image and medium resolution image needs to be

evaluated. If the observations are valid then it will minimize the time consuming task

to identify the optimal classifiers and dimensionality reduction methods. In order to ad-

dress this, the high resolution images or original hyperspectral image were downscaled

to medium resolution images in both spatial and spectral domain to generate synthetic

hyperspectral images. Then classification experiments were performed on the synthetic

hyperspectral images.

The novel contributions of this chapter are summarized as i): establishes the exis-

tence of empirical relationship between classifier and dimensionality reduction method

as well as information class, classifier and dimensionality methods ii): addresses the po-

tential of deploying multiple dimensionality reduction methods in the MCS to offer en-

hanced classification performance iii): analysis of empirical relationship between land
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cover classes, classifiers and dimensionality reduction methods from the classification

accuracy perspective for the spatially and spectrally downscaled synthetic hyperspectral

images.

The rest of the chapter is organized into different sections as follows: Section 4.2

presents the materials and methods. In the section 4.3 the results and analyses obtained

from the original hyperspectral images are presented. In the sections 4.4, and 4.5 the re-

sults obtained from spatially and spectrally downscaled synthetic hyperspectral images

are presented. The results are discussed in the section 4.6 and the chapter conclusions

are presented in the section 4.7.

4.2 Methodology

We generated a MCS using five dimensionality reduction methods and seven classi-

fiers. The dimensionality reduction methods (PCA, ICA, MNF, DWT-DR and OBS)

were used to generate different input data sources to the MCS. These methods have

been widely used in hyperspectral image classification proving their effectiveness in

many hyperspectral remote sensing applications. In order to investigate the choice of

optimal classifier for each dimensionality reduction method, the seven classifiers are

selected from three different categories namely spectral matching methods, covariance

based methods and subspace based methods. The motivation for the selection of these

classifiers is 1) the classifiers have a linear decision boundary, 2) low complexity in

parameter estimation and fast training time, and 3) insensitive to small sample size

problem. The classifiers with above properties are desirable for any application tasks,

and the outcome of this study further adds significance in choosing optimal classifier

without pre-image classification exercise. In the following we describe briefly the clas-

sifiers and dimensionality reduction methods used.

4.2.1 Selection of dimensionality reduction methods

Dimensionality reduction is an essential pre-processing technique to reduce dimension-

ality of hyperspectral image in order to minimize the correlation between successive

bands of hyperspectral image. The resulting components of PCA and MNF transfor-
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mation are orthogonal, where as ICA results in independent components. In addition

to orthogonal components, MNF has good signal to noise ratio components. In order

to minimize the loss of information, the number of components (10 components for all

the hyperspectral images considered) which represent data variance of 99% are consid-

ered for further processing with PCA and ICA method. For the MNF method, num-

ber of components (10 components for the ROSIS image and 15 components each for

the ProSpecTIR and HYDICE images) which produce optimal classification accuracy1

are selected for further processing. The DWT-DR is the mathematical transformation

method, where the basis is fixed for all the hyperspectral images unlike the statistical

transformation method (PCA, ICA and MNF). The selection of components in DWT-

DR depends upon the level of decomposition. An correlation coefficient of 0.98 was

chosen as the threshold between the reconstructed signal (after discarding the high fre-

quency components) and the original signal. This resulted in three level decomposition

for all the hyperspectral images.

OBS is another dimensionality reduction method in which the dimensionality of

the image is reduced manually by selecting a subset of bands based on expert’s prior

knowledge on land cover classes. Based on literature and the nature of land cover

categories found in the images, we identified 10 spectral bands (560 nm, 630 nm, 671

nm, 681 nm, 763 nm, 824 nm, 844 nm, 1410 nm 1800 nm, and 2200 nm) for the

HyMAP image (Herold et al., 2003; Thenkabail et al., 2004; Rao et al., 2007), 15 bands

for the ROSIS-University and ROSIS-City of Pavia images, (430 nm, 446 nm, 474 nm,

538 nm, 560 nm, 580 nm, 630 nm, 671 nm, 686 nm, 726 nm, 763 nm, 782 nm, 806 nm,

824 nm, 838 nm) and 15 bands for the ProSpecTIR and HYDICE images (400 nm, 560

nm, 630 nm, 671 nm, 681 nm, 763 nm, 844 nm, 1106 nm, 1410 nm, 1560 nm, 1800

nm, 2180 nm, 2330 nm ) (Herold et al., 2003; Thenkabail et al., 2004; Rao et al., 2007;

Marpu et al., 2009) for classification by the MCS.

4.2.2 Selection of classifiers

The spectral matching based methods consist of normalized Euclidean distance clas-

sifier (NED), spectral angle mapper (SAM), and spectral similarity measure (SSM).

These classifiers differ in their ability to exploit spectral information in the hyperspec-

1The assessment is based on training classification accuracy

63



tral image. For instance, the NED classifier captures spectral brightness, whereas the

SAM is insensitive to the illumination changes. On the other hand, the SSM captures

both spectral brightness and spectral angle differences.

The covariance modelling methods consists of matched filter (MF) and adaptive co-

herence estimator (ACE). The covariance based methods are modelled as the binary

classification problem with the hypothesis, whether the desired class is present or not.

The MF is modelled as the noise free model, whereas ACE models accounts for the

background information in the desired class target with different variance. When the

whitening transformation is applied then the MF uses the distance threshold and the

ACE uses the angle threshold. The covariance matrix of the MF and ACE were com-

puted from the training samples of all the classes.

The subspace modelling methods consist of orthogonal subspace projection (OSP)

and target constraint minimized interference minimized filter (TCIMF). The subspace

based model methods assumes that the image pixel is a linear combination of finite

set of class signatures present in the image. The OSP projects the image pixel into

a subspace orthogonal to undesired class signatures and then performs the matching

with the desired class signature. TCIMF models both the desired and undesired class

signatures as the subspace model, and the finds the linear filter to suppress the undesired

class signatures and interferences.

4.2.3 Generation of synthetic hyperspectral images

The synthetic hyperspectral images were generated by downscaling the original high

resolution hyperspectral images in both spatial and spectral domain to evaluate whether

the observed best set of classifiers and dimensionality reduction methods varies when

the resolution of the image is different. The spatial, and spectral characteristics of

the HyMAP hyperspectral image2 were used to generate the spatially and spectrally

downscaled hyperspectral images. The cubic convolution interpolation method was

used to downscale the spatial resolution of the hyperspectral images. Thus, all the

spatially downscaled synthetic hyperspectral images have 5m spatial resolution. In

2Among all the hyperspectral images considered in this thesis, HyMAP image was the relatively low

spatial and spectral resolution hyperspectral image. So HyMAP image is used as the base reference

image for the medium or low spatial resolution.
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order to extract training and testing samples, the corresponding ground truth map was

also downscaled to 5m spatial resolution.

The spectrally downscaled synthetic hyperspectral images were generated by re-

sampling the spectral bands of the original high resolution hyperspectral image based

on the wavelength information of the HyMAP image. The ROSIS University and RO-

SIS City of Pavia hyperspectral images were not considered in this experiment, since

the spectral range (0.43− 0.838µm) of these two images is less than the spectral range

of the HyMAP image (0.403 − 2.48µm). The remaining two images (ProSpecTIR,

HYDICE) were downscaled about 20nm spectral resolution, and this process resulted

in 128 bands for both the images.

4.2.4 Experimental design of the MCS

Figure 4.1: Scheme followed to assess the relationship between class, classi-
fier and dimensionality reduction method for hyperspectral image
classification.

In order to achieve the goals of this chapter two different processing schemes were

adopted. The first experimental scheme was performed on the original hyperspectral
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images and the second scheme was on the synthetic hyperspectral images. The outputs

of the dimensionality reduction methods were given as input for supervised classifica-

tion of hyperspectral images by the MCS. The sequence of steps followed for the entire

classification tasks with original hyperspectral images is shown in Figure 4.1.

The MCS was programmed to generate all the intermediate classification results as

separate outputs and perform classification accuracy assessment based on the testing

pixels. The sets of classifiers and dimensionality reduction methods which dominate

the labelling of various land cover categories in each image and subsequently the best

sets of classifier(s) and dimensionality reduction method(s) for each land cover category

were identified based on the overall and per-class classification accuracy, checking for

repetition of the observed best sets of classifiers and dimensionality reduction methods.

In addition, the pairs of classifiers and dimensionality reduction methods which offered

accuracy above the acceptable threshold were combined further in the MCS to further

improve the accuracy of hyperspectral image classification. The sequence of the steps

followed to analysis the scale dependency of the hyperspectral images are shown in

Figure 4.2.

Figure 4.2: Sequence of steps followed to assess the relationship between class,
classifier and dimensionality reduction method for the classification
of synthetic hyperspectral images.

For all the image classification experiments, the training samples required for classi-

fication were extracted from the image itself. The classified results were validated using

independent testing samples drawn from the image. The significance of classification
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accuracy enhancement of the MCS was assessed by two tailed Kappa Z-test at 95%

confidence interval (Russell G. Congalton, 2008). If the computed value of Z exceeds

1.96, classification results of the MCS are significant.

4.2.5 Image classification using SVM

In order to assess the comparative performance of MCS relative to the state-of-the-art

methods, all the five hyperspectral images were classified by support vector machines

(SVM) using the same reference data samples. The Radial basis function (RBF) was

used as the kernel function in the SVM. All the SVM based image classifications were

done using the LIBSVM toolbox (Chang, Chih-Chung and Lin, 2011). Because the

SVM can classify high dimensionality data even without dimensionality reduction, we

performed image classification experiments with and without applying dimensionality

reduction and the overall accuracy estimates were compared with the MCS.

4.2.6 Datasets

We used five different sources of airborne hyperspectral images (one each from the

sensors HyMAP, ProSpecTIR and HYDICE and two images from the sensor ROSIS)

covering multiple sites and multiple land cover classes. False color composite of the

hyperspectral images are shown in Figure 3.1, 3.2. For detailed description of hyper-

spectral images see Chapter 3.

4.3 Results and Analysis for the Original Hyperspectral

Images

In this section, we examine the results of the class, classifier and dimensionality re-

duction method relationship for hyperspectral image classification with the original hy-

perspectral image. Further, the results of assessing the utility of deploying multiple

dimensionality reduction methods in a single MCS architecture are presented. Finally,

the results of the MCS are compared with SVM classification method to asses the po-

tential of combining the simple classifiers in the MCS.
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4.3.1 Examination of the relationship between classifiers and di-

mensionality reduction methods

The numerous classified images generated by the MCS were analyzed for identify-

ing the set of classifiers and dimensionality reduction methods which exhibit relatively

higher classification performance. Except with the ROSIS University image, for all the

other images a minimum threshold of 85% overall accuracy was taken as the benchmark

for considering the classification performance as ’acceptable’ (Foody, 2002; Russell G.

Congalton, 2008). For the ROSIS University image, the best classification accuracy

obtained is 80%. This is similar to the best accuracy reported by Fauvel et al. (2012)

who used the same image for urban land cover classification by several methods which

are various combinations of SVM kernel based spatial-spectral approaches. Hence the

minimum threshold of overall accuracy for the ROSIS University image was pegged at

75%.

4.3.1.1 HyMAP image classification

Results of the classification of the HyMAP image classification with each of the dimen-

sionality reduction methods are shown in Table 4.1. From Table 4.1, it can be observed

that for the ICA and MNF dimensionality reduction methods, out of the seven classifiers

NED, SAM, and SSM offered acceptable overall accuracies. The overall accuracies of

the remaining four classifiers are considerably lower than the threshold. For the PCA

and OBS dimensionality reduction methods NED, SSM and MF classifiers offered ac-

ceptable classification accuracy. As observed with the ICA dimensionality reduction

method, the overall accuracy obtained for remaining four classifiers with the OBS and

three classifiers with the PCA is below the threshold. For the DWT-DR dimensionality

reduction method NED, ACE, MF, and SSM offered acceptable overall accuracy. For

the HyMAP image, it is apparent that only two (NED and SSM) out of the seven clas-

sifiers offered acceptable classification accuracies with all the dimensionality reduction

methods. There were considerable differences in the overall accuracies produced by

classifiers with respect to each dimensionality reduction method. For example, with the

PCA dimensionality reduction method, overall classification accuracies of the TCIMF

and MF are 55.10% and 90.17% respectively, indicating a difference of about 35%. The
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classified image produced by the MCS after applying the majority voting rule on the de-

cision function values of the better performing classifiers and dimensionality reduction

methods is shown Figure 4.3. The overall classification accuracy of the classified image

is 97.02%, an increase of 4.3% over the best performing classifier in Table 4.1. This

increase is significant as evident from the two tailed Z-test at 95% confidence interval

(computed Z-score is 8.53).

Table 4.1: Overall accuracy (OA) and Kappa coefficient (KC) for HyMAP im-
age classification for various classifiers relative to each dimension-
ality reduction (DR) method.

DR method Classifiers

NED SAM SSM ACE MF OSP TCIMF

ICA
OA (%) 92.73 91.87 92.42 81.86 78.19 81.9 80.93
KC 0.9147 0.9047 0.911 0.7854 0.7458 0.786 0.7746

PCA
OA (%) 87.74 84.76 85.34 80.04 90.17 61.87 55.1
KC 0.8571 0.8222 0.829 0.7707 0.8852 0.5566 0.478

MNF
OA (%) 90.37 88.08 88.13 73.54 83.99 80.43 79.5
KC 0.8871 0.8613 0.8617 0.6984 0.8141 0.7747 0.7642

DWT-DR
OA (%) 88.28 76.0247 86.85 90.79 90.06 69.25 69.1
KC 0.8635 0.717 0.8453 0.8916 0.8845 0.6379 0.6352

OBS
OA (%) 86.23 70.95 87.08 83.72 85.73 26.79 58.46
KC 0.8393 0.6579 0.8489 0.8094 0.8324 0.1719 0.5098

4.3.1.2 ROSIS University image classification

The overall accuracy of the ROSIS University classified image for each dimensional-

ity reduction method is shown in Table 4.2. Out of the seven classifiers, the number

of classifiers which offered the overall accuracy above the threshold is three each for

the MNF, DWT-DR, and OBS and one each for the ICA and PCA. The three classi-

fiers which performed better for the DWT-DR and OBS are identical. The subspace

modelling classifiers exhibit poor discrimination across the dimensionality reduction

methods. As observed with the HyMAP classified image, the variation in the overall

accuracy between various combinations of the classifiers and dimensionality reduction

methods is drastic. Figure 4.4 (a) shows the classified image produced by the MCS

after applying the majority voting rule on the decision function values of the better

performing classifiers and dimensionality reduction methods. The overall classification
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Figure 4.3: Classified image produced by combining the classifiers which are
above acceptable threshold of HyMAP image.

accuracy of this classified image is 84.6%, which is 4.22% over the best individual.

This apparent increase in the overall accuracy is significant at 95% confidence interval

(computed Z-score is 7.79).

Table 4.2: Overall accuracy (OA) and Kappa coefficient (KC) for ROSIS Uni-
versity image classification for various classifiers relative to each
dimensionality reduction (DR) method.

DR method Classifier

NED SAM SSM ACE MF OSP TCIMF

ICA
OA (%) 74.31 72.58 73.47 77.55 68.59 16 16
KC 0.709 0.6899 0.6999 0.7451 0.6344 0.0038 0.0038

PCA
OA (%) 78.23 67.24 68.56 71.8 68.57 16.36 16.35
KC 0.7521 0.6318 0.6461 0.6838 0.6342 0.0089 0.0077

MNF
OA (%) 75.97 76.05 76.25 74.48 66.78 18.77 18.78
KC 0.73 0.7322 0.7342 0.7139 0.6124 0.0293 0.0295

DWT-DR
OA (%) 77.28 69.15 80.33 75.39 66.1 24.85 20.97
KC 0.7409 0.6501 0.7756 0.7203 0.6045 0.1274 0.0855

OBS
OA (%) 78.49 70.63 80.38 77.93 68.89 24.13 24.74
KC 0.7548 0.6671 0.7762 0.7495 0.6348 0.1184 0.1239
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(a) (b)

(c) (d)

Figure 4.4: Classified images produced by combining the classifiers which are
above acceptable threshold (a) ROSIS University (b) ROSIS City
of Pavia (c) ProSpecTIR and (d) HYDICE.
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4.3.1.3 ProSpecTIR image classification

Table 4.3 shows the overall accuracy of the ProSpecTIR image relative to each dimen-

sionality reduction method. Compared to the few numbers of the classifiers which

offered acceptable overall accuracy for the ROSIS University image, there are multiple

classifiers which offered acceptable overall accuracy for each dimensionality reduction

method. These classifiers are SAM, and SSM for ICA; NED, and SSM for PCA, and

OBS; NED, SAM, and SSM for MNF; and NED, SSM, ACE, and MF for DWT-DR

dimensionality reduction methods. Compared to the results obtained with ROSIS Uni-

versity image, the overall accuracies are consistently higher. Classification by the MCS

using the majority voting as combination function with the better performing classifiers

increased the overall accuracy by 2.18% (significant with computed Z-value is 3.55), to

93.5%. The corresponding classified image is shown in Figure 4.4 (c).

Table 4.3: Overall accuracy (OA) and Kappa coefficient (KC) for ProSpecTIR
image classification for various classifiers relative to each dimen-
sionality reduction (DR) method.

DR method Classifier

NED SAM SSM ACE MF OSP TCIMF

ICA
OA (%) 84.81 85.18 85.28 84.66 70.33 70.91 69.26
KC 0.8215 0.8261 0.8272 0.8198 0.659 0.6613 0.6421

PCA
OA (%) 88.5 78.2 88.74 80.37 68.22 60.12 59.46
KC 0.8657 0.7475 0.8685 0.7734 0.6307 0.5325 0.5236

MNF
OA (%) 87.56 91.01 91.32 82.62 57.74 65.66 52.9
KC 0.8548 0.8956 0.8993 0.7977 0.5215 0.6054 0.4591

DWT-DR
OA (%) 88.89 67.35 89.52 88.34 88.32 68.51 77.23
KC 0.8703 0.6199 0.8776 0.8629 0.8632 0.6337 0.733

OBS
OA (%) 88.19 72.82 89.49 84.21 63.67 65.39 65.92
KC 0.8621 0.6799 0.8773 0.8153 0.575 0.5983 0.6051

4.3.1.4 ROSIS City of Pavia image classification

The overall accuracy of the classifiers obtained with each dimensionality reduction

method for ROSIS City of Pavia image is shown in Table 4.4. Though this image

and the ROSIS University image were acquired by the same sensor and for the same

geographical region with several common land cover categories, there are considerable
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variations in the better performing classifiers for each dimensionality reduction meth-

ods. Only with ICA and MNF dimensionality reduction methods, there are multiple

classifiers with accuracy exceeding the threshold limit. Table 4.4 indicates a reduced

performance of the classifiers relative to threshold with remaining dimensionality re-

duction methods. For example, in Table 4.2 there are four classifiers for the DWT-DR,

where as there is only one classifier with accuracy exceeding the threshold for DWT-

DR in Table 4.4. As observed with ROSIS University image, subspace modelling clas-

sifiers exhibit poor classification results. Further, classification of the ROSIS City of

Pavia image by the MCS (see Figure 4.4 (b)) with the better performing classifiers and

dimensionality reduction methods indicate the overall accuracy to 89.7%. This is a

marginal improvement (1.3%) over the best performing classifier in the Table 4.4, but

the accuracy improvement is statistically significant (computed Z-value is 3.29) at 95%

confidence interval.

Table 4.4: Overall accuracy (OA) and Kappa coefficient (KC) for ROSIS City
of Pavia image classification for various classifiers relative to each
dimensionality reduction (DR) method.

DR method Classifier

NED SAM SSM ACE MF OSP TCIMF

ICA
OA (%) 87 84.64 85.48 85.93 85.18 14.34 14.33
KC 0.8591 0.8247 0.8343 0.8392 0.8298 0.0236 0.0234

PCA
OA (%) 81.2 80.04 80.42 86.31 81.17 23.23 22.51
KC 0.7842 0.7713 0.7756 0.8434 0.7846 0.1473 0.1486

MNF
OA (%) 88.4 88.13 88.14 85.77 85.57 19.51 19.51
KC 0.8672 0.8643 0.8644 0.8375 0.8343 0.0979 0.0979

DWT-DR
OA (%) 81.54 81.64 86.32 84.64 83.64 33.71 33.75
KC 0.7879 0.7897 0.8427 0.8247 0.811 0.2518 0.2492

OBS
OA (%) 82.01 82.11 85.81 84.16 84.55 29.82 38.97
KC 0.7932 0.7951 0.8369 0.8193 0.8226 0.21 0.307

4.3.1.5 HYDICE image classification

The overall classification accuracy of the HYDICE image using the various classifiers

relative to each dimensionality reduction is shown in Table 4.5. From Table 4.5, it is

obvious that most of the classifiers performed well with the HYDICE image. The NED,

SAM, SSM, and ACE classifiers offered acceptable classification accuracy for all the
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dimensionality reduction methods. The classified image produced by the MCS after

applying the majority voting rule on the decision function values of the better perform-

ing classifiers and dimensionality reduction methods is shown Figure 4.4. The overall

classification accuracy of this classified image is 98.91%, which is 3.89% (significant

with computed Z=9.54) higher compared to the best classifier in the Table 4.5.

Table 4.5: Overall accuracy (OA) and Kappa coefficient (KC) for ROSIS City
of Pavia image classification for various classifiers relative to each
dimensionality reduction (DR) method.

DR method Classifier

NED SAM SSM ACE MF OSP TCIMF

ICA
OA (%) 93.81 94.82 94.69 91.86 74.45 72.35 71.83
KC 0.9263 0.9383 0.9367 0.9032 0.6935 0.6734 0.6675

PCA
OA (%) 93.24 92.42 94.98 87.61 77.35 71.26 77.62
KC 0.9196 0.91 0.9403 0.8527 0.7283 0.6615 0.7361

MNF
OA (%) 91.41 95.05 94.86 91.29 86.48 73.22 79.62
KC 0.8977 0.9423 0.9384 0.8965 0.8377 0.6834 0.758

DWT-DR
OA (%) 92.82 94.73 93.58 93.72 93.66 70.8 71.45
KC 0.9147 0.9373 0.9237 0.925 0.9243 0.6572 0.6642

OBS
OA (%) 93.12 91.41 93.74 92.9 90.53 66.12 70.34
KC 0.9183 0.8985 0.9256 0.9151 0.8865 0.6021 0.6498

4.3.1.6 Suitability of dimensionality reduction method and classifier

Comparison of the Tables 4.1 through 4.5 reveals that only small subsets of classifiers

(with members ranging from one to four) produce acceptable classification results for

multiple hyperspectral images. For example, two classifiers (NED and SSM) produced

acceptable overall accuracy for three different hyperspectral images (HyMAP, ProSpec-

TIR, and HYDICE images). Table 4.6 shows the list of classifiers which produced high

classification results. The possibility for a classifier to be a member of this subset (of

classifiers which produce high classification results) appears to depend upon the di-

mensionality reduction method. Further, within this subset of classifiers, the maximum

overall accuracy achieved is a function of specific hyperspectral image and dimension-

ality reduction method. Based on the apparent changes in the pairing of classifiers

and dimensionality reduction methods which produce high classification results (see

Table 4.6), it can be inferred that there is no single classifier or dimensionality reduc-
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tion method which is optimal across hyperspectral images. It is particularly important

when different hyperspectral images represent different land cover and environmental

settings. However, it can be observed that (see Table 4.6) for a given dimensionality

reduction method, there are few classifiers (e.g. SSM classifier for MNF dimensional-

ity reduction method) which can produce acceptable classification results for multiple

hyperspectral images. This observation indicates the presence of empirical relation-

ships between classifier and dimensionality reduction method. The observed consistent

increase in the overall accuracy when the hyperspectral images were classified by the

MCS with multiple dimensionality reduction methods indicates the complementary na-

ture of dimensionality reduction methods.

Table 4.6: List of classifiers which offered better classification accuracy rela-
tive to each dimensionality reduction (DR) method for original high
resolution hyperspectral images (numbers (%) indicate overall accu-
racy).

DR method Hyperspectral image

HyMAP ROSIS ProSpecTIR ROSIS City HYDICE
University of Pavia

ICA NED (92.5), ACE (77) NED (84.8), NED (87) NED (93.8),
SAM(91.8), SAM(85.1), SAM (94.8),
SSM (92.4) SSM (85.2), SSM (94.7)

ACE (84.6)

PCA MF (90.2) NED (78.2) NED (88.5), ACE (86.3) NED (93.2),
SSM (88.7) SAM(92.4),

SSM (94.9)

MNF NED (90.3), NED (75.9), SSM (91.3), NED (88.4), SAM (95.05),
SAM (88.1), SAM (76), SAM (91) SAM (88.1), SSM (94.8)
SSM (88.1) SSM (88.1)

DWT-DR ACE (90.7), SSM (80.3) NED (88.8), SSM (86.3), SAM (94.7),
MF (90) SSM (89.5), ACE(84.6) SSM (93.5),

ACE (88.3), ACE (93.7),
MF (88.3) MF (93.6)

OBS NED (86.2), SSM (80.4) NED (88.2), SSM (85.8), NED (93.1),
SSM (87) SSM (89.5) ACE (84.2), SSM,(93.7),

MF (84.5) ACE (92.9)
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4.3.2 Examination of the relationship between information class,

classifier and dimensionality reduction method

Results presented in Tables 4.1 through 4.6 indicate the influence of dimensionality re-

duction methods and classifiers on the accuracy achieved in hyperspectral image clas-

sification at overall image level. However, it is important to understand the dynamics

of dimensionality reduction method and classifier relationships at the information class

level. In order to assess the premise that there exist more than one set of classifier and

dimensionality reduction method which may offer better classification accuracy for a

given land use category, the per-class accuracy estimates obtained from each of the im-

ages were analyzed for identifying the classifiers and dimensionality reduction methods

which were dominant in the labelling of pixels of each land use category. For the land

use categories which are found in all the five images, the classifiers and dimensionality

reduction methods which produced better classification results are listed in Table 4.7.

For each land cover category, there are up to three classifiers which offer better

classification accuracy. Examination of the different land covers and classifiers across

the hyperspectral images reveals that different land covers within a single hyperspec-

tral image are best classified by different classifiers. For example, for the HyMAP

image, fallow land and bare soil indicate acceptable performance by any combination

of four classifiers (NED/SAM/SSM/OSP) and two dimensionality reduction methods

(ICA/MNF); winter wheat and winter rape, however could only be classified by ei-

ther ACE/ MF with DWT-DR or NED with PCA. Similar relationships are found for

the other images as well. This indicates the presence of empirical information class-

classifier relationship, which again depends upon the specific image. Adding to that,

the sets of dimensionality reduction methods which resulted in better classification per-

formance for different land cover categories are comparable to the sets of classifiers

which produced better classification accuracy (see Table 4.7). Further, Table 4.7 indi-

cates the presence of several pairs of classifier, and dimensionality reduction methods

which are optimal to similar land cover categories found in multiple hyperspectral im-

ages. For example, land cover category ‘grass’ found in four images (HyMAP, ROSIS-

University, ROSIS-City of Pavia, and HYDICE images) was classified with SAM/SSM-

MNF classifie-dimensionality reduction method combination in three images (HyMAP,

ROSIS-City of Pavia, and HYDICE images).
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This indicates the existence of class-classifier-dimensionality reduction method re-

lationship and the diversity of information generalization by various dimensionality re-

duction methods thus leading to data (or application) specific nature of dimensionality

reduction methods.

4.3.3 Comparative analysis with SVM based image classification

Table 4.8 shows the best overall accuracies obtained from the MCS and SVM meth-

ods. The overall accuracy obtained by the MCS after combining the outputs of best

combination of classifiers and dimensionality reduction methods indicates consistently

higher accuracies. As evident from Table 4.8, except for the ROSIS-City of Pavia im-

age for which both SVM and MCS show similar accuracy, MCS indicate about 5%

higher accuracy over the SVM. However, it can be observed that the overall accuracy

from the SVM meets the acceptable threshold for all the images indicating its strong

generalization capability.

Table 4.8: Overall accuracy (in %) obtained by the MCS and SVM methods.
For SVM image classification, the overall accuracy with and with-
out dimensionality reduction is included (acronyms in the bracket
indicate the dimensionality reduction method).

Hyperspectral image MCS
SVM

With dimensionality Without dimensionality
reduction reduction

HyMAP 97.02 91.93 (ICA) 90.52

ROSIS-University 84.6 80.21 (MNF) 79.3

ProSpecTIR 93.5 88.25 (MNF) 88.6

ROSIS-City of Pavia 89.7 89.96 (MNF) 86.4

HYDICE 98.91 92.59 (PCA) 90.3

Apart from the overall accuracy estimates, computational complexity represented

by time of computation of the SVM was compared with the MCS (Figure. 4.5). It is

interesting to observe that the computation time of MCS is better than or comparable to

the SVM. The apparent matching of the computational time of MCS with the SVM can

be justified by the fact that the classifiers used in the MCS are linear with advantage of

low complexity parameters estimation (as calculation of only mean and common vari-
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Figure 4.5: Computational time (in sec) of the MCS and SVM classifica-
tion methods (time was calculated after dimensionality reduction
method and includes both training and testing time; experiments
were performed on a desktop computer Intel i3 processor, 3.2 GHz,
3 GB RAM and 64 bit operating system).

ance matrix is required for all the classifiers). Image classification by SVM involves

mapping input data points to a higher dimensional space and solving C(1−C)
2

numbers

of quadratic optimization problems (C is number of classes) thus requiring relatively

more computation time. However, this apparent computational matching of MCS is

case specific and depends upon the composition of classifiers in the MCS. Dimension-

ality reduction on the SVM performance is not effective; the difference in overall accu-

racies obtained with and without dimensionality reduction is found marginal across the

images.

In this section, we analyzed the existence relationship between class, classifiers and

dimensionality reduction methods of the original high resolution hyperspectral image.

In the next section, we analyze the existence of relationship between class, classifier

and dimensionality reduction method of the synthetic generated hyperspectral images.
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4.4 Results and Analysis for the Spatially Downscaled

Synthetic Hyperspectral Images

In this section, we analyze whether the established class, classifier, and dimensionality

reduction method relationship (Table 4.6, and 4.7) is sensitive to change in the spatial

resolution of the hyperspectral image. The better performing classifiers and dimension-

ality reduction methods are only presented in this section, since it is sufficient to confirm

the validity of the class, classifier, and dimensionality reduction method relationship ob-

served in the previous section. Further, the MCS classification results are presented to

highlight the potential of deploying multiple dimensionality reduction methods. In the

following the observed class, classifier, and dimensionality reduction method relation-

ship with the spatially downscaled hyperspectral images are presented and compared

with the original high resolution hyperspectral images.

4.4.1 Examination of classifier and dimensionality reduction method

relationship

Table 4.9 shows the better performing classifiers relative to each dimensionality reduc-

tion method for all the five spatially downscaled hyperspectral images. As observed

with original hyperspectral image (see Table 4.6), only a subset of classifiers ranging

from one to four classifiers resulted in high classification accuracies for multiple im-

ages. This indicates the importance of pairing classifiers relative to each dimensionality

reduction method when the hyperspectral images represent different land cover set-

tings. From Table 4.9, it can be inferred that there exists a classifier which produce

better results with a particular dimensionality reduction method across different spa-

tially downscaled hyperspectral images. For example, SSM classifier with MNF and

OBS method, ACE classifier with DWT-DR method produces better classification re-

sults with multiple images. This observation indicates the existence of the empirical

relationship between classifier and dimensionality reduction method as observed with

the original hyperspectral image. Further when the maximum overall accuracy is con-

sidered, as expected, the classification accuracies are degraded compared to the original

hyperspectral image with each of the dimensionality reduction methods. In contrary,
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the increase in classification accuracy has been observed with certain dimensionality re-

duction method for few hyperspectral images. For example, the classification accuracy

has been increased for ROSIS University and City of Pavia hyperspectral images with

ICA and OBS dimensionality reduction methods. Further, it is interesting that observed

maximum overall accuracy of the DWT-DR method is similar with all the original and

spatially coarse synthetic hyperspectral images. This indicates the insensitive nature of

the DWT-DR to the spatial scale of the image.

Table 4.9: List of classifiers which offered acceptable classification accuracy
relative to each dimensionality reduction (DR) method for the spa-
tially downscaled hyperspectral images (numbers (%) indicate over-
all accuracy).

DR Method Hyperspectral image

HyMAP ROSIS ProSpecTIR ROSIS City of HYDICE
University Pavia

ICA NED (92.50), SAM (84.84), SAM (69.33), NED (87.57), NED (92),
SAM (91.8), SSM (84.84), SSM (69.33), SAM (87.92), SAM (90.61),
SSM (92.4), ACE (85.15) ACE (71.17) SSM (88.15), SSM (90.49),
MF (90.2) ACE (88.04) ACE (90.01)

PCA MF (90.20) MF (75.04) NED (84.66) NED (82.70), NED (89.53),
SSM (80.14), SSM (90.98)
MF (81.07)

MNF NED (90.30), NED (58.81), NED (76.07), NED (79.21), NED (82.31)
SAM (88.10), ACE (59.42), SAM (74.23), SAM(78.28), SAM (82.43),
SSM (88.10) MF (59.72) SSM (74.85) SSM (78.28), SSM (82.43)

ACE (79.56)

DWT-DR ACE (90.7), ACE (82.39) ACE (88.34), SSM (84.55), NED (92.18),
MF (90) MF (89.57) ACE (86.41), SAM (91.34),

SSM (91.94),
ACE (92.54),
MF (93.86)

OBS NED (86.20) SSM (84.27), NED (84.05), ACE (88.15) NED (90.61),
SSM (87) ACE (84.69) SSM (84.66), SSM (91.58),

ACE (82.21) ACE (89.41),
MF (91.46)

With the change in resolution of the image, it is necessary to analyze whether there

is any change in the observed classifier and dimensionality reduction method relation-

ships with the original hyperspectral images. A comparative analysis of Table 4.6 and

Table 4.9, shows an interesting observation that similar type of classifiers are paired as

the optimal classifiers relative to each dimensionality reduction method across differ-
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ent images, as the case with original hyperspectral images (for e.g, SSM classifier with

MNF, OBS method and ACE classifier with DWT-DR method). From these observa-

tions, we can conclude that: (i) the inferences of the original high resolution hyperspec-

tral images can be directly applied to the spatially downscaled synthetic images (ii) the

classifiers’ performance is mainly influenced by the underlying information content of

the hyperspectral image.

4.4.2 Examination of the class, classifier and dimensionality reduc-

tion method relationship

Results of the Table 4.9 indicate the existence of the empirical preference of classifier

and dimensionality reduction method for the spatially downscaled hyperspectral image

as observed with the original hyperspectral image. It is also important to analysis the

influence of the dimensionality reduction method and classifier relationships at the land

cover class information level. Table 4.10 shows the resulting better performing classifier

and dimensionality reduction method pair with all the land cover classes for the spatially

downscaled hyperspectral images. Since the aim of this experiment is to assess whether

there exists a similar kind of relationship between class, classifier and dimensionality

reduction method with original high resolution image, only the better performing clas-

sifier and dimensionality reduction method pairs are listed in Table 4.10. The per-class

accuracy of the land cover classes are indicated in brackets. From Table 4.7 and Table

4.10, we can derive some interesting inferences. First of all, there are three to four

classifiers which offer better classification accuracy for most of land cover classes as

is the case with original high resolution images. Secondly, the per-class classification

accuracy has been increased, decreased, and neither increased nor decreased when com-

pared to original scale image. However, this is significantly dependent upon the type of

land cover classes.
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It is interesting to note that classification accuracy of the urban class materials (for

e.g, bitumen, self building blocks, metal sheets etc.,) increased while the classification

accuracy of the vegetation classes (grass, meadows, trees) remain unchanged. This in-

dicates that the classes which have high intra-class variability could be classified better

with the spatially downscaled synthetic hyperspectral images. However, the validity of

this observation depends upon the image and the spatial area extent of the objects in the

image.

Further, the examination of the better performing classifier and dimensionality re-

duction method pair relative to each land cover category indicates the presence of the

similar type of classifier and dimensionality reduction method pairs across multiple

images. For example, the land cover category ‘trees’ found in four images (expect

HyMAP image) was classified better with NED/SAM/SSM-DWTDR, OBS in all the

four hyperspectral images, and the land cover category ‘road/asphalt’ found in four

images was classified optimally with ACE-ICA combination in three hyperspectral im-

ages (ROSIS University, ROSIS City of Pavia, and HYDICE image). This indicates the

existence of semi-empirical preference of classes for certain classifier and dimension-

ality reduction methods. When the resulted optimal classifer-dimensionality reduction

method pairs are compared with original high resolution image, similar optimal pairs

of classifier and dimensionality reduction method are observed for certain classes (for

e.g, water, trees, road, asphalt). However, for the ‘grass’ land cover category the opti-

mal classifiers are similar but the dimensionality reduction method is different for two

hyperspectral images; for the ‘shadow’ region different pairs of classifier and dimen-

sionality reduction method are observed. This difference in relationship for the ‘grass’

land cover class could be due the sub-optimal performance of the classifiers with MNF

dimensionality reduction method. These observations indicate that the suitable com-

bination of classifier and dimensionality reduction methods for land cover classes is a

function of underlying information content and is insensitive to changes in the spatial

resolution of the image.

4.4.3 MCS classification results

The classifiers which offer classification accuracy above the acceptable threshold for the

spatially downscaled hyperspectral image are combined using majority voting to test
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the possibility for the further enhancement in the accuracy. The classification results

are shown in Figure 4.6 and 4.7. There is about 2.5%, 3.02%, and 1.2% increase in the

classification accuracy when compared to the single best classifier. Despite relatively

lower in magnitude, these increases in the classification accuracy are statistically signif-

icant. The decrease in classification accuracy is statistically insignificant (ProSpecTIR

image). Further, it can be observed that higher classification accuracies are achieved for

the ROSIS University and ROSIS City of Pavia hyperspectral image when compared

to the MCS results of the original high resolution images. This might be due to the

effect of decrease in intra-class variability of the hyperspectral image when the image

is spatially coarser, and as a result the neighbouring pixels tend to be smooth. The

results conclude that the optimal resolution of the image depends upon the underlying

land cover classes, and the better classification results could be obtained with medium

resolution (spatially coarser) image for the urban class images.

HyMAP
University

ProSpecTIR

CityofPavia
HYDICE

70

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

 MCS
 SB

Figure 4.6: Overall accuracy of the MCS based classification after combing the
classifiers which are above the acceptable threshold for the spatial
downscaled hyperspectral images. Overall accuracy of the single
best classifier (SB) is included for the reference.
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(a) (b)

(c) (d)

Figure 4.7: Classified images produced by the MCS by combining the deci-
sion function values of the classifiers and dimensionality reduction
methods which meet the acceptable threshold criterion for the spa-
tially downscaled hyperspectral images (a) ROSIS University (b)
ProSpecTIR (c) ROSIS City of Pavia (d) HYDICE.
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4.5 Results and Analysis for the Spectrally Downscaled

Synthetic Hyperspectral Images

In this section, we analyze whether the established class, classifier, and dimensionality

reduction method relationship is sensitive to the changes in spectral resolution of the

hyperspectral images. The experimental analysis was done only for the relatively better

performing classifiers and dimensionality reduction methods. Further, the results are

compared with the results obtained from the original hyperspectral images and the syn-

thetic images generated by spatially downscaling the hyperspectral images. Finally, the

better performing classifiers were combined in the MCS framework.

4.5.1 Examination of the classifier and dimensionality reduction

method relationship

The list of better performing classifiers relative to each dimensionality reduction method

for the three hyperspectral images are shown in Table 4.11. There are multiple classi-

fiers which offer better accuracy for different images relative to different dimensionality

reduction methods. Table 4.11, reveals that the existence of a set of classifiers which of-

fers better classification performance across multiple images for a given dimensionality

reduction method. This indicates that the inferences derived from the original hyper-

spectral image classification can be extended to the spectrally downscaled images.

When compared with the results obtained from the original hyperspectral images

for each dimensionality reduction method, it can be observed that there is no signif-

icant difference in the maximum overall classification accuracy. In fact, a marginal

improvement has been observed with the spectrally downscaled images. For example,

for the ProSpecTIR image with the MNF method 91.7%, and 91.3% of classification

accuracy is observed respectively for the spectrally downscaled image and original high

resolution image; and 95.8%, and 95.1% classification accuracy observed for HYDICE

image. Similar trend has been observed for other dimensionality reduction methods

and other images as well. This is an important observation for the hyperspectral image

classification where the inclusion of large number of spectral bands in classification is

always a question to deal with.
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Table 4.11: List of classifiers which offered better classification accuracy rela-
tive to each dimensionality reduction (DR) method for the spec-
trally downscaled hyperspectral images (numbers (%) indicate
overall accuracy).

DR Hyperspectral Image

method HyMAP ProSpecTIR HYDICE

ICA NED (92.5), SAM (91.8,) NED (85.4), SAM (86.5), NED (93.6), SAM (94.1),
SSM (92.4) , MF (90.2) SSM (86.5), ACE (86.5) SSM (94.1), ACE (94.5)

PCA MF (90.2) NED(87.4), SSM (86.7) NED (93.8), SAM (95.3),
SSM (94.9)

MNF NED (90.3), SAM (88.1), SAM (91.7), SSM (91.7) SAM (94.2), SSM (94.2),
SSM (88.1) MF (95.8)

DWTDR ACE (90.7), MF (90) NED (88.4), SSM (89.7), SSM (95.3), ACE (93.9),
ACE (87.9), MF (89) MF (93.1)

OBS NED (86.2), SSM (87) NED (88), SSM (90), NED (92.9), SSM (93.4),
ACE (93.2)

4.5.2 Examination of class, classifier and dimensionality reduction

method relationship

Table 4.12 shows the list of better performing classifiers and dimensionality reduction

method pairs relative to each land cover class across different hyperspectral images.

From the comparison of the Tables 4.7 and 4.12, it can be inferred that land cover

classes exhibit empirical preferences for certain pairs of classifiers and dimensional-

ity reduction methods across the hyperspectral images. The resulting optimal classifier

and dimensionality reduction method pairs are comparatively similar to the original

high resolution images. Further, there is no significant difference in the classification

accuracy of the land cover classes as compared to the original high resolution image.

These observations indicates that the suitability of classifier and dimensionality reduc-

tion methods for the land cover classes are insensitive to the change in spectral resolu-

tion of the hyperspectral image.
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4.5.3 MCS classification results

Figure 4.8 shows the classification accuracies obtained after combining the classifiers

whose accuracy exceeds the acceptable threshold for the three hyperspectral images.

The classified images produced by the MCS after combining the better performing clas-

sifiers are shown in Figure 4.9. As observed with spatially downscaled image, the clas-

sification results are improved by 4.2%, and 2.4% for the ProSpecTIR and HYDICE

hyperspectral images respectively. The MCS results of the spectrally downscaled im-

ages exhibit 2% increase when compared with the MCS results of spatially downscaled

images and original high resolution images. This confirms the notion that large number

of narrow spectral bands are not necessary for optimal classification results. Adding

to that, the spectral downscaling of the hyperspectral image also reduces the time and

memory complexity of the dimensionality reduction methods and the classifiers. This

observation concludes that the choice of the optimal spectral resolution has to be de-

cided based on the underling land cover classes. However, more experiments need to

be conducted to assess the effect of different spectral resolutions on different land cover

images.
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70

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

 MCS
 SB

Figure 4.8: Overall accuracy from the MCS based classification after combing
the classifiers which offer accuracy above the acceptable threshold
for the spectrally downscaled hyperspectral images. Overall accu-
racy of the single best classifier (SB) is included for reference.
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(a) (b)

Figure 4.9: Classified image produced by the MCS by combining the deci-
sion function values of the classifiers and dimensionality reduction
methods which offered accuracy above the acceptable threshold for
the spectrally downscaled hyperspectral images (a) ProSpecTIR (b)
HYDICE.

4.6 Discussion

Identification of optimal classifier and dimensionality reduction method for a given hy-

perspectral image is an important pre-processing step in hyperspectral image classifica-

tion. Generally, this is accomplished by heuristic methods such as pre-image classifica-

tion, class spectral separability analyses etc., which often lead to the identified classifier

and dimensionality reduction method being site and image specific. Parallel to the

developments in acquisition of high quality hyperspectral images, a number of image

classifiers and dimensionality reduction methods have been reported with varying levels

of capabilities to handle hyperspectral image. The suitability of various classifiers and

dimensionality reduction methods for land use and land cover classification has been re-

ported reasonably well (Stathakis and Vasilakos, 2006; Oki et al., 2006; Xu and Gong,

2007; Chen and Peter Ho, 2008). However, the prospect of combining the relative mer-

its of several classifiers from the perspective of suitability of dimensionality reduction

methods as made possible by MCS is not understood. In particular, the impact of the si-
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multaneous application of multiple classifiers and dimensionality reduction methods on

the labelling of various land cover categories in a hyperspectral image is not reported.

We conducted this study to address this important research aspect in the pathway to an-

swer three fundamental questions: (1) is there any classifier(s) which offers acceptable

classification accuracy across dimensionality reduction methods and data sources (as

characterized by information classes)?, (2) given a set of information classes as charac-

terized by data sources and site of data acquisition, what is the appropriate classifier and

dimensionality reduction method combination?, (3) if there are multiple sets of classi-

fiers and dimensionality reduction methods and if they are information class dependent,

what could be the viable approach to pick up the best performing combination? We

have classified multi-source airborne hyperspectral images acquired over five different

sites covering a range of land cover categories by MCS.

The variability of classification performance of the classifiers and dimensionality

reduction methods across the images has been examined based on the ability to achieve

acceptable classification accuracy by the combined deployment of one or more classi-

fiers and dimensionality reduction methods at the whole image and land cover category

level. Results indicate that the performance of classifier(s) for labelling various land use

categories depends considerably on the dimensionality reduction method and the land

use category itself. At the image level, there is an evidence of the existence of classifiers

which can offer higher classification accuracy for multiple sites and images (see Table

4.6). This apparent classifier-image preference is again depends upon the dimension-

ality reduction method. Further, it has been observed that the per-class classification

accuracy is classifier sensitive. For example, land use categories such as fallow land,

bare soil are best classified across multiple images by spectral matching based classifiers

such as NED and SSM. For most of the urban classes, the covariance based methods

(ACE and MF) seem perform well.

Amongst the entire set of classifiers considered, only a subset of classifiers offered

acceptable classification accuracy. Adding to that, classifiers forming this subset are

image and dimensionality reduction method dependent. Thus, it is clear that for better-

ment of hyperspectral image classification by MCS, the possibility of the existence of

a limited number of combinations of classifiers and dimensionality reduction methods

should not be overlooked. This is evident from the apparent increase in classification

accuracy when the intermediate decision function values of subsets of classifiers and
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dimensionality reduction methods are combined and classified by majority voting. The

classification accuracy improvement offered by the MCS is statistically significant for

all the five hyperspectral images. However, the magnitude of the performance improve-

ment of MCS varies with different images. Further, the accuracy and reliability of land

cover classification of a hyperspectral image can be enhanced by exploiting the informa-

tion class dependent combinations of classifiers and dimensionality reduction methods

by the dynamic selection of classifiers and dimensionality reduction methods.

Moreover, the choice of the optimal spatial and spectral resolutions has a signifi-

cant impact on the accuracy of hyperspectral remote sensing applications (Yanchen Bo

et al., 2005; Sprintsin et al., 2007; Thorp et al., 2013). Hence, the examination of the

information class, classifier and dimensionality reduction method relationship was also

conducted on the spatially and spectrally downscaled synthetic hyperspectral images.

The results show that at an overall image level, similar type of optimal classifiers are

evident with each dimensionality reduction method; at land cover class level, similar

optimal pairs of classifier and dimensionality reduction method are also evident for the

land cover classes as observed with the original hyperspectral images. Thus, the infer-

ences derived from the hyperspectral image of a particular resolution can be directly

applied to another resolution of the hyperspectral image.

The decrease in accuracy with second order statistics based dimensionality reduc-

tion method could be due to the fact that the second order statistics based dimension-

ality reduction method buries the objects with smaller spatial area extend as the noise

in the lower order components, which is the case with the spatially downscaled images.

The DWT-DR method offers similar classification performance with both the spatially

downscaled and original hyperspectral images. This could be due to the smoothing

effect of the DWT-DR method. This apparent stable behaviour of DWT-DR might be

important for many remote sensing applications especially when the spatial extent of

image is very large. Where as, with the spectrally downscaled hyperspectral images,

the classification accuracies are comparable with the original hyperspectral image for

all the dimensionality reduction methods.

The observed improvement in the performance of the MCS which included multi-

ple dimensionality reduction methods is very useful for the classification of planetary

datasets. There is a growing interest for classification of planetary hyperspectral images
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to automatically identify the presence of various minerals and other geological materi-

als of interest (Moussaoui et al., 2008; Hueso et al., 2010; Themelis et al., 2012). As it

is challenging to check the performance of the classifiers, given the minimal reference

data samples, it is imperative to deploy several classifiers and dimensionality reduction

methods in parallel and combine the results in the MCS architecture as demonstrated in

this study. Since the available reference samples are very few, the potential of applying

machine learning algorithms for classification of planetary hyperspectral images is lim-

ited. The classifiers considered in this study have the inherent ability to perform image

classification even with limited number of samples, as they require computing means

of the information classes and common co-variance matrix.

The classification results obtained from the MCS designed in this study are fairly

better than the results from the SVM while showing equal computational complexity.

Our results suggest that the MCS with simple linear classifiers can be considered as

the alternative image classification strategy to obtain optimal classification accuracy.

Despite reasonably large datasets and methods used in this study, caution must be ex-

ercised while generalizing conclusions of this study because of the limitations such as

choice of classifiers and dimensionality reduction methods, and within class variability

of land use categories across sites.

4.7 Chapter Conclusions

In this chapter, we assessed the existence of the empirical relationships between land

cover categories, classifiers and dimensionality reduction methods for hyperspectral

image classification. The experimental analyses state that the choice of dimensionality

reduction method and classifier significantly influences the classification accuracy of

hyperspectral image. Different land cover categories within the same image prefer dif-

ferent combinations of classifier and dimensionality reduction method. The empirical

relationships existed between land cover categories, classifiers and dimensionality re-

duction methods are vital for reliable classification of hyperspectral image by adaptive

selection of classifiers and dimensionality reduction methods within the MCS archi-

tecture. The classification results and computational time complexity obtained from

the MCS are compared against the popular SVM classifier. The results of spatially
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and spectrally downscaled hyperspectral images reveal that the empirical relationship

between class, classifier and dimensionality reduction methods is insensitive to the res-

olution of the hyperspectral image and is only depend upon the nature of information

content in the hyperspectral image. Further the negative impact of varying classifier-

dimensionality reduction method on the hyperspectral image classification can be mit-

igated by integrating multiple dimensionality reduction methods in the MCS architec-

ture.
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CHAPTER 5

DYNAMIC CLASSIFIER SYSTEM FOR

HYPERSPECTRAL IMAGE CLASSIFICATION

Prelude: Studies presented in the chapters 3 and 4 emphasize the need of improving

the MCS architecture so as to be functionally ‘dynamic’ in the classifiers and dimen-

sionality reduction methods selection for effective hyperspectral image classification.

This chapter presents our algorithmic development, named as dynamic classifier sys-

tem, aimed at introducing dynamism in the MCS architecture for selecting the optimal

pairs of classifiers and dimensionality reduction methods relative to the input data dy-

namics. Further, the impact of combination schemes on the dynamic classifier system

is analysed and the results are compared with the state-of-the-art methods.

5.1 Introduction

Dimensionality reduction methods mitigate the Hughes phenomena and make possi-

ble the application of classical statistical supervised classifiers on hyperspectral image

(Jimenez and Landgrebe, 1998). A number of dimensionality reduction methods and

classifiers are proposed in the literature for hyperspectral image classification. How-

ever, the performance of a dimensionality reduction method depends upon the nature of

information classes and the classifier used (Chen and Qian, 2008; Bakos and Gamba,

2009). Thus, the classification accuracy depends upon the subjective choice of dimen-

sionality reduction methods and classifiers. Identifying an optimal pair of dimension-

ality reduction method and classifier is a tedious task; given the numerous possibilities

in classifiers, dimensionality reduction methods, and the nature and distributions of in-

formation classes. Numerous studies have addressed the suitability of dimensionality

This chapter is published in the IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, Vol. 7, pp. 2080-2093, June 2014, with the title: “Dynamic Linear Classifier System for

Hyperspectral Image Classification for Land Cover Mapping”. Authors: Bharath Bhushan Damaodaran,

Rama Rao Nidamanuri



reduction methods and classifiers for different applications and have suggested partic-

ular classifier and/or dimensionality reduction method appropriate for that particular

application (Bakos and Gamba, 2009; Wu et al., 2010b; Wang and Chang, 2006; Sri-

vastava et al., 2012). A common observation of these studies is that the selection of

dimensionality reduction methods for the application at hand has to be done in relation

with the classifier to be used. Most of the studies report optimal classifiers for specific

applications and conclude that the classifier selection is a function of dimensionality

reduction method. This context-specific knowledge may not be applicable across dif-

ferent hyperspectral images and applications. A multiple classifier system (MCS), an

advanced pattern recognition technique, is emerging (Ceamanos et al., 2010; Du et al.,

2012b; Samiappan et al., 2013) as an alternative paradigm for image classification to

avoid the need of determining optimal classifier for each and every image analysis task

a priori. An MCS permits simultaneous application of several classifiers on the in-

put data, and the intermediate outputs of all the classifiers are combined for producing

the final classified image. Most of the MCS architectures reported in the literature are

designed to provide different input data sources to same classifier or same input data

source to different classifiers (Ceamanos et al., 2010; Waske et al., 2007; Yang et al.,

2010b). When the same input data are given to different classifiers, there could be an

overlap in the decision boundaries of the classifiers (Yan and Shaker, 2011). Moreover,

recently, it has been reported that there are no significant accuracy differences among

most of the commonly used classifiers at the overall image level, but significant dif-

ferences in perclass accuracy for some information classes (Bakos and Gamba, 2009;

Szuster et al., 2011). In other words, certain type of information classes prefer certain

type of classifiers and dimensionality reduction methods for better discrimination. This

indicates the importance of selecting classifiers and dimensionality reduction methods

in relation to information content of hyperspectral image.

Maintaining diversity in the classifiers and choosing appropriate combination scheme

are vital to the functioning of the MCS. A major limitation of the MCS is that, with-

out addressing the input data dynamics, merely inclusion of the classifiers of divergent

groups may not necessarily yield the results expected from the MCS; instead end up

producing results which are inferior to that of classical supervised classification (Yi

et al., 2006; Zhou et al., 2002). Most of the literature on MCS deal with innovations

in combination function schemes and creating diversity using different simple classi-
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fiers (Yang et al., 2010b; Santos et al., 2013; Gokaraju et al., 2012; Alajlan et al., 2013;

Senaras et al., 2013; Pal, 2008; Kumar et al., 2002; Udelhoven et al., 2009; Jun and

Ghosh, 2009). The information representation characteristics of the dimensionality re-

duction methods in the MCS has been least studied. Prasad and Bruce (2008b) divided

hyperspectral images into different subspaces and in each subspace linear discriminant

analysis dimensionality reduction method was used to reduce the dimension of the sub-

space. Several studies have used the dimensionality reduction methods in the MCS

framework. However their investigations were limited to a particular dimensionality

reduction methods (Prasad et al., 2008, 2012; Kalluri et al., 2010; West et al., 2009;

Lee et al., 2009). Further, our literature review revealed that the potential of creating

diversity in the MCS based on differential performances of various classifiers against

different dimensionality reduction methods has not been addressed. The creation of

diversity in the classification process by deploying multiple dimensionality reduction

methods is, in principle, possible as each different dimensionality reduction method

generates data variance characteristic to its formulation and the distinct way of trans-

formation. Thus, the extension of the MCS framework to let it acquire the capability to

dynamically identify the optimal pairs of dimensionality reduction methods and classi-

fiers simplifies image classification and reduces the data and application dependence of

the MCS.

The objective of this chapter is to develop an algorithm, we label as dynamic classi-

fier system (DCS), to dynamically select optimal pairs of classifiers and dimensionality

reduction methods from a pool of classifiers and dimensionality reduction methods for

hyperspectral image classification for land cover mapping. Further, the comparative

performance of various trainable and non-trainable combination functions for combin-

ing the decision function values of the DCS has been assessed. The proposed DCS

method is aimed at reducing the extensive human expert involvement in the selection

of classifiers and dimensionality reduction methods in supervised image classification

for various land cover mapping scenarios. The proposed DCS was designed with five

dimensionality reduction methods and seven classifiers and was implemented for the

classification of five multi-site multi-sensor airborne hyperspectral images for the dis-

crimination of a range of land cover classes.

The organization of this chapter is as follows: Section 5.2 describes the methods

used in this chapter. The proposed architecture of the system is presented in Section 5.3
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and the experimental results are analyzed and discussed in Section 5.4. Finally, in the

Section 5.5 we present conclusions drawn from this chapter.

5.2 Methodology

In this section, we provide brief description of the dimensionality reduction methods

used for generating different variants of the hyperspectral image and the set of classifiers

that constitutes the MCS. Further, in order to quantify the diversity existed between the

classifiers, two diversity measures are also described in this section.

5.2.1 Dimensionality reduction method

The popular dimensionality reduction methods-principal component analysis (PCA),

independent component analysis (ICA), minimum noise fraction (MNF), kernel princi-

pal component analysis (KPCA, and discrete wavelet transform-based dimensionality

reduction (DWT-DR) method-were used to transform the hyperspectral images in to a

low dimensional space. The PCA, MNF, ICA, and KPCA are based on statistical trans-

formations which project data on to a new coordinate system by maximizing or min-

imizing certain statistical measures. The PCA and MNF maximize the second-order

statistics (variance) in the projected components, where as ICA maximize the higher-

order-statistics in the projected components. The KPCA is an extension of the PCA

in which the input data points are transformed to higher-dimensional space (called as

feature space) by a nonlinear transformation. In the feature space, the KPCA performs

similar to the linear PCA. The KPCA has the advantage of capturing the higher-order

statistics and provides better separability of the classes over the linear PCA .

The wavelet transform is an effective tool extensively used in signal and image

processing. Each pixel in the hyperspectral image was decomposed by the wavelet

transform using Daubechies filter (DB6). The outlier in the image was discarded and

the approximation coefficients were reconstructed using inverse discrete wavelet trans-

form. The number of reduced dimension of hyperspectral image depends on the level of

decomposition. In this work, we generated series of wavelet transformed hyperspectral

image with different level of decompositions.
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5.2.2 Classifiers used in MCS

A set of simple classifiers with linear decision boundary, which can be broadly cate-

gorized into spectral matching methods, probabilistic methods, and subspace modeling

methods, were selected for designing the MCS. The advantage of these methods is its

fast training performance, since it requires only calculating mean of each class and com-

mon covariance matrix of the training samples. We give below a brief description of the

classifiers selected.

5.2.2.1 Spectral matching methods

The spectral matching-based methods consist of minimum distance classifier (MDC)

(Robila and Gershman, 2005) and spectral similarity measure(Granahan and Sweet,

2001) (SSM). The MDC labels an unknown pixel based on the minimum distance cri-

terion. The SSM labels the pixels based on spectral angle and spectral brightness dif-

ferences between the image and reference pixels. These classifiers label the unknown

pixel based on the minimum decision function value.

5.2.2.2 Probabilistic methods

The probabilistic methods consist of linear discriminant classifier (LDC), logistic re-

gression classifier (LRC), and naive Bayes classifier (NBC). The LDC can be derived

from the maximum-likelihood classifier (MLC). An MLC assumes that the classes are

normally distributed with different mean and covariance. The MLC becomes LDC, un-

der the condition that all the classes have equal co-variance (Duda et al., 2000). The

NBC assumes that features of input data are linearly independent and are normally dis-

tributed. It estimates the parameters (mean and variance) along each feature and finds

the likelihood for each of the features in the input data. Since the features are indepen-

dent, the posterior probabilities are estimated by taking the product of the likelihood

of each of the features and prior probability (Hastie et al., 2001). The LRC is a binary

classifier which linearly weights the input data features, and the weights are obtained by

maximizing the log-likelihood function through maximum-likelihood estimate. Then,

the sigmoid function is applied over the weighted sum of the input features. For multi-

class problem, the logistic regression is implemented by one strategy versus rest strategy

107



(Hastie et al., 2001; Cheng et al., 2006). This group of classifiers labels unknown image

pixel based on the maximum posterior probability values.

5.2.2.3 Subspace modelling methods

The subspace modelling methods consist of orthogonal subspace projection (OSP) and

target-constrained interference minimized filter (TCIMF). These methods work based

on nullifying the undesired and interfering class members. The goal of OSP is to find

an orthogonal complement projector for each of the desired class (one at time) which

projects the unknown pixel into a subspace orthogonal to the undesired class mean

matrix. The unknown pixel is assigned to the class which has maximum decision value.

The TCIMF assumes that the hyperspectral pixel vector is made up of three separate

sources such as desired pixel vector, undesired pixel vectors, and interference. Similar

to OSP, the TCIMF also splits the class mean vectors into desired class and undesired

class mean vectors. It is designed by the finite impulse response (FIR) filter that passes

the desired class mean vector, while annihilating the undesired class mean vectors. The

weight vector of FIR filter for each of the desired class is computed by minimizing the

energy of the filter (Ren and Chang, 2000). These methods label unknown image pixel

based on the maximum decision function value.

5.2.3 Diversity measurement

Diversity among the classifiers set is important when constructing an MCS. However,

quantitative description of the diversity is not straight forward and there is no accepted

formal definition. Further, there is no direct relationship between the diversity and

accuracy of the MCS (Kuncheva and Whitaker, 2003). To quantify the diversity in-

troduced by deploying hyperspectral image after applying the dimensionality reduction

methods, we adopted two statistical diversity measures: disagreement measure (DM)

(Skalak, 1996) and Kohavi-Wolpert variance measure (KWM) (Kohavi and Wolpert,

1996) which belong to pairwise and nonpairwise categories of diversity measures, re-

spectively. The DM is the ratio between the number of samples on which one classifier

is correct and other is incorrect to the total number of samples. Suppose there are L
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classifiers, then the averaged pairwise DM is given by

DM =
2

L(L− 1)

L�

i=1

L�

j=i+1

N i
10 +N j

01

N
(5.1)

where N i
10 is the number of samples correctly classified by ith classifier and incorrectly

classified by the jth classifier, N j
01 is the number of samples correctly classified by jth

classifier and incorrectly classified by the ith classifier, and N is the total number of

samples. Similarly, the Kohavi-Wolpert measure is given by

KWM =
1

NL2

N�

i=1

li (L− li) (5.2)

where N is the total number of samples and li is the number of classifiers which cor-

rectly classify the ith sample. The diversity increases with increasing values of DM and

KWM. In principle, any one of the diversity measures can be used for quantifying the

diversity. However, a combination of these two categories of measures provides com-

plimentary characteristics of diversity as both of them can be linearly related. Hence,

the total diversity measure (DA) of the set of classifiers in the MCS can be calculated

from 5.1 and 5.2 as

DA = DM +KWM (5.3)

5.3 Approach for Introducing Dynamism in the Selec-

tion of Classifiers in MCS

In a typical MCS application, all the classifiers forming the classifiers set are applied on

the input data irrespective of the inherent data dynamics with reference to the classifiers

set. This structural constraint of the MCS may lead to poor classification performance

and end up being no better than the classification performance achieved in a typical

supervised image classification. We redesigned the MCS framework to automatically

select and execute pairs of classifiers and dimensionality reduction methods which are

compatible and offer optimal results.

Let C = {C1, C2, . . . , CL} be the set of classifiers, D = {D1, D2, . . . , DM} be

the set of dimensionality reduction methods, n is the number of test pixels drawn from
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the classified image, c is the number of categories in the classified image, then the

error matrix E can be expressed as the distribution of n test pixels into c2 cells. Let Eij

denote the number of test pixels classified into category j (j = 1, . . . , c) in the classified

image of category i (i = 1, . . . , c) in the reference pixels, and let ui =
�c

j=1 Eij and

vj =
�c

i=1 Eij are the row and column sums of the error matrix E respectively. Then,

the overall accuracy can be computed as O =
�c

i=1 Eii

n
. Similarly, producer’s accuracy

(P ) and user’s accuracy (U ) can be computed as Pi =
Eii

vi
and Uj =

Ejj

uj
, respectively.

The kappa coefficient is calculated as

K =
n
�c

i=1 Eii −
�c

i=1 uivi
n2 −�c

i=1 uivi
.

These intermediate accuracy estimates were used for estimating the optimal dimen-

sion of the dimensionality reduction methods and for pairing up the classifiers and di-

mensionality reduction methods by classifying the training pixels by all the classifiers

and dimensionality reduction methods. Apart from this approach, the optimal dimen-

sionality of dimensionality reduction methods can also be estimated by using a class

separability measure which has computational advantage. Hence, the proposed DCS

has also been implemented to obtain the optimal dimensionality of hyperspectral im-

age, which is independent of the classifier by a class separability measure, Jeffreys-

Matusita (JM) distance measure extended for multiclass category, and is equivalent to

Bhattacharya bound (Bruzzone et al., 1995).

JBh =
c�

i=1

c�

j>1

�
p(ωi)p(ωj)J

2
ij (5.4)

where Jij =
�
2 (1− e−bij), bij is the Bhattacharyya distance1. As the JM distance

measure is a monotonic function, the flattening point of the curve is selected as the op-

timal dimension of the dimensionality reduction methods. The performance of the pro-

posed DCS with these two approaches was compared. Figure 5.1 depicts the schematic

outline of the proposed DCS with three stages and the algorithmic development of the

DCS is shown in algorithm 1. Stage I involves 1) constructing the pool of dimen-

sionality reduction methods and classifiers and 2) finding the optimal dimension of

1bij = − log
��

x

�
p(x/ωi)p(x/ωj)dx

�
, where p(x/ωi), andp(x/ωj) are the conditional density

functions for the vector x, given the classes ωi,ωj respectively.
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Algorithm 1 Algorithmic representation of the proposed DCS.
Input:
I : Hyperspectral Image
C : Classifier set as C = {C1, C2, . . . , CL}
D : be the set of dimensionality reduction methods as D = {D1, D2, . . . , DM}
X : be the training set, which contains the location index of the training samples in the image
Y : be the testing set, which contains the location index of the testing samples in the image
c : total available classes in the image, classes are represented as ω1,ω2, . . . ,ωc

threshold : accuracy difference (in %)

Output:
S : selected classifier for each dimensionality reduction method

1: procedure DCS ALGORITHM
2: Let S = {} be a null set
3: for i = 1 → M do
4: Apply the ith dimensionality reduction method (Di) on the hyperspectral image I
5: Estimate the optimal dimension of the dimensionality reduction method
6: (a): Using the classification accuracy of training samples for each classifier with holdout
7: strategy
8: (b): Using Extended JM distance class seperability measure of training samples
9: for j = 1 → L do

10: Train and test the classifier Cj using holdout strategy of training samples
11: Compute the error (confusion) matrix E, using the testing samples (remaining part of
12: training samples)
13: Calculate: Overall accuracy Oij =

�c
m=1 Emm

n × 100, and kappa coefficient
14:

Kij =
n
�c

l=1 Ell −
�c

k=1 ukvk
n2 −�c

k=1 ukvk

where Elk denote number of test pixels classified into category k in the classified image of
15: category k; uk and vk are the row and column sum of the error matrix E respectively.
16: end for
17: if i = 1 then
18: kd = argmaxj Oij , j = 1. . . . , L
19: else
20: select the classifier based on diversity analysis
21: {k1, k2, . . . , kp} = argmaxj(Oij −Oij�) ≤ treshold > 0, j, j� = 1, 2, . . . , L
22: d = argmaxs DA (S ∪ {Cks}) , s = 1, . . . , p where d ∈ {k1, . . . , kp}, DA is a function
23: which provides diversity value when the classifier Cks is added in the ensemble S
24: end if
25: end for
26: end procedure
27:
28: DCS Combination:
29: • Train the selected classifiers/dimensionality reduction method pair in S using entire training

sample

• Perform classification using selected classifier/dimensionality reduction method pair

• Combine the resulting decision values of the classifier/dimensionality reduction pair using
combination functions
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Figure 5.1: Schematic outline of the proposed DCS. In Stage I, the image clas-
sifications with all the classifiers relative to each dimensionality
reduction method are performed. In Stage II, the DCS identifies
pairs of optimal classifier and dimensionality reduction method. In
Stage III, the output from the pairs of classifiers and dimensionality
reduction method are combined to obtain final classified image.

dimensionality reduction methods relative to each classifier. In stage II, the MCS was

programmed to select an optimal classifier relative to each dimensionality reduction

method based on the classification accuracy estimates of training samples and the class

separability measure while considering the diversity score. By this stage, the antici-

pated advantage is to give the MCS the ability to select only a subset of classifiers and

corresponding dimensionality reduction methods for further processing for producing

final classification results. In the present case, the MCS identifies five pairs of clas-

sifier and dimensionality reduction method which are accurate and diverse for further

processing. The relative merits of identified classifier relative to each dimensionality

reduction method are combined together in stage III to produce final classified image.

We label this modified version of the MCS in which the classifiers are selected adaptive

to specific image data at hand as “DCS”.

Irrespective of the sophistication and suitability of the classifiers and corresponding

dimensionality reduction methods, the image classification results are ought to be influ-

enced by the combination function used (Du et al., 2012b; Yan and Shaker, 2011). It is,

therefore, desirable to have an idea of the impact of various combination functions on

the proposed DCS.
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5.3.1 Evaluation of classifier combination functions

As is the case with MCS, the performance of the proposed DCS depends upon the

type of combination function adopted for combining the intermediate classified images.

It is, therefore, necessary to assess the impact of various combination functions on

the performance of the proposed DCS. As the classifiers considered in the MCS are

heterogeneous, the classifiers’ decision values have to be transformed into a common

scale before combining the classifiers. Let d = [d1, d2, . . . , dc] be the decision values

of the classifier for c classes, then decision values di, i = 1, 2, . . . , c of the classifier can

be transformed as follows

di =





exp

�
− di

(
�

i d
2
i )

1/2

�
, for minimum decision value based classifiers

exp

�
di

(
�

i d
2
i )

1/2

�
, Otherwise

After the above transformation, the selected classifiers relative to each dimension-

ality reduction method were combined by six nontrainable combination functions and

two trainable combination functions. The nontrainable combination functions are ma-

jority voting (MV), maximum rule (max), minimum rule (min), product rule (prod),

average rule (avg), and median rule (med). These combination functions have been

extensively used in MCS due to their simplicity and robustness (Kittler, 1998). In the

trainable combination functions, we used supervised classifiers namely, support vector

machines (SVM) and MLC. The decision function values of the classifiers in the DCS

are stacked together as a 1-D vector and fed as the input to the trainable combination

function (Ceamanos et al., 2010; Thoonen et al., 2012). If there are L classifiers and

c number of classes, then dik, i = 1, 2, . . . , L, k = 1, 2, . . . , c, is the decision function

value of ith classifier and kth class. Then, the decision function values of L classifiers

are stacked together as t = [d1k, d2k, . . . , dLk], k = 1, 2, . . . , c, where element in t is a

vector consisting of classifiers decision values for c classes.
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5.3.2 Image classification using MCS and SVM

In order to assess the comparative performance of the proposed DCS with the state-of-

the-art methods, all the five hyperspectral images were classified by the MCS and SVM

using the same reference data samples. Because the SVM and some of the classifiers in

the MCS can classify high dimensionality data even without dimensionality reduction,

we performed the image classification experiments with and without dimensionality

reduction for all the combination functions. The SVM classification is performed with

RBF kernel using LIBSVM (Chang, Chih-Chung and Lin, 2011). Grid search method

has been used to determine the optimal parameters of the SVM. The best classification

accuracies were retained for comparison with the DCS.

5.3.3 Validation of the results

All the classified images were validated by cross-validation (Steele, 2005) to obtain

robust estimates of accuracies of the classification experiments. All the reference data

were split into training (90%) and testing (10%) samples by 10-fold cross-validation

and then performed classification of each image 10 times for the possible 10 splits.

For each classified image, an error matrix, overall accuracy, and kappa coefficient were

calculated. The accuracy estimates thus obtained were averaged to obtain representative

accuracy and error estimates. The number of reference data samples used is shown in

Table 5.1. Further, the statistical significance of the differences among the different

classification results was assessed by Z-test (Russell G. Congalton, 2008) and McNemar

test (Chi-squared test) (Foody, 2004) at 95% of confidence interval.

5.4 Results and Analysis

5.4.1 Hyperspectral datasets

Experiments were performed on five different hyperspectral images (HyMAP, ROSIS

University, ROSIS City of Pavia, ProSpecTIR,and HYDICE) which represent diverse

land cover categories in agriculture, urban, and mixed environmental settings.
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5.4.2 Dynamic selection of classifiers relative to dimensionality re-

duction methods by the proposed DCS

For each dimensionality reduction method, one optimal classifier was identified from

the pool of classifiers by 1) DCS constructed with the accuracy estimates obtained from

the classification of training samples [Table 5.2 (a)] and 2) DCS constructed with class

separability measure [Table 5.2 (b)].

Table 5.2: Identified pairs of optimal classifier and dimensionality reduction
(DR) method by the proposed DCS and the corresponding best
classification accuracy (OA: overall accuracy, KC: kappa coeffi-
cient); Estimated optimal dimension of the dimensionality reduction
method is in brackets.

(a) Optimal dimension of DR method estimated based on training samples classification

Hyperspectral Selected classifiers relative to dimensionality best pair
image reduction methods

ICA PCA MNF DWT KPCA OA KC

HyMAP NBC (9) LRC (14) OSP (22) LDC (5) LRC (31) 93.25 0.915

ROSIS University LRC (12) LDC (14) NBC (29) MDC (2) LRC (26) 82.78 0.802

ProSpecTIR LRC (8) LDC (17) SSM(17) MDC (5) NBC (9) 90.31 0.887

ROSIS City of Pavia LRC (7) LDC (14) LRC (9) LRC (3) LDC (31) 90.13 0.886

HYDICE LRC (21) NBC (10) LDC (21) SSM (4) TCIMF(18) 91.73 0.898

(b) Optimal dimension of DR method estimated based on class separability measure

Hyperspectral Selected classifiers relative to dimensionality best pair
image reduction methods

image ICA PCA MNF DWT KPCA OA KC

HyMAP LRC (10) LDC (12) MDC (9) LRC (5) NBC (10) 92.48 0.907

ROSIS University LRC (12) MDC (14) LRC (19) LDC (3) NBC (16) 81.23 0.784

ProSpecTIR LRC (9) MDC (9) NBC (8) NBC (7) SSM (10) 90.21 0.885

ROSIS City of Pavia LRC (12) NBC (12) MDC (13) LDC (3) LDC (14) 89.19 0.876

HYDICE LDC (7) SSM (8) LRC (14) NBC (3) TCIMF (13) 91.73 0.898

The estimated optimal dimension of the dimensionality reduction methods is indi-

cated in brackets. It can be observed that the DCS identified different classifiers for

different dimensionality reduction methods. The comparison of classifiers identified
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from the pool of classifiers reveals that only one classifier is repeated twice for different

hyperspectral images. Further, an examination for repetition of the optimal classifiers

for multiple hyperspectral images which contain similar land covers indicates signifi-

cant variations with respect to dimensionality reduction methods.

This indicates that the optimal classifier identified from a particular hyperspectral

image need not necessarily be applicable to another similar type of hyperspectral image,

thus emphasizing the need for adaptive selection of classifiers. The comparison between

Table 5.2 (a) and (b) indicates that the classification accuracies of the best classifier and

dimensionality reduction pair are not highly variable across different hyperspectral im-

ages despite the occurrence of different classifiers as optimal. Frequency of the selected

classifiers by the DCS relative to different dimensionality reduction methods and hyper-

spectral images indicates that some classifiers are most selected, whereas few classifiers

are least selected. These observations highlight the potential of DCS to avoid influence

of unsuitable classifiers in image classification.

5.4.3 Impact of the combination function on the classification per-

formance of the proposed DCS

In principle, the classified image obtained from any one of the pairs of classifiers and

dimensionality reduction methods identified by the DCS could be the final classified

image for land cover mapping. However, running the DCS unrestricted leads to per-

forming classification using all the pairs of optimal classifiers and dimensionality re-

duction methods for the same hyperspectral image; this results in multiple classified

images with variations in the classification accuracy, however, marginal. Within the

framework of the proposed DCS, we assessed the possibility of further enhancement

of classification accuracy by combining the classified images obtained from the mul-

tiple pairs of classifiers and dimensionality reduction methods using several trainable

and non-trainable combination functions. The overall accuracies and kappa coefficient

are presented in Table 5.3 (for DCS with optimal dimensionality estimated by training

samples classification) and Table 5.4 (for DCS with optimal dimensionality estimated

by class separability measure) and the corresponding classified images with best com-

bination functions in Figures 5.2, 5.3, 5.4, 5.5, 5.7, and 5.6.
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5.4.3.1 DCS with non-trainable combination function

The performance of proposed DCS changed considerably with different nontrainable

combination functions. When compared with the best classifier and dimensionality re-

duction pair (see Table 5.2), there has been marginal to significant increase in the overall

accuracy. Table 5.3 shows the classification accuracy obtained by the DCS combina-

tion function, when the optimal dimension of the dimensionality reduction methods are

determined by the classification accuracy of the training samples. The classification

accuracy increased by 4.09% and 5.22% with average rule and majority voting rule

for HyMAP and HYDICE hyperspectral images, respectively. For ROSIS University,

ProSpecTIR, and ROSIS City of Pavia hyperspectral images, the classification accuracy

improved by 5.46%, 5.42%, and 3.59% with product rule, respectively.

Table 5.3: Classification results from DCS (optimal dimension of the dimen-
sionality reduction method was estimated based on training samples
classification): Overall accuracy (OA, in %) and Kappa coefficient
(KC) of the classified image obtained by combination of the optimal
pairs of classifiers and dimensionality reduction methods for various
combination functions.

Hyperspectral
Non-trainable combination scheme

Trainable
Image combination scheme

MV Avg Max Min Med Prod MLC SVM

HyMAP OA 96.33 97.34 92.15 93.92 96.14 97.28 97.81 99.85
KC 0.958 0.969 0.903 0.932 0.953 0.964 0.972 0.998

ROSIS OA 86.65 88.16 84.91 81.94 85.91 88.24 89.45 92.37
University KC 0.848 0.863 0.829 0.792 0.839 0.865 0.877 0.909

ProSpecTIR OA 95 95.72 91.28 90.99 92.83 95.73 95.63 96.74
KC 0.942 0.95 0.898 0.891 0.916 0.95 0.949 0.962

ROSIS City OA 93.41 93.61 92.32 90.02 93.72 93.64 93.11 95.78
of Pavia KC 0.924 0.926 0.912 0.885 0.928 0.927 0.919 0.951

HYDICE OA 96.95 94.09 92.26 96.52 96.43 94.43 98.52 96.72
KC 0.963 0.927 0.905 0.957 0.956 0.931 0.976 0.959
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Table 5.4: Classification results from DCS (optimal dimension of dimensional-
ity reduction method was estimated based on class separability mea-
sure): Overall accuracy (OA, in %) and Kappa coefficient (KC) of
the classified image obtained by combination of the optimal pairs of
classifiers and dimensionality reduction methods for various combi-
nation functions.

Hyperspectral
Non-trainable combination scheme

Trainable
Image combination scheme

MV Avg Max Min Med Prod MLC SVM

HyMAP OA 95.47 96.26 92.53 95.51 95.39 96.23 97.79 98.5
KC 0.944 0.952 0.907 0.946 0.939 0.957 0.969 0.982

ROSIS OA 84.77 85.47 83.97 80.36 82.12 85.39 88.3 90.56
University KC 0.825 0.833 0.818 0.774 0.793 0.832 0.865 0.892

ProSpecTIR OA 93.4 94.96 92.14 93.39 94.96 94.91 95.52 97.28
KC 0.923 0.941 0.908 0.923 0.938 0.94 0.949 0.968

ROSIS City OA 92.53 92.63 91.39 89.67 91.54 92.74 93.04 93.79
of Pavia KC 0.914 0.915 0.901 0.881 0.903 0.916 0.92 0.928

HYDICE OA 97.58 93.83 91.8 92.51 96.14 94.11 97.99 97.61
KC 0.969 0.925 0.898 0.91 0.951 0.928 0.975 0.971

(a) (b)

Figure 5.2: DCS-based classified images of HyMAP data with best nontrain-
able combination function (a) the optimal dimension of the dimen-
sionality reduction methods was estimated based on training sam-
ples classification (b) the optimal dimension of the dimensionality
reduction methods was estimated based on class separability mea-
sure.

The classification accuracy of the combination functions, when the optimal dimen-

sion of the dimensionality reduction methods was estimated by the class separability

measure, is shown in Table 5.4. The magnitude of increase in classification accuracy is

similar to Table 5.3 for ROSIS City of Pavia and HYDICE hyperspectral images.
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(a) (b)

(c) (d)

Figure 5.3: DCS-based classified images (best nontrainable combination func-
tion; the optimal dimension of the dimensionality reduction meth-
ods was estimated based on training samples classification): (a)
ROSIS University, (b) ROSIS City of Pavia, (c) ProSpecTIR, and
(d) HYDICE
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(a) (b)

(c) (d)

Figure 5.4: DCS-based classified images (best nontrainable combination func-
tion; the optimal dimension of the dimensionality reduction meth-
ods was estimated based on class separability measure): (a) ROSIS
University, (b) ROSIS City of Pavia,(c) ProSpecTIR, and (d) HY-
DICE.
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For remaining hyperspectral images, the increase in classification accuracy is less

than one order of magnitude over the best classifier and dimensionality reduction pair.

From Tables 5.3 and 5.4, it can also be inferred that there is more than one nontrain-

able combination functions which offer better classification accuracy with all the five

hyperspectral images. Moreover, the product and average rule resulted in similar clas-

sification accuracy for all the five hyperspectral images. The DCS-based classification

using maximum and minimum as the combination function resulted in accuracy either

decreased or no change to the best classifier and dimensionality reduction pair for some

of the hyperspectral images. This observation suggests the significance of the adopting

appropriate combination function to fully exploit the potential of DCS.

5.4.3.2 DCS with trainable combination function

When the intermediate classified images in the DCS were combined with trainable com-

bination functions, the classification accuracy increased further when compared with

the results obtained from the non-trainable combination functions. From Table 5.3, the

classification accuracy of the DCS (when the optimal dimension of the dimensionality

reduction methods was estimated based on classification accuracy of training samples)

with the SVM combination scheme is increased by 6.60%, 9.59%, 6.43%, 5.65%, and

4.99% for the HyMAP, ROSIS University, ProSpecTIR, ROSIS City of Pavia, and HY-

DICE hyperspectral images, respectively. With the MLC combination scheme, the clas-

sification accuracy has improved up to 6% for ROSIS University and HYDICE images

and 2-4% for the remaining hyperspectral images.

The combination of classifiers selected by the DCS (when the optimal dimension

of the dimensionality reduction methods was estimated based on class separability) in

Table 5.2 (b) resulted in 3-9% improvement with the SVM combination scheme and

3-6% of improvement with the MLC combination scheme. Compared to Table 5.3,

there is a similar magnitude of improvement in the classification accuracy for the three

images and negligible magnitude difference (1%) for the remaining images. However,

the classification accuracies resulted in Table 5.3 are higher for the four hyperspectral

images compared to Table 5.4. Contrary to this, Table 5.4 results in higher classification

accuracy for ProSpecTIR hyperspectral image.
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(a) (b)

(c) (d)

Figure 5.5: DCS-based classified images (best trainable combination function;
the optimal dimension of the dimensionality reduction methods was
estimated based on training samples classification): (a) ROSIS Uni-
versity, (b) ROSIS City of Pavia,(c) ProSpecTIR, and (d) HYDICE.
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(a) (b)

Figure 5.6: DCS-based classified images of HyMAP data with best trainable
combination function (a) the optimal dimension of the dimension-
ality reduction methods was estimated based on training samples
classification (b) the optimal dimension of the dimensionality re-
duction methods was estimated based on class separability mea-
sure.

Table 5.5: Statistical significance test (Z-test and McNemar test (Chi-squared
test)) between DCS and single best classifier and dimensionality re-
duction method pair for all the combination functions (optimal di-
mension of dimensionality reduction method was estimated based
on training samples classification). The cases with statistically sig-
nificant are highlighted in bold.

Kappa variance statistical significance test (Z-test)

Hyperspectral Non-trainable combination Trainable combination
Image function function

MV Avg Max Min Med Prod MLC SVM

HyMAP 11.18 16.03 3.95 2.44 9.94 15.87 17.17 23.09
ROSIS University 8.27 7.72 3.2 0.12 3.84 7.79 14.19 17.36

ProSpecTIR 5.21 7.09 1.18 0.54 3.19 7.14 6.84 10.01

ROSIS City of Pavia 6.39 7.04 5.91 0.4 7.55 7.15 5.26 9.58

HYDICE 17.06 5.4 0.12 13.03 12.74 6.21 18.87 13.12

McNemar test (Chi-squared test)

Hyperspectral Non-trainable combination Trainable combination
Image function function

MV Avg Max Min Med Prod MLC SVM

HyMAP 206.54 374.56 21.17 10.72 119.14 375.3 385.68 504

ROSIS University 129.89 86.42 10.09 0.19 15.56 89.65 297.99 379.7

ProSpecTIR 49.85 111.34 7.59 0.52 9.09 111.43 109.92 175.9

ROSIS City of Pavia 17.72 18.18 10.03 1.23 20.62 18.36 14.85 96.25

HYDICE 497.46 69.76 0.16 376.49 279.62 86.56 556.44 285.8
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Table 5.6: Statistical significance test (Z-test and McNemar test (Chi-squared
test)) between DCS and single best classifier and dimensionality re-
duction method pair for all the combination functions (optimal di-
mension of dimensionality reduction method was estimated based
on class separability measure). The cases with statistically signifi-
cant are highlighted in bold.

Kappa variance statistical significance test (Z-test)

Hyperspectral Non-trainable combination Trainable combination
Image function function

MV Avg Max Min Med Prod MLC SVM

HyMAP 10.91 14.5 0.16 11.1 10.6 14.37 18.38 21.21

ROSIS University 5.71 6.1 2.55 1.43 1.45 5.94 14.59 16.95

ProSpecTIR 3.86 6.87 2.18 3.54 6.93 6.27 7.96 12.01

ROSIS City of Pavia 5.93 6.24 4.88 0.87 5.09 7.54 8.23 9.05

HYDICE 22.35 8.56 0.73 1.82 16.4 9.45 19.78 7.84

McNemar test (Chi-squared test)

Hyperspectral Non-trainable combination Trainable combination
Image function function

MV Avg Max Min Med Prod MLC SVM

HyMAP 218.34 339.03 2.29 157 136 320.57 394.51 483.56

ROSIS University 109.89 76.42 9.72 0.29 0.42 89.65 301.29 363.41

ProSpecTIR 37.65 107.42 12.6 36.3 109 105.63 128.17 197.57

ROSIS City of Pavia 31.45 28.32 20.3 1.98 23 33.75 38.08 89.23

HYDICE 622.58 67.18 1.92 3.09 286 82.95 501.01 59.23

The results of the statistical significance test are shown in Tables 5.5-5.7. Under the

condition Z > 1.96 and χ2 > 3.841, the difference in accuracy is regarded as statisti-

cally significant at 95% confidence interval. The statistically significant cases are high-

lighted in bold. As evident from Table 5.5, and 5.6, the accuracy differences between

the single best classifier/dimensionality reduction pair and the DCS are significant for

most of the combination functions. A significant increase in the classification accu-

racy has been observed with all the five hyperspectral images. However, the accuracy

differences amongst the non-trainable combination functions are marginal to moderate.

When compared to non-trainable combination functions, the accuracy improvements

by DCS with trainable combination function are consistently higher by magnitude and
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(a) (b)

(c) (d)

Figure 5.7: DCS-based classified images (best trainable combination function;
the optimal dimension of the dimensionality reduction methods was
estimated based on class separability measure): (a) ROSIS Univer-
sity, (b) ROSIS City of Pavia,(c) ProSpecTIR, and (d) HYDICE.
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Table 5.7: Statistical significance test (Z-test and McNemar test (Chi-squared
test)) between the best non trainable combination function and the
trainable combination function of the DCS. The cases with statisti-
cally significant are highlighted in bold.

(a) Optimal dimension of DR method estimated based on training samples classification

Hyperspectral Kappa variance statistical McNemar test
image significance test (Z-test) (Chi-squared test)

MLC SVM MLC SVM

HyMAP 1.62 15.02 3.05 234.46

ROSIS University 6.45 9.65 65.74 223.57

ProSpecTIR 0.46 2.95 0.95 18.09

ROSIS City of Pavia 1.99 10.5 11.93 158.66

HYDICE 6.95 1.71 72.34 2.86

(b) Optimal dimension of DR method estimated based on class separability measure

Hyperspectral Kappa variance statistical McNemar test
image significance test (Z-test) (Chi-squared test))

MLC SVM MLC SVM

HyMAP 7.27 11.38 98.88 159.62

ROSIS University 5.64 11.07 51.67 235.5

ProSpecTIR 1.75 6.69 3.04 81.33

ROSIS City of Pavia 1.01 3.36 2.98 40.24

HYDICE 1.17 0.21 2.21 0.78

are statistically significant for four of the five hyperspectral images (see Table 5.7).

5.4.4 Comparison of classification performance of the proposed DCS

with MCS and SVM

Table 5.8 shows the overall accuracy estimates obtained from SVM, MCS, and DCS

for all the five images. For reference, the overall accuracy obtained with the best clas-

sifier/dimensionality reduction pair is also included. Table 5.8 (a) shows the accuracies

offered by the DCS (the optimal dimension of the dimensionality reduction methods

was estimated based on the training samples classification) when combining the se-

lected classifier and dimensionality reduction pair in Table 5.2 (a).
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Table 5.8: Classification accuracy (%) obtained with MCS (with best combi-
nation function), SVM (with and without dimensionality reduction
(DR) method), the proposed DCS (with the best combination func-
tion), and the single best classifier/dimensionaliy reduction pair.

(a) Optimal dimension of DR method estimated based on training samples classification

Hyperspectral DCS MCS SVM Best
image With Without Without With pair

DR DR DR DR

HyMAP 99.85 96.65 87.79 87.43 95.91 93.25

ROSIS University 92.37 85.21 82.44 78.87 87.98 82.78

ProSpecTIR 96.74 94.32 92.86 91.12 94.84 90.31

ROSIS City of Pavia 95.78 91.26 87.17 87.71 92.27 90.13

HYDICE 98.52 95.73 94.48 92.33 95.66 91.73

(b) Optimal dimension of DR method estimated based on class separability measure

HyMAP 98.5 96.38 87.79 87.43 95.91 92.48

ROSIS University 90.5 84.33 82.44 78.87 87.98 81.23

ProSpecTIR 97.23 93.4 92.86 91.12 94.84 90.21

ROSIS City of Pavia 93.79 89.67 87.17 87.71 92.27 89.19

HYDICE 97.99 96.25 94.48 92.33 95.66 91.73

The DCS offered consistently higher accuracies when compared with the MCS or

SVM methods, even though with relatively lower margin for HYDICE image. The DCS

shows 3.2%, 7.16%, 2.42%, 4.52%, and 2.79% increase when compared with MCS and

3.94%, 4.39%, 1.9%, 3.51%, and 2.86% increase when compared with SVM for the

HyMAP, ROSIS University, ProSpecTIR, ROSIS City of Pavia, and HYDICE image,

respectively. When the pair of classifiers and dimensionality reduction method resulted

in Table 5.2 (b) are combined, the DCS offers about 4-6% enhancement in classifica-

tion accuracy over the MCS and about 2% improvement over the SVM classification.

Further, the drastic enhancement in classification accuracy of DCS, an increase of about

11-13%, can be observed when compared with SVM and MCS classification without

dimensionality reduction method in Table 5.8 (a) and (b). The comparison between

Table 5.8 (a) and (b) shows that there is about 2% accuracy difference for HyMAP, RO-

SIS University, and ROSIS City of Pavia hyperspectral images and for the remaining

images, the accuracies are comparable. Table 5.8 indicates that SVM’s performance is

comparable or better than the MCS when applied with dimensionality reduction: out
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of the five images, SVM offered marginally higher accuracy for three images; whereas

the MCS indicates marginal increase for two images. However, the performance of

SVM and MCS varied significantly while implementing with and without applying di-

mensionality reduction. These observations conclude that DCS is a good candidate to

produce diverse and adaptive classifiers in the MCS for hyperspectral image classifica-

tion.

5.4.5 Computational complexity analysis

Table 5.9 shows the computational complexity analysis of the DCS and MCS. The MCS

combines all the classifiers relative to each dimensionality reduction method, whereas

the DCS combines only the identified optimal classifier relative to each DR method.

It is interesting to observe that the computation time of DCS is better than the MCS

with single dimensionality reduction method and with all the five dimensionality reduc-

tion methods. This may be due to the computational time difference of the SVM com-

bination function in MCS and DCS. In the MCS, all the classifiers are engaged in the

combination function, which gets further complicated by the use of the SVM combina-

tion function. In the DCS, only a subset of the classifiers is engaged in the combination

function, thereby compensating the computational complexity introduced by the dy-

namic selection criteria. The computation time mentioned in Table 5.9 is calculated for

10 runs and it includes both training and testing time. The experiments are performed

with a typical desktop computer (4 GB RAM, Intel i-5 processor @3.20 GHz, 64-bit

operating system), and it has been observed that the computational time for the selection

of the optimal classifiers and DR methods in the DCS is 1s. The computation time of

DCS with optimal dimensionality estimated by training samples classification and class

separability measures differed considerably with the class separability measure show-

ing relatively better performance. However, the apparent computational comparisons

are variable by the number of information classes in the hyperspectral image.
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Table 5.9: Computation time (CPU time in sec) taken by the MCS with all the
dimensionality reduction methods (DR), MCS with single dimen-
sionality reduction method (DR), and the proposed DCS.

(a) Optimal dimension of DR method estimated based on training samples classification

Hyperspectral Optimal dimension MCS with all the MCS with single DCS
Image estimation DR methods DR method

HyMAP 894.22 1928.56 1396.86 1376.24

ROSIS University 942.14 2073.49 1521.76 1502.54

ProSpecTIR 5537.69 6198.19 5885.29 5876.89

ROSIS City of Pavia 1325.73 2759.23 2105.53 2034.13

HYDICE 1207.68 1950.78 1559.28 1542.74

(b) Optimal dimension of DR method estimated based on class-separability measure

HyMAP 34.78 899.52 470.08 448.25

ROSIS University 45.96 1292.36 742.66 706.76

ProSpecTIR 272.94 1034.44 683.04 669.34

ROSIS City of Pavia 35.89 1421.89 752.89 714.19

HYDICE 51.11 1065.02 674.8 656.12

5.4.6 Diversity creation in the MCS with multiple dimensionality

reduction methods

The statistical diversity measures, DM and KWM, were applied on the MCS to quantify

the diversity existed in the MCS with and without dimensionality reduction methods.

Table 5.10 shows the computed DM and KWM values for the various hyperspectral im-

ages. The DM and KWM values for each hyperspectral image without dimensionality

reduction are the diversity existed in the classifiers considered for designing the MCS.

As seen in Table 5.10, the diversity estimate increased considerably after the dimension-

ality reduction methods were applied. Further, diversity in MCS is considerably higher

when the optimal dimension of the dimensionality reduction methods was determined

by class separability measure [see Table 5.10 (b)]. The change in diversity values across

different images indicates the inherent differences in the data acquired from different

sources and environmental conditions.

The analysis of the diversity measures shows that there is a positive relationship

between diversity and classification accuracy. For example, the DCS offered highest
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Table 5.10: Diversity estimates of the MCS (with and without dimensionality
reduction (DR) methods) and DCS for the hyperspectral images
considered.

(a) Optimal dimension of DR method estimated based on training samples classification

Hyperspectral Diversity measures of MCS Diversity measure of DCS
image DM KWM DM KWM

without with DR without DR with DR

HyMAP 0.1833 0.2051 0.0855 0.1008 0.112 0.0448

ROSIS University 0.3001 0.3621 0.1629 0.1886 0.1946 0.0778

ProSpecTIR 0.1523 0.1709 0.0563 0.0843 0.0822 0.0329

ROSIS City of Pavia 0.2307 0.2791 0.1263 0.1426 0.07973 0.03189

HYDICE 0.1696 0.2003 0.0838 0.0937 0.1228 0.0491

(b) Optimal dimension of DR method estimated based on class separability measure

HyMAP 0.1833 0.2875 0.0855 0.1413 0.0937 0.0375

ROSIS University 0.3001 0.3798 0.1629 0.1867 0.1808 0.0723

ProSpecTIR 0.1523 0.3041 0.0563 0.1495 0.0859 0.0344

ROSIS City of Pavia 0.2307 0.3014 0.1263 0.1481 0.082 0.0328

HYDICE 0.1696 0.2873 0.0838 0.1412 0.1308 0.0523

increase in the accuracy for ROSIS University image for which the diversity measures

show highest magnitudes.

5.5 Discussion

The classical hyperspectral image classification techniques are exposed with new chal-

lenges in terms of data dimensionality, limited training samples, and to cater to the

needs of wider application domains (Jia et al., 2012; Braun et al., 2012; Hasanlou and

Samadzadegan, 2012; Bioucas-Dias et al., 2013). Consequently, a number of dimen-

sionality reduction methods and classifiers have been developed. However, there is

no classifier or dimensionality reduction method which is optimal across hyperspectral

data sources and application domains. In general, the appropriate classifier and dimen-

sionality reduction method are identified before hand by analyst’s prior knowledge or

on heuristic basis, thus making the results being subjective and the procedure being ex-

pert dependent. There has been an increasing interest in the development of methods
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for efficient classification of hyperspectral image. An MCS is viewed as one of the ef-

fective methodologies to improve hyperspectral image classification performance (Du

et al., 2012b; Samiappan et al., 2013; Thoonen et al., 2012; Yang et al., 2010a). During

the last two decades, MCS has developed significantly by theories and empirical studies

and has been used widely in various applications of pattern recognition. The necessity

of generating multiple transformations of image and selection of appropriate classifier

from a pool of classifiers for hyperspectral image classification can be easily handled by

the MCS architecture. However, the success of MCS depends upon the diversity of clas-

sifiers’ performance (Ceamanos et al., 2010; Yang et al., 2010b). In principle, different

variants of a hyperspectral image can be generated by using different dimensionality

reduction methods and the set of all these images can then be exploited for diversity

requirement in the MCS. Our results indicate that the diversity in performance of the

classifiers in the MCS can be generated by applying multiple dimensionality reduction

methods on the input data (see Table 5.10).

Identifying classifiers adaptive to different hyperspectral images avoids the negative

impact of the presence of bad classifiers, thereby increasing the classification perfor-

mance of the MCS. In this chapter, we have proposed and demonstrated experimentally

an algorithmic extension of the MCS framework, named as DCS, to automatically iden-

tify classifiers optimal to the type of hyperspectral image and the distribution of land

cover classes. The proposed DCS pairs up optimal classifiers and dimensionality re-

duction method and classifies hyperspectral image within the MCS framework using

only the selected set of classifiers. The algorithm thus picks up a classifier which is

optimal at the overall image level, relative to a dimensionality reduction method. The

proposed DCS algorithm has been tested with experiments on five multi-site airborne

hyperspectral images of different land cover and environmental settings. The classifi-

cation performance of the DCS has been compared with MCS and SVM.

Compared to the accuracy estimates obtained with the MCS, SVM, and the typical

supervised classification using the best classifier/dimensionality reduction pair, there

has been 4-10% increase in the overall classification accuracy. This is an important im-

provement, given the expectation of higher accuracy estimates from the hyperspectral

images and the importance of increase at the higher end of accuracy line. However,

it can be observed that for some hyperspectral images (e.g., HYDICE), this increase

is marginal by overall accuracy. This apparent increase in the classification accuracy
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indicates functional relevance of the optimal pairs of classifiers and dimensionality re-

duction methods and the prospects of creating diversity in the classifiers performance

by feeding data from different dimensionality reduction methods in the MCS by the

proposed DCS. Interestingly, the SVM has shown relatively better performance over

the MCS when applied with dimensionality reduction. However, its performance is

comparable with that of the best classifier/dimensionality reduction pair when applied

without dimensionality reduction. Apart from the appropriate classifiers and dimension-

ality reduction methods, the type of combination function used has significant bearing

on the performance of the DCS, akin to the MCS. We observed the overall classifica-

tion accuracy of all the five hyperspectral images increased by marginal to significant

magnitudes when the classifiers are combined using trainable combination functions.

Since the classifiers and the dimensionality reduction methods are heterogeneous, the

resulting decision function values of the classifiers contain extreme differences in mag-

nitude and direction with reference to the decision function values. Our observation of

better overall accuracies for the different hyperspectral images indicates the superior

capability of trainable combination functions (SVM) over non-trainable combination

functions.

As the performance of the classifier significantly depends on the optimal dimension

of the dimensionality reduction methods, we used two approaches: accuracy estimates

from training samples classification and extended JM distance class separability mea-

sure for estimating the optimal dimension. Although there has been only marginal

difference in the classification accuracy, the computational time is significantly lower

for the optimal dimensionality estimation using the class separability measure. The pro-

posed DCS algorithm could be used with any combination of classifiers, dimensionality

reduction methods and hyperspectral data. Depending upon the complexity of the infor-

mation classes and the combination function, the DCS algorithm can offer classification

performance better than the MCS and SVM. The DCS shows comparatively equal or

better computational performance to the MCS, because the computational complexity

of the SVM combination function is higher with the increasing number of the classifiers.
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5.6 Chapter Conclusions

In this chapter, we proposed and implemented a modified version of the MCS frame-

work, named as dynamic classifier system, to automatically select and execute pairs

of optimal classifiers and dimensionality reduction methods for the hyperspectral im-

age classification. We implemented the proposed approach by classifying five different

airborne hyperspectral images. The major conclusions of this chapter are:

• the proposed dynamic classifier system is effective in providing diverse and ac-

curate classifiers for MCS based classification

• the improvement in the classification accuracy of the proposed system outper-

forms the state-of-the-art methods considered

• deployment of multiple dimensionality reduction methods may be considered as

alternative to the current practice of depending upon diversity created by differ-

ential error estimates of the classifiers in MCS.
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CHAPTER 6

DYNAMIC CLASSIFIER SELECTION

APPROACHES FOR HYPERSPECTRAL IMAGE

CLASSIFICATION

Prelude: Continuing our work on the algorithmic developments for incorporating dy-

namism in the multiple classifier system presented in the Chapter 5, this chapter presents

one more improved and innovative algorithmic development for dynamic classifier se-

lection for hyperspectral image classification. The approach presented in this chapter is

different to that presented in the Chapter 5 in the sense that the present approach also

incorporates spatial contextual information apart from the spectral information. To

incorporate spatial contextual information, extreme learning machine based dynamic

classifier selection approach is regularized with Markov Random Field model. The

experimental results are compared with the state-of-the-art methods.

6.1 Introduction

Multiple classifier system (MCS) has been recently explored to improve the perfor-

mance of hyperspectral image classification by combining the predictions of multi-

ple classifiers (Benediktsson and Kanellopoulos, 1999; Santos et al., 2013; Samiappan

et al., 2013), thereby reducing the dependence on the performance of a single classifier.

For the MCS to perform better than the single best classifier, the classifiers used in the

MCS construction have to be diverse, because combining similar classification results

may not improve accuracy (Kuncheva and Whitaker, 2003).

This chapter will be published in IEEE Journal of Selected Topics in Applied Earth Observation

and Remote Sensing, with the title: “ Dynamic Classifier Selection Approach for Hyperspectral Image

Classification with Joint Spectral and Spatial Information”. Authors: Bharath Bhushan Damaodaran,

Rama Rao Nidamanuri, Yuliya Tarabalka



Diversity in the MCS can be created explicitly and implicitly. Explicitly, the diver-

sity in the MCS is created by defining a diversity measure and optimizing it. Implic-

itly, diversity can be introduced by selecting a subset of features (Tin Kam Ho, 1998;

Yang et al., 2010b; Ceamanos et al., 2010), training samples manipulation (Fernandez-

Redondo et al., 2004; Chan et al., 2012), selecting classifiers from different categories

and different feature extraction methods (Bakos and Gamba, 2011; Damodaran and

Nidamanuri, 2014). However, the diversity constraint alone does not guarantee that

the MCS always performs better. The possibility of inaccurate base classifiers and

the incompatible combinations of the classifiers may instead end up the MCS with the

suboptimal performance. An ensemble pruning approach has been proposed to select

reasonably accurate base classifiers (Zhang and Zhu, 2011; Yi et al., 2006; Zhou et al.,

2002). In this method, instead of combining all the available base classifiers in the MCS,

a subset of classifiers is selected based on the criteria like diversity measures, perfor-

mance measures for decision fusion. This approach has been expanded by proposing a

unified framework (Damodaran and Nidamanuri, 2014) which consists of both diversity

creation (implicit and explicit) and performance measures of base classifiers, as well as

selecting the classifiers with non-zero weights by sparse optimization methods (Gurram

and Kwon, 2013) to form an effective MCS. However, the selection of classifiers in this

method is independent of the location of the image pixel in the feature space; hence all

the classifiers take part in classifying each image pixel. On the other hand, the optimal

subset of classifiers varies for different spatial locations in the image. Therefore, the

performance of the MCS can be improved by selecting the best subset of classifiers dy-

namically relative to each image pixel, known as dynamic classifier/ensemble selection

(DCS/DES) (Kirchhoff and Bilmes, 1999; Singh et al., 2008; Didaci et al., 2005).

The success of DCS depends on accurate estimation of classifiers competence for

a given image pixel. The classifiers forming a dynamic subset are chosen based on es-

timating the accuracy (competence) of the each base classifier in a local region around

the image pixel, and the selection is based on the highest accuracy criterion. The clas-

sifier competence can be computed by local accuracy (LA) estimation methods (Didaci

et al., 2005; Woods et al., 1997; Smits, 2002) and probabilistic model based methods

(Woloszynski and Kurzynski, 2011). Recently, Du et al. (2012a) have studied the ca-

pability of DCS for hyperspectral image classification using local accuracy estimation.

However, their study is limited to two optimal classifiers as the base classifiers. When
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the number of base classifiers increases and in the presence of inaccurate classifiers

the performance of DCS based on LA is uncertain. Both the LA estimation methods

and a probabilistic model approach compute the distance between the test pixel and

the training (validation) samples. Therefore, this results in computational expensive for

large scale problems. The regression based probabilistic model approach reduces the

computational factor at the cost of the accuracy (Woloszynski and Kurzynski, 2011).

Hence it is highly desirable to develop an accurate and computationally efficient DCS

methodology for hyperspectral image classification.

Apart from spectral content, airborne hyperspectral sensors also provide rich spa-

tial information (Tarabalka et al., 2009; Lixia Yang et al., 2014; Fauvel et al., 2012).

Markov random field (MRF) model is a powerful method for modelling the spatial con-

textual information, which assumes that the neighbouring pixels are likely to belong to

the same class (Fauvel et al., 2013; Tarabalka et al., 2010; Ghamisi et al., 2014). Most of

the state-of-the-art studies deal with MRF regularization for a single classifier, yielding

significant improvement in the classification performance (Tarabalka et al., 2010; Zhang

et al., 2011; Bai et al., 2013; Aghighi et al., 2014; Li, 2014; Li et al., 2014). There are

few studies which tested the application of an MRF model to MCS-based image classi-

fication (Junshi Xia, Peijun Du, 2013; Khodadadzadeh et al., 2014). Furthermore, DCS

emerges as a strong candidate to capture the spectral information of a hyperspectral im-

age, since it overcomes the structural limitation of a single classifier, as well as classifier

combination or classifier fusion methods. Hence, the spectral information-based DCS

enhanced with rich spatial information can be a sound classification methodology for

hyperspectral image classification.

The main contributions of this chapter are the following: We propose an extended

version of the probabilistic model DCS based on extreme learning machine (ELM)

approach. The new DCS-ELM method is sensitive to local variations in an image during

the ensemble classifier selection stage. Further, we propose a new unified framework to

exploit both spectral and spatial information for hyperspectral image classification.

The flow-chart of the spectral-spatial DCS method is shown in Figure 6.1. The pro-

posed framework extracts the spectral information by using the DCS framework and

the spatial information by applying the MRF model. Experiments have been conducted

with two multi-site airborne hyperspectral images, and results showed that proposed
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Figure 6.1: Flowchart of the dynamic classifier selection with joint spectral and
spatial approach.

spectral-spatial DCS method yielded the improved classification accuracies when com-

pared to the previously proposed techniques.

The remainder of the chapter is organized as follows. In the Section 6.2, the dy-

namic classifier selection approaches are introduced for hyperspectral image classifi-

cation. Then, the proposed dynamic classifier approach with joint spectral and spatial

information is described. The experimental results of dynamic classifier approaches are

presented in the Section 6.3 and it is discussed in Section 6.4. In the last section, the

conclusions are drawn.

6.2 Methodology

6.2.1 Multiple classifier system

Let Ψ = {ψ1,ψ2, . . . ,ψL} be the base classifiers forming a MCS, and each classifier

ψl, l = 1, 2, . . . , L be a function ψl : χ → Ω from an input space χ ⊆ Rn to a set
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of class labels Ω = {ω1,ω2, . . . ,ωM} (M is the number of classes). For any given

x ∈ χ, classifier ψl produces a vector of decision values d = [dl1, dl2, . . . , dlM ] and x

is assigned to the class which has the maximum probability (decision) value. The base

classifiers have to commit different types of errors in their predications on different parts

of the input space, so that the MCS produces more accurate results when compared

to individual classifiers. The random subspace method (RSM) is a popular ensemble

generation technique to generate multiple input data sources from a single input data,

thus creating diversity among the classifiers in a MCS (Ceamanos et al., 2010).

The RSM partitions the hyperspectral image bands into L subsets and each subset

contains P
L

number of bands, where P denotes the number of bands in the original hy-

perspectral image. Each input data source generated from the RSM is returned as the

input to the learning algorithm ψ. Support vector machines (SVM) have gained interest

in hyperspectral image classification due to their ability to deal effectively with high-

dimensional data and small training sets (Plaza et al., 2009; Camps-Valls and Bruzzone,

2005; Pal and Mather, 2005). The performance of SVM varies across different input

data sources, thus introducing diversity in the MCS. Apart from SVM, RSM also has

the capability to mitigate the small sample size problem and offers good classifica-

tion accuracies in the heterogeneous environment. The SVM coupled with the output

from the RSM were used as base classifiers in the MCS. The concept of combining

all the base classifiers available in the MCS to obtain the final classified image, known

as classifier combination or classifier fusion (CF) method were extensively explored.

Therefore, here we focus on the dynamic classifier selection (DCS) approach, which

dynamically selects a subset of classifiers for a given image pixel. In the following

section, we describe the various dynamic classifier approaches that we propose to apply

for hyperspectral image classification.

6.2.2 Dynamic classifier selection (DCS) approaches

The basic idea of the DCS is to find the classifier with the highest probability of being

correct for a given unseen sample. The selection of correct classifiers and hence the suc-

cess of the DCS depends upon the estimation of the classifiers competence for a given

sample. The classifier competence measure is estimated from validation samples (dif-

ferent from training samples and testing samples). Apart from the training and testing
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samples, validation samples are also generated for estimating the classifier competence

in dynamic classifier selection. Let V = {(v1, j1), (v2, j2), . . . , (vN , jN)}, be the val-

idation set containing pairs of validation samples and their corresponding class labels.

A brief description of different methods used to estimate the classifier competence is

given below.

6.2.2.1 Dynamic classifier selection by local accuracy estimate (DCS-LA)

The DCS-LA estimates accuracy of each classifier in a local surrounding region of the

image pixel to be classified in the validation samples, and selects the classifier that ex-

hibits higher local accuracy. Let x be an image pixel to be classified and let us consider

k-nearest neighbours of x in the validation set, denoted as N(x) ∈ V. Woods et al.

(1997) introduced two strategies to measure the local accuracy: overall local accuracy

and local class accuracy. In this work we used the second strategy, since it achieves

better results both (Woods et al., 1997) in our experiments.

Now let x be the image pixel to be classified and without loss of generality we as-

sume that the classifier ψl assigns class label ωm to the image pixel x (i.e., ψl(x) = ωm).

Then the local accuracy (LA) of classifier ψl (LA is known as the classifier competence

measure) is denoted by

LA(ψl,x) =
Nm�M
i=1 Nim

, N(x) ∈ V | ψl(vj) = ωm, j = 1, 2, . . . , k (6.1)

where Nm is the number of correctly classified samples by the classifier ψl to the class

ωm in the neighborhood N(x), and
�M

i=1 Nim is the number of the k-nearest samples of

x in V that have been assigned to the class ωm by the classifier ψl. The classifier which

exhibits highest local accuracy is selected as the adaptive classifier for image pixel x

and the classifier selection is performed as

l = argmax
i

LA(ψi,x), i = 1, 2, . . . , L (6.2)

where l is the index of the classifier which provides highest local accuracy for image

pixel x.

However, in this approach all the neighbouring samples are given equal significance
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and the classifiers probability values have not been considered. The validation samples

which are closer to the image pixel may have more impact than the samples which are

farther away. The posterior probability based DCS has been proposed to incorporate

the classifiers probability values and weights based on the distance to the neighbouring

samples to improve the estimation of local accuracy (Didaci et al., 2005). The posterior

local accuracy (PLA) is estimated as follows

PLA(ψl,x) =

�
vj∈ωm

P (ωm | vj,ψl)wj
�M

i=1

�
vj∈ωi

P (ωm | vj,ψl)wj

, N(x) ∈ V | ψl(vj) = ωm (6.3)

where vj ∈ N(x), P (ωm | vj,ψl) is the posterior probability value of the valida-

tion sample vj assigned to the class ωm by the classifier ψl and wj = 1/dj , dj is the

Euclidean distance between the image pixels x and vj . The classifier which has the

maximum PLA is selected for classifying the image pixel x similar to 6.2. In order

to select a subset of T classifiers, the classifier competence values (PLA,LA) are ar-

ranged in descending order and the first T classifiers are selected. The classification

process is then performed by using weighted Bayesian average methods (Kittler, 1998)

and is called dynamic ensemble selection (DES):

P
�ωi

x

�
=

T�

t=1

ηtpt

�ωi

x

�
, i = 1, 2, . . . ,M (6.4)

The class label is obtained as

x ∈ ωm,m = argmax
i

P
�ωi

x

�

where ηt is the weight of the classifier ψt (for instance, it is obtained as ηt = PLA(ψt,x)),

and pt
�
ωi

x

�
is the resulting posterior probability of class ωi for a classifier ψt. For more

details please see (Didaci et al., 2005; Woods et al., 1997).

6.2.2.2 Dynamic classifier selection with modified local accuracy (DCS-MLA)

This approach is similar to DCS-LA, except that the local accuracy is estimated using

weighted nearest neighbours of the image pixel x. Motivated by the performance of the

distance weighted k-NN classifier, Smits (2002) used generalized Dudani’s weighting

scheme for scaling distance with the user specified parameter and sth nearest neighbour
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for scaling the distances as

wr(x) =





dk−dr+α(ds−d1)
(1+α)(ds−d1)

, ds �= d1,α = 0, s = 3k

1 otherwise
(6.5)

where dk is the distance between kth sample and the image pixel x, and dr is the distance

between the rth sample of the kth nearest neighbour and the image pixel x. Then the

modified local accuracy (MLA) is estimated as

MLA (ψl,x) =
1

k

�

j∈N(x)|ψl(x)=ωm

wj (6.6)

The classifier which exhibits maximum local accuracy is chosen as the adaptive clas-

sifier to classify the image pixel and if a subset of classifiers are selected then classifi-

cation is performed similar to 6.4 with ηt = MLA (ψt,x). For more details about the

DCS-MLA, please refer to (Smits, 2002). Furthermore, we modified the 6.6 by incor-

porating classifiers posterior probability values of the neighbouring samples for better

local accuracy estimation:

MPLA (ψl,x) =

�
vj∈ωm

P (ωm | vj,ψl)wj
�M

i=1

�
vj∈ωi

P (ωm | vj,ψl)wj

, N(x) ∈ V | ψl (vj) = ωm (6.7)

where wj is the weight obtained from 6.5 and P (ωm | vj,ψl) is the posterior probability

value of the validation sample vj assigned to the class ωm.

6.2.2.3 DCS-Beta probabilistic model

The third employed method for estimating the classifier competence is based on the beta

probabilistic model (Woloszynski and Kurzynski, 2011). The classifier competence is

modelled as the probability of correct classification of a random reference classifier

(RRC). The random reference classifier produces a randomised vector of class supports

such that its expected value is equal to the vector of class supports produced by the clas-

sifier ψl for each of the samples vj, j = 1, 2, . . . , N in the validation set. The RRC de-

pends on the beta probability distribution with the parameters αm, βm,m = 1, . . . ,M .

The parameters αm, βm are derived from the vector of class supports produced by the

classifier ψl.

142



Let ωj be the original class label of the sample vj ∈ V, and the classifier ψl produces

a vector of class supports as [d1(vj), d2(vj), . . . , dM(vj)]. The estimation of classifier

competence can be summarized as: (1) estimate the parameters of beta distribution

as αm = Mdm(vj), βm = M [1 − dm(vj)] (2) construct the RRC and compute its

conditional probability of correct classification as

Pc (RRC | vj) =

� u

0

b (u,αmj (vj) , βmj (vj))




M�

m=1,m �=ωj

B (u,αm (vj) , βm (vj))


 du

(6.8)

where b (u,αmj(vj), βmj(vj)) is the beta probability distribution and B (u,αm(vj), βm(vj)) =
� u

0
b (w,αm(vj), βm(vj)) dw is the beta cumulative distribution function. The classifier

competence (C) for each validation sample is returned as

C (ψl,vj) = Pc (RRC | vj) , j = 1, 2, . . . , N ; l = 1, 2, . . . , L (6.9)

The classifier competence is computed for all the validation samples relative to each

classifier, which essentially indicates which classifier is most suited for the validation

samples. In order to choose the optimal classifier for a given image pixel, the classifier

competence set is generalized to the entire feature space by the weighted sum of the

competence set as follows:

c (ψl,x) =

�N
j=1 C (ψl,x) exp

�
−dist (x,vj)

2�
�N

j=1 exp
�
−dist (x,vj)

2� (6.10)

where dist is the Euclidean distance between the image pixel x and the validation sam-

ples. The most competing classifier is selected as similar to 6.2 to classify the image

pixel x and if the subset of competent classifiers is selected, then it is classified by us-

ing 6.4. The criterion 6.10 is known as potential model (DCS-Beta Potential). This

method eliminates the necessity of finding nearest neighbours for each image pixel x;

instead it weights the validation samples which are closer to x with high weights and

the validation samples which are farther away with low weights. However, it is required

to compute N distances for each image pixel, yielding high computational complexity,

especially when the size of the image is large.

In order to reduce the computational complexity, the classifier selection problem can
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be formulated as the regression (classification) problem. Let us consider L classifiers

as L classes, the objective is to learn a function that selects a classifier for each of the

image pixels. In other words, the classifier selector is a function f : V → C, that maps

from the validation data set to the competence set of validation samples.

Let {(v1, C (ψl,v1)) , . . . , (vj, C (ψl,vj))} , l = 1, . . . , L be the pairs of a valida-

tion sample and its corresponding classifier competence value of the classifier ψl. For

simplicity, let C(ψl) = [C (ψl,v1) , C (ψl,v2) , . . . , C (ψl,vN)], now

f (V;βl) = βt
lV ⇒ βt

lV = C(ψl) (6.11)

where βl is the parameter to be estimated for the classifier ψl. The classifier com-

petence of the image pixel x can be obtained by

c (ψl,x) = βt
lφ(x) (6.12)

and the parameter βl can be obtained by pseudo inverse as below

βl =
�
ΦtΦ

�−1
ΦtC(ψl) (6.13)

where Φ = [φ(v1), . . . ,φ(vn)] and φ(v) is the polynomial transformation of the sample

v as
�r

i=0 v
i, r = 2, 3, 5. It is found that the transformation with r=3 has offered better

results and we adopted the same. The classifier which has the maximum competence

value in 6.12 is selected for classifying the image pixel x. We call this method as

the DCS-Beta Least square regression (DCS-Beta-LSR). When a subset of classifiers

is considered, then the classification is performed by applying 6.4 and we call it as

DES-Beta-LSR.
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6.2.3 Proposed dynamic classifier selection approach with joint spec-

tral and spatial information

6.2.3.1 Dynamic classifier selection based extreme learning machine regression

The performance of the DCS-Beta-LSR depends on the feature transformation of the

validation and input samples. It is shown that the DCS-Beta-LSR has suboptimal perfor-

mance compared to the DCS-Beta-Potential model (Woloszynski and Kurzynski, 2011).

Hence it would be beneficial to have regression model which is independent of feature

transformation and results in better performance. Recently extreme learning machine

(ELM) has demonstrated its superior capability to offer better generalization ability and

performance at extremely fast learning speed for classification and regression problems

(Huang et al., 2012). In this paper, we propose ELM as an alternative regression model

for the dynamic classifier selection, labelled as DCS-ELM. The result of DES-ELM is

then regularized with MRF to incorporate spatial contextual information.

The ELM based regression can be modelled as

R�

i=1

βigi(wi,vj) = C(ψl,vj) ⇒ h(vj)β = C(ψl,vj), j = 1, 2, . . . , N (6.14)

where R is number of the hidden nodes, h(vj) = [g1(w1,vj), . . . , gR(w1,vj)] is the

output row vector of hidden layer for input vj, gi(wi,vj) is the output of the ith hidden

node and β = [β1, . . . , βR]
t is the output weight between the hidden layer nodes and

the output nodes. For all j, 6.14 can represented as

Hβl = C(ψl) (6.15)

where H =




h(v1)
...

h(vN)


 and the parameter βl can be obtained as

βl = (HtH)−1HtC(ψl) (6.16)
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The classifier competence for a image pixel x is computed as

c(ψl,x) = (HtH)−1HtC(ψl)h(x) (6.17)

The classifier competence are arranged in the descending order and first T classifiers are

selected as the adaptive classifier for image pixel x. Then the classification process is

performed by computing the weighted Bayesian average 6.4. The class label is obtained

as x ∈ ωm,m = argmaxi P
�
ωi

x

�
, where ηt is the weight of the classifier ψt (it is

obtained as ηt = c(ψt,x)), and pt
�
ωi

x

�
is the resulting posterior probability of class ωi

of the classifier ψt.

6.2.3.2 DCS-ELM with MRF regularization

Furthermore, the spatial contextual information is incorporated into the DES-ELM clas-

sification by using the MRF-based regularization model. In the MRF framework, the

classification task is formulated as an energy minimization problem on the graph of im-

age pixels. The energy to optimize is computed as a sum of spectral and spatial energy

terms and assumes that a pixel belonging to a specific class tends to have neighbouring

pixels belonging to the same class. The MRF model can be written as

ω̂ = argmin
ω


−

�

i∈S
logP

�
ωi

xi

�
+ γ

�

j∈N(xi)

(1− δ(ωi,ωj))


 (6.18)

where δ(.) is the Kronecker function (δ(ωi,ωj) = 1 forωi = ωj; δ(ωi,ωj) = 0 forωi �= ωj),

N(xi) is the neighbouring pixels of xi, ω̂ is the resulting class labels from the MRF reg-

ularization, S is the set of all image pixels and γ is a positive constant parameter that

controls the importance of spatial smoothing. The first term P
�

ωi

xi

�
characterizes the

spectral information and it is derived from the DES-ELM by employing Equation 6.4.

The second term is expressed by using a Potts model, which penalizes spatial transitions

among neighbouring pixels with different class labels, thus resulting classification map

of connected regions associated with similar land cover class (Moser et al., 2013). This

MRF regularization can be solved using graph cut methods (Boykov et al., 2001).
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6.3 Experimental Results

6.3.1 Hyperspectral image description

To study the potential of DCS/DES for hyperspectral image classification, we adopted

two benchmark hyperspectral images with different land cover settings (one in urban

area and one in agricultural area) captured by two different sensors (ROSIS, AVIRIS).

ROSIS University: The first hyperspectral dataset was collected over the University

of Pavia, Italy by the ROSIS airborne hyperspectral sensor in the framework of HySens

project managed by DLR (German national aerospace agency). The ROSIS sensor

collects images in 115 spectral bands in the spectral range 0.43 to 0.86 µm with spatial

resolution 1.3 m/pixel. After the removal of the noisy bands, 103 bands are selected

for the experiments. The image contains 610 x 340 pixels with nine classes of interest.

Figure 6.2 shows a false color composite (FCC) image and its corresponding ground

truth map. The available reference samples in each class are shown Table 6.1.

AVIRIS Indian pines: The second hyperspectral image used was collected by the

AVIRIS sensor over the Indian pines site in North Western Indiana. The AVIRIS sensor

collects images in 220 spectral bands in the spectral range 0.43 to 0.86 µm at 20 m

spatial resolution. Twenty water absorption bands were removed, and 200 bands were

used for experiments. This image contains 145 x 145 pixels with sixteen classes of

interest. Figure 6.5 shows the FCC image and its corresponding ground truth map. The

available reference samples in each class are shown Table 6.2.

Table 6.1: Number of reference samples considered for the experiment of Uni-
versity image.

Class name Training Validation Testing

1. Asphalt 100 100 6431
2. Meadows 100 100 18449
3. Gravel 100 100 1899
4. Trees 100 100 2864
5. Metal sheets 100 100 1145
6. Bare soil 100 100 4829
7. Bitumen 100 100 1130
8. Bricks 100 100 3482
9. Shadows 100 100 747
Total 900 900 40976

147



Table 6.2: Number of reference samples considered for the Indian pines image.

Class name Training Validation Testing Class name Training Validation Testing

1. Alfalfa 12 11 23 9. Oats 5 5 10
2. Corn-no till 100 100 1228 10. Soybeans- 100 100 772

no till
3. Corn-min till 100 100 630 11. Soybeans- 100 100 2255

min till
4. Corn 60 59 118 12. Soybeans- 100 100 393

clean till
5. Hay-windowed 100 100 283 13. Wheat 53 52 102
6. Grass/Trees 100 100 530 14. Woods 100 100 1065
7. Grass/pasture- 7 7 14 15.Bldg-grass- 100 100 186
mowed trees-drives
8. Grass/pasture 100 100 278 16. Stone-steel 24 23 46

towers
Total 1158 1158 7933

6.3.2 Design of experiments

From the available ground truth samples, we randomly selected 100 samples for train-

ing, 100 samples for validation and the remaining samples were used for testing. If

the total number of available reference samples was lower than 300 samples per class,

then 25% of samples were selected for training, another 25% of samples for validation

and remaining samples were used as the testing samples (see Tables 6.1 and 6.2). The

experimental results were assessed by overall accuracy (OA), average accuracy (AA),

and producer accuracy (PA). In order to avoid bias induced by random sampling of the

training and validation samples, ten independent Monte Carlo runs are performed and

the accuracies (OA, AA, PA) are averaged over the ten runs.

In each of the RSM, multiclass pair-wise probabilistic SVM classification with the

Gaussian radial basis function (RBF) kernel was performed (Chang, Chih-Chung and

Lin, 2011). The SVM parameters in all our experiments were automatically tuned with

C = 2α,α = {−5,−4, · · · , 15} and gamma = 2β, β = {−15,−13, · · · , 3} (C is

the cost function and gamma through five-fold cross validation strategy of the training

samples. In the DCS using local accuracy estimation based methods (DCS-LA and

DCS-MLA) the classifier competence are estimated based on both strategies 6.1 and

6.3 and the best results are retained. The performance of the DCS-LA and DCS-MLA

approaches depends upon the k-nearest neighbours of the test sample in the validation
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Figure 6.2: (a) False color composite of the ROSIS University image (R:
0.8340 µm G: 0.6500 µm B: 0.5500 µm), (b) Ground truth image
and its corresponding class labels.

Figure 6.3: (a) False color composite of the AVIRIS Indian pines image (R:
0.8314 µm G: 0.6566 µm B: 0.5574 µm), (b) Ground truth image
and its corresponding class labels.
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data set. Hence, the value of k was varied from 3 to 25 and only the best classification

accuracies were retained. When more than one classifier was selected, the performance

of the DES varies with the number of classifiers (T ) included in 6.4. Hence, in the

experiment we varied the number of classifiers from 2 to 7 and only the best accuracy

is reported. However in most of the Monte Carlo runs, the optimal results are obtained

with four and five classifiers.

Further, the classifier combination or classifier fusion (CF) method using Bayesian

average method is adapted to combine all the base classifiers in the MCS (Kittler, 1998)

to compare with the DCS approaches. The results of the proposed spectral-spatial DES

(DES-ELM+MRF) were compared with the results of the full-band SVM classification,

single best classifier, and CF. In order to have fair comparison we also performed MRF

regularization with full band SVM, single best classifier and CF.

6.3.3 Classification results of RSM

Figure 6.4 shows the classification accuracies of SVM classification relative to each

random subspace. The results show that there is a considerable variability among the

base classifiers in the MCS in terms of overall accuracy and class-specific accuracies,

thus indicating the suitability of RSM for forming the MCS.

The variability of classifiers accuracy is less significant for the University image.

There is a 2% accuracy difference between the maximum and minimum overall clas-

sification accuracy in the MCS; whereas it is about 8% difference in the AVIRIS hy-

perspectral image. Similar observation also holds good with the average accuracy. In

addition, the maximum classification accuracy (SB classifier) obtained with the MCS is

comparable with the full band SVM classification accuracy, showing the inherent nature

of RSM to sample uncorrelated bands in each subspace and introduces diversity in the

MCS. Apart from sampling the uncorrelated bands, it also provides informative bands

for classification.

150



Overall Accuracy Average Accuracy
0

10

20

30

40

50

60

70

80

90

100

 

 Fullband
 RSM 1
 RSM 2
 RSM 3
 RSM 4
 RSM 5
 RSM 6
 RSM 7
 RSM 8
 RSM 9
 RSM 10

A
cc

ur
ac

y 
(in

 %
)

(a)

Overall Accuracy Average Accuracy
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(in

 %
)

(b)

Figure 6.4: Overall accuracy (OA) and Average accuracy (AA) of the SVM
classifier relative to each random subspace and Full band hyper-
spectral image (a) ROSIS University (b) AVIRIS.
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6.3.4 Classification results of the DCS and DES

In this section, the classification results of the different DCS/DES approaches and the

proposed DES-ELM+MRF are presented. Tables 6.3 and 6.4 summarize the over-

all accuracies, average accuracies and class-specific accuracies of the dynamic classi-

fier/ensemble selection for both hyperspectral images. DCS indicates that only the most

competent classifier is selected for each image pixel; whereas DES indicates that a sub-

set of classifiers was selected for each image pixel. In the case of the DCS, DCS-LA and

DCS-ELM methods yield a marginal increase of overall classification accuracies. The

remaining methods resulted in 2% decrease of classification accuracies when compared

to the SB classifier for both images. This observation highlights the need for select-

ing an adaptive subset of classifiers for each image pixel, instead of selecting only the

most competent classifier. This is analogous to the case of selecting multiple classifiers

instead of one classifier to avoid the risk of the suboptimal performance.

Table 6.3: Producer accuracy (PA), overall accuracy (OA), and average accu-
racy of the dynamic classifier selection and dynamic ensemble se-
lection methods of University image.

Class name Dynamic classifier selection (DCS) Dynamic ensemble selection (DES)

SB LA MLA Beta- Beta- ELM LA MLA Beta- Beta- ELM ELM+
Pot LSR Pot LSR MRF

Asphalt 77.66 77.09 79.53 78 78.65 78.31 78.39 80.5 79.51 79.97 79.94 97.17

Meadows 86.66 87.05 84.19 81.72 82.24 85.34 88.75 89.22 88.96 69.47 89.78 98.92

Gravel 82.47 86.91 81.6 83.22 82.09 83.4 87.04 86.22 86.29 86.12 86.6 97.3

Trees 94.54 96.31 91.43 92.12 94.14 94.78 96.04 94.79 95.17 78.72 95.51 95.1

Metal Sheets 99.48 99.66 99.48 99.55 99.59 99.62 99.62 99.57 99.58 99.48 99.6 99.84

Bare soil 87.48 89.26 85.93 84.23 86.33 88.26 91.29 90.64 90.22 88.26 91.83 99.85

Bitumen 93.12 94.7 91.85 92.8 92.63 93.43 94.87 94.11 94.38 94.27 94.4 98.38

bricks 83.28 79.39 81.38 83.18 81.84 82.02 84.56 85.4 85.75 85.23 85.87 98.59

Shadow 99.93 99.95 99.88 99.79 99.87 99.88 99.95 99.92 99.85 99.93 99.96 99.96

AA 89.4 90.04 88.36 88.29 88.6 89.45 91.17 91.15 91.08 86.83 91.5 98.35

OA 86.19 86.53 84.74 83.48 83.96 86.25 88.18 88.56 88.38 78.16 89.82 98.41

When a subset of classifiers is selected for each image pixel and combined by the

weighted Bayesian average method, the classification accuracy improved significantly

with all the DES approaches (except the DES-LSR method for the University image).
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There is a significant improvement in classification accuracy (about 5-6 percentage

points) for the Indian pines image, and a moderate improvement (about 2-3 percentage

points) for the University image. Among the DES approaches, the DES-ELM achieved

the highest accuracy for the University image and the DES-LA, DES-Potential and

DES-ELM achieved the highest accuracies for the Indian pine image. The least perfor-

mance could be observed with DES-LSR method. This is mainly due to its inefficiency

in estimating the classifier competence of a test pixel. However, it is computationally

efficient compared to the local accuracy estimation based methods.

Table 6.4: Producer accuracy (PA), overall accuracy (OA), and average accu-
racy of the dynamic classifier selection and dynamic ensemble se-
lection methods of the Indian pines image.

Class name Dynamic classifier selection (DCS) Dynamic ensemble selection (DES)

SB LA MLA Beta- Beta- ELM LA MLA Beta- Beta- ELM ELM+
Pot LSR Pot LSR MRF

Alfalfa 62.17 59.13 61.74 63.48 51.3 48.7 56.96 55.65 67.39 50.87 58.7 81.74

Corn-no till 70.2 75.29 67.55 70.98 65.58 69.41 77.5 76.47 77.6 75.52 78.12 81.74

Corn-min till 74.06 75.46 70.33 71.51 71.89 72.89 78.22 78.33 79.52 79.38 79.49 94.05

Corn 79.92 85.17 76.95 74.75 76.44 80.76 88.47 86.69 86.86 86.53 87.37 99.07

Hay 93.22 94.95 90.21 91.31 90.35 92.08 94.35 93.5 93.99 93.22 93.85 97.03
windowed

Grass/Trees 90.81 97.62 91.17 92.49 92.08 94.94 97.38 96.28 96.62 92.94 96.94 99.55

Grass/pasture-mow 62.86 63.57 47.14 56.43 57.14 50.71 52.14 46.43 65.71 57.86 62.86 82.14

Grass/pasture 99.1 99.39 98.24 98.67 98.96 99.17 99.53 99.5 99.42 99.17 99.46 100

Oats 32 5 2 29 44 39 10 12 39 36 35 38

Soybeans-no till 79.29 89 76.72 75.69 77.95 80.97 89.84 87.09 87.64 86.99 87.33 98.34

Soybeans-min till 67.01 61.66 62.16 64.85 65.46 65.31 72.36 72.79 73.54 73.43 70.36 91.17

Soybeans-clean till 80.84 85.06 77.89 81.93 78.98 83.66 91.12 90.03 90.59 89.59 88.8 98.37

wheat 97.64 99.22 98.43 98.14 97.35 98.04 99.41 99.41 99.51 99.02 99.31 99.51

Woods 87.5 92.07 87.29 87.17 87.88 89.49 93.46 92.66 92.92 91.46 93.16 94.19

Bldy 69.14 69.62 71.67 73.01 69.68 69.95 79.78 81.18 81.88 73.49 76.72 99.68

Stone-steel towers 92.39 96.74 87.17 87.39 89.35 93.26 95 92.61 92.17 93.7 93.7 98.91

AA 77.38 78.06 72.92 76.05 75.9 76.77 79.72 78.79 82.77 79.95 81.32 90.84

OA 77.06 78.82 74.37 76.03 75.45 77.16 83.23 82.65 83.4 82.18 83.2 93.12

Apart from the overall classification accuracy, the per-class accuracy and average
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class accuracy has also been improved (see Table 6.3 and 6.4). There is about 7-8%

improvement in per-class accuracy for most of the classes in the Indians pines image

while it is moderate with the University image. This observation supports the need of

adopting the adaptive classifiers based on local pixel information for enhanced classifi-

cation performance. However the poor per-class accuracy is observed with the classes

oats, and alfalfa. This is because the classifier fails to characterize the class information

due to the presence of the insufficient number of training samples. Furthermore, our

proposed DES-ELM approach has outperformed other DES methods both in terms of

accuracies and computational time.

From the above observations, we can conclude that DES-ELM better characterizes

the spectral information and provides reliable probability estimates and class labels

when compared to the other considered methods. The inclusion of spatial contextual

information in DES-ELM by the MRF model further significantly increases classifica-

tion performance. In this case (DES-ELM+MRF), the overall and average classification

accuracies are improved by 12-15% and by 9-12% over the SB classifier, respectively.

When compared to its earlier version (DES-ELM), about 9% enhancement in the clas-

sification accuracy is observed. Furthermore, the class-specific accuracies exceed 95%

for medium and large spatial structures, and are less than 95% for small spatial struc-

tures (for example, trees, alfalfa, oats). The lower per-class classification accuracy of

oats, alfalfa might be due to insufficient number of training samples. The classification

maps of the SB, DES-ELM and DES-ELM+MRF are shown in Figures 6.5 and 6.6. Vi-

sual inspection of Figures 6.5 (a), 6.5 (b), 6.6 (a), and 6.6 (b) reveal that DES produced

smoother classification maps than the SB classifier. Figures 6.5 (c) and 6.6 (c) confirm

a significant increase in classification accuracies and highlight the potential of the MRF

model to produce a smooth classification map with spatially connected regions.

6.3.5 Comparative performance of the spectral-spatial DCS with

classifier fusion and full band SVM

The accuracy of spectral-spatial DCS (DES-ELM+MRF) classification is compared

with the classifier fusion (CF) method and full-band SVM. When compared with the

full-band SVM, DES-ELM+MRF yields improvement of the overall accuracy by 11

and 14 percentage points for the University and the Indian Pines datasets, respectively.
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Figure 6.5: Classified images of the University image (a) Single best (SB) clas-
sifier (b) DES-ELM (c) DES-ELM-MRF.

Figure 6.6: Classified images of the Indian pines image (a) Single best (SB)
classifier (b) DES-ELM (c) DES-ELM-MRF.
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When compared with CF, it yields about 9% improvement for both images. In order

to have a fair comparison, we also performed MRF regularization with the full-band

SVM, CF and SB classifier and the results are shown in Table 6.5. It can be seen that

the accuracy of the DES-ELM+MRF classification outperforms SVM+MRF, SB+MRF

and CF+MRF methods by 3% for the University image and 1.5% for the Indian pines

image, respectively. The proposed DCS-ELM+MRF approach also yields the highest

class-specific accuracies for most classes. This observation highlights the potential of

merging the advantages of the two different approaches into a unified framework.

Table 6.5: Overall accuracy (OA), Average accuracy (AA) of the pixel wise
classification methods (full band SVM, SB, and CF) and the full
band SVM+MRF, SB+MRF, CF+MRF methods

Image Full band SB CF Full band SB+ CF+ DES-ELM+
SVM SVM+MRF MRF MRF MRF

University OA 87.12 86.19 88.65 95.41 94.73 96.47 98.41
AA 90.16 89.4 91.31 95.51 95.55 96.14 98.35

AVIRIS OA 79.04 77.06 83.22 90.91 90.5 91.5 93.12
AA 79.43 77.38 81.34 85.86 84.74 86.56 90.84
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Table 6.6: Kappa statistical significance test of different pixel wise classifica-
tion methods and spatial contextual methods of University and In-
dian pines image. The results are considered as significant at 95%
confidence interval if the tabulated value |Z| > 1.96.

(a) Kappa Statistical Significance Test of University Image

Methods SB DES- CF Full band SB+ DES-ELM+ CF+MRF Full band+
ELM SVM MRF MRF MRF

SB 0 15.09 10.52 7.59 58.71 67.67 64.09 57.41

DCS-ELM 0 6.58 8.3 37.34 42.73 32.95 35.97

CF 0 6.91 38.89 46.25 34.48 37.54

Fullband- 0 40.75 65.96 58.25 51.48
SVM

SB+MRF 0 16.36 7.23 8.97

DCS-ELM+ 0 8.34 15.22

MRF

CF+MRF 0 10.23

(b) Kappa Statistical Significance Test of Indian Pines Image

SB 0 9.6 9.62 3.16 25.24 28.74 26.93 26.36

DCS-ELM 0 0.23 6.65 15.73 19.29 17.44 16.87

CF 0 6.67 15.7 19.26 17.4 16.84

Fullband- 0 22.29 25.8 23.97 23.41
SVM

SB+MRF 0 5.69 3.98 3.78

DCS-ELM+ 0 2.98 3.94

MRF

CF+MRF 0 2.14

In order to examine the statistical significance of the results, we have conducted

two-tail kappa statistical significance test at 95% confidence interval and the results are

shown in Table 6.6. The results are statistically significant at 95% confidence interval, if

the tabulated value | Z |> 1.96. As evident from Table 6.6, the accuracy differences of

our proposed DES-ELM are statistically significant when compared with SB classifier,

CF and full band SVM. However, there is no significant difference between DES-ELM

and CF for the Indian pines image. The high statistical significance values are observed

when the spatial contextual information is incorporated with the DES approach. This
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observation confirms the advantage of the spatial contextual models to obtain accurate

classification image over the pixel wise classification methods. Furthermore, it is in-

teresting to see that accuracy improvement offered by our proposed DES-ELM+MRF

approach is statistically significant when compared with other spatial contextual models

(SB+MRF, CF+MRF and full band SVM+MRF).

6.4 Discussion

MCS has evolved as a promising approach for hyperspectral image classification. The

classifiers in the MCS are combined in two ways by classifier fusion and classifier selec-

tion. Many studies have demonstrated that combining multiple classifiers (for instance,

Bayesian average) has the potential to deliver significant performance for hyperspec-

tral image classification (Samiappan et al., 2013; Thoonen et al., 2012). However, the

classifiers forming the MCS have to be diverse in order to get enhanced performance;

otherwise it may end up with suboptimal performance. It is understood that along with

the diversity constraint, the classifiers forming the MCS also should be accurate enough

to enrich the performance of the MCS. This requirement is often met by developing

methodologies to select the classifiers by considering both diversity and performance

measure. However, most often all the selected classifiers take part in the decision mak-

ing and do not account for local class diversity and distribution variations within the

image. Dynamic classifier selection is an alternative way of combining multiple clas-

sifiers in the MCS which selects a classifier (or a subset of classifiers) relative to each

image pixel (Woloszynski and Kurzynski, 2011). Most of the previous studies using

MCS for hyperspectral image classification are mainly focused on the classifier com-

bination or classifier fusion, while little or no attention has been paid to the classifier

selection mechanism. In this chapter, we explored the potential of the dynamic classifier

selection (DCS) by proposing new DCS methods for hyperspectral image classification.

Estimating classifier competence is the central part of the DCS algorithm. We explored

both the local accuracy-based methods and a probabilistic model-based method (DCS-

Beta Potential and DCS-Beta LSR) to estimate the classifier competence. The local

accuracy-based methods and DCS-Beta potential computes the distance between each

image (test) pixel and the whole set of validation samples, resulting in a computational

burden. On the other hand, DCS-Beta LSR finds a function which maps the validation
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data samples to the classifier competence and reduces the computational burden at the

cost of accuracy. Hence, it will be beneficial to have an effective framework which

reduces the computational burden without reducing the accuracy. We proposed the ex-

treme learning machine (ELM) based regression framework, which estimates the func-

tion mapping validation samples to the classifier competence measure, thus reducing the

computational burden without degrading the accuracy. Furthermore, ignoring the spa-

tial correlation among the neighbouring pixels yields poor classification. Our proposed

MRF-based framework combines both the spectral information from the DES-ELM and

spatial contextual information, resulting in accurate and smooth classification maps.

We introduced diversity in the MCS by partitioning the hyperspectral image bands

randomly using RSM with SVM as the base classifier. The classification results indicate

that the best accuracy with the RSM is comparable to the full band SVM, highlighting

significance of the RSM in providing uncorrelated as well as optimal bands for classi-

fication. The result of DCS establishes that selecting one best classifier for each image

pixel is not an optimal choice and it could end up with the accuracy no better or less

than SB for hyperspectral image classification. For example except DCS-LA and DCS-

ELM, the remaining methods result in accuracy about 2% lower than the SB classifier

for the University image. However, it has shown in (Du et al., 2012a) that DCS fared

better for hyperspectral image classification. When the subset of classifiers is selected,

DES offers 2-6% increase in overall classification accuracy. When compared to other

considered methods, both DES-ELM and DES-LSR are computationally efficient for

large scale image classification, but the latter method reduces the classification accu-

racy (Woloszynski and Kurzynski, 2011). Our proposed DES-ELM method has the

inherent ability to transform the input data samples by hidden neuron nodes and it of-

fers good computational and classification accuracy performance, as evident from the

results. The dual advantage of the ELM method is that the performance is independent

of its parameters (parameter free) and a variety of transformation functions can be used.

However, in this study the best results are obtained with RBF-based transformation in

the hidden neurons nodes (Huang et al., 2012). Further, ELM-based regression method

shows better performance in both cases when one and a subset of classifiers is selected

for each image pixel.

Compared to the single classifier, DES-ELM provides reliable probability estimates

by alleviating the limitation of the single classifiers and the classifier fusion. The incor-
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poration of the spatial contextual information shows remarkable performance of about

9% in OA over the pixel wise classification of DES-ELM. Compared to the pixel-based

classification methods (full band SVM, SB, and CF), there is 9-16% increase in over-

all accuracy. Further, it is interesting to observe that DCS-ELM+MRF also have the

potential to offer significant results in terms of OA and AA. It is noted that there is no

significant accuracy difference between CF and DES-ELM for the Indian pines image,

despite a significant accuracy difference between CF+MRF and DES-ELM+MRF. This

indicates the superior capability of DES-ELM to better characterize the spectral infor-

mation and provide reliable probability estimate to be used with MRF regularization

than CF, and SB classifier. In addition, the experiments are performed with few training

samples per class (around 5% of total reference samples for the University image and

around 20% of total reference samples for the Indian pines image).

6.5 Chapter Conclusions

In this chapter, we explored the potential of dynamic classifier selection to exploit rich

spectral information of hyperspectral images. Experimental results show that the DES

has the potential to offer accurate classification results and can be considered alternative

to the classifier fusion methods in the MCS. Furthermore, to improve both classifica-

tion and computational performance, we proposed a new DCS method based on ELM

regression and a new spectral-spatial classification framework to incorporate both spec-

tral and spatial information for hyperspectral image classification. The proposed clas-

sification model shows impressive performance when compared to the state-of-the-art

methods considered.
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CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE

DIRECTIONS

Prelude: This chapter summarizes the overall observations and conclusions of the stud-

ies presented in the previous chapters, and important contributions of this thesis to the

state-of-the art in hyperspectral image processing and analyses. Further, recommen-

dations and directions of future research in this high impact area of remote sensing

research are presented in this chapter.

This thesis has investigated some important issues involved in the application of a

novel pattern recognition approach multiple classifier system for efficient hyperspectral

image classification. In pursuance of the objectives of this thesis, we developed and im-

plemented novel algorithmic schemes to make the multiple classifier system a reliable

approach for hyperspectral image classification.

The main contributions of this thesis to the literature are: 1) an empirical analysis

on the impact of dimensionality reduction methods on the classification performance of

the multiple classifier system, 2) establishment of the existence of empirical relation-

ships between classifier and dimensionality reduction method and between class, clas-

sifier and dimensionality reduction method within the framework of multiple classifier

system, 3) demonstrated that transformed components from multiple dimensionality re-

duction methods can be used to sustain diversity in the functioning of base classifiers

in the multiple classifier system, 4) a novel classifier system for automatically selecting

input hyperspectral image adaptive classifiers and dimensionality reduction methods,

5) explored the potential of dynamic classifier selection approaches for hyperspectral

image classification and developed two new dynamic classifier selection approaches

for hyperspectral image classification. Of the two new approaches proposed, the first

approach uses only spectral information, whereas the second approach is based on the

spectral-spatial classification model to incorporate the spatial contextual information.

These contributions will be valuable in devising efficient and generic methodologies



for the analyses of various sources of hyperspectral images for applications in environ-

mental monitoring, and the natural resource management.

The summary of thesis is presented below chapter wise.

• Chapter 3: The impact of different dimensionality reduction methods on the per-

formance of the multiple classifier system was studied. This study was conducted

to understand the potential of using multiple dimensionality reduction methods

to create the essential performance variability required among the base classifiers

in the MCS and to understand how this variability influences the performance

of MCS. The empirical results show that there is a significant variability in the

performance of the individual base classifiers in the MCS and the level of vari-

ability is a function of the dimensionality reduction method. This indicates the

significance of adopting dimensionality reduction methods to create differential

performance in the classifiers for the MCS classification. Further, the magni-

tude of classification improvement of the MCS has a significant bearing on the

change in dimensionality reduction methods. The random choice of dimension-

ality reduction method could adversely affect the performance of MCS. Hence

the choice-specific dimensionality reduction method has to be selected based on

the information content of the hyperspectral image for exploiting the anticipated

benefits of MCS. This study suggests the importance of domain adaptive knowl-

edge and understanding the suitability of the dimensionality reduction methods

in relation with the underlying hyperspectral image for successful hyperspectral

image analysis.

• Chapter 4: With plethora of classifiers and dimensionality reduction methods

available in literature, we assessed the relationship between classifier and dimen-

sionality reduction method as well as information class, classifier and dimension-

ality reduction method for hyperspectral image classification. The results indicate

that at overall image level, there are some empirical relationships indicating pre-

ferred pairs of classifiers and dimensionality reduction methods across the dif-

ferent hyperspectral images. At the land cover category level, different classes

are best classified by different classifiers within each image and the existence of

different preferred combinations of class, classifier, and dimensionality reduc-

tion method. These observations are found stable even at different spatial and
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spectral resolutions as per our experiments on the synthetic hyperspectral images

generated using original hyperspectral images. This remarkable observation puts

forward the concept of information class specific methodologies for the analyses

of hyperspectral images.

• Chapter 5: A novel classification approach named as dynamic classifier system

was developed. This approach, functions within the MCS framework, dynami-

cally identifies optimal pairs of classifiers and dimensionality reduction methods

based on the input data dynamics and executes classification only with the identi-

fied pairs. The required optimal dimension of the dimensionality reduction meth-

ods is optimized by the classification accuracy and class separability of training

samples. The identified pairs of classifiers and dimensionality reduction methods

are combined with different non-trainable and trainable combination functions,

and both of them showed significant increase in classification accuracy over the

single best classifier. However, the magnitude of improvement is higher with

trainable combination function. Moreover, the classification results are compared

with that of MCS and SVM. The experimental results on five different hyper-

spectral images confirm the robustness of the proposed system to significantly

increase the classification accuracy over the typical MCS and SVM.

• Chapter 6: We further improved our dynamic classifier system approach pre-

sented in the Chapter 5 to dynamic selection of classifier for identifying the best

subset of classifiers relative to each image pixel. As part of this, we implemented

some of the algorithms used in the pattern recognition methods (local accuracy

based dynamic classifier selection and probabilistic based dynamic classifier se-

lection) for testing their suitability for dynamic selection of classifiers with ref-

erence to image pixel for hyperspectral image classification context. Experimen-

tal results show significant improvement in the classification accuracy. However

these approaches demand high computational time since it requires computing the

distance between each image pixel and validation sample. To make the dynamic

classifier selection accurate and computationally fast, we modelled the classifier

selection problem as the classification problem and proposed a new dynamic clas-

sifier selection approach based on extreme learning machine regression frame-

work. The proposed approach offers convincing results when compared to single

best classifier and also to other dynamic classifier selection approaches. Fur-
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ther, we proposed a new spectral-spatial classification model to incorporate spa-

tial contextual information in the hyperspectral image classification framework.

Classification results carried out on two different hyperspectral images demon-

strate that the proposed spectral-spatial classification model yields a significant

increase in accuracy when compared to the state-of-the-art approaches.

Recommendations and future research

The following are some important directions for future research to further enhance the

scientific utility of the studies presented in this thesis. Our future works will include

some of the following.

• The dimensionality reduction methods used to create diversity in this thesis can

be further modified to work as feature selection methods. We believe that deploy-

ment of multiple feature selection methods with different complimentary charac-

teristics could improve the classification performance of the MCS.

• Evaluation of the proposed dynamic classifier system to automatically select and

combine the classifiers and dimensionality reduction methods based on each land

cover class type. Moreover, the dynamic classifier system can be extended to

incorporate spatial contextual information.

• Another interesting direction is optimizing the weights of the spectral-spatial clas-

sification model based on shape of the objects present in the image. This may im-

prove the classification performance of small spatial structures. Moreover, devis-

ing a classifier competence strategy for hyperspectral image classification could

also be of interest. Indeed, very limited studies are reported in this arena.

• The extension and investigation of the proposed techniques on the planetary hy-

perspectral images as well as on the other hyperspectral sensors should also be of

interest.
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